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Abstract: The ability of the underwater vehicle to determine its precise position is vital to completing
a mission successfully. Multi-sensor fusion methods for underwater vehicle positioning are com-
monly based on Kalman filtering, which requires the knowledge of process and measurement noise
covariance. As the underwater conditions are continuously changing, incorrect process and measure-
ment noise covariance affect the accuracy of position estimation and sometimes cause divergence.
Furthermore, the underwater multi-path effect and nonlinearity cause outliers that have a significant
impact on positional accuracy. These non-Gaussian outliers are difficult to handle with conventional
Kalman-based methods and their fuzzy variants. To address these issues, this paper presents a new
and improved adaptive multi-sensor fusion method by using information-theoretic, learning-based
fuzzy rules for Kalman filter covariance adaptation in the presence of outliers. Two novel metrics are
proposed by utilizing correntropy Gaussian and Versoria kernels for matching theoretical and actual
covariance. Using correntropy-based metrics and fuzzy logic together makes the algorithm robust
against outliers in nonlinear dynamic underwater conditions. The performance of the proposed
sensor fusion technique is compared and evaluated using Monte-Carlo simulations, and substantial
improvements in underwater position estimation are obtained.

Keywords: underwater vehicle; fuzzy; multi-sensor fusion; correntropy; positioning; Kalman filter-
ing; underwater robotics

1. Introduction

Precise seabed mapping is the ultimate requirement for extracting minerals and other
natural resources from the ocean. Underwater vehicles play important roles in mapping
and exploration, but their precision is highly affected by the noise conditions in the ocean
environment. Moreover, the main navigation sensors of the underwater vehicle, such as
gyros and accelerometers, suffer from drift and bias. As the worldwide satellite-based
positioning system that uses radio frequency cannot be accessed underwater, an alternate
means of communication based on acoustic positioning systems is usually employed,
making precise location determination of vehicles considerably more difficult than it is for
land vehicles. Ray bending, reflection, and the multi-path effect are all serious barriers in
determining a vehicle’s underwater position [1].

On the other hand, multi-sensor fusion algorithms based on Kalman filtering require
complete knowledge of system model and noise characteristics, which is difficult to obtain
in underwater environments. Typically, for the system process model, the deterministic
component of the underwater vehicle is often derived using kinematic principles, whereas
the stochastic element of the model is represented by noises, which are mostly influenced
by modeling errors and nonlinearity. Likewise, the stochastic portion of the measurement
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model is heavily impacted by sensor characteristics and reliability. In a practical underwater
vehicle navigation scenario, the system process and measurement noise covariance are
unknown, and incorrect values cause compromised position estimation and divergence.
The best estimation of underwater vehicle position is only possible with prior knowledge
of noise covariance [2]. Thus, correct adaptation to the underwater noise environment is a
key requirement for getting a precise position to mapping the seafloor.

Fuzzy logic has provided a simple solution for adaptation of noise covariance using
expert knowledge [3–5]. It has the ability to define complex nonlinear equations with
a simple linguistic rule base. Most previous research studies [6–8] have been based on
matching theoretical and actual covariance based on the difference, but this method does
not give accurate results in the heavy outliers in the stochastic part of the model.

Information-theoretic learning (ITL) has been successfully utilized to test nonlinear
similarity based on correntropy, particularly for noisy outlier environments [9]. As a
nonlinear similarity measure, correntropy shows the closeness of two random variables
with the given kernel size. Furthermore, it can preserve nonlinear features, as well as
high-order moments [10]. However, the existing correntropy-based works are lacking
the advantages of using fuzzy logic. These advantages of fuzzy logic and correntropy
motivated us to propose new algorithms and drived us to answer a major research question:
Can we use correntropy’s strengths to improve underwater vehicle navigation performance
in the presence of nonlinearity and outliers?

1.1. Review of Previous Work

Different types of adaptive Kalman filtering for underwater navigation applications
have been developed and used since the advent of the Kalman filter [11,12]. Initially, Mehra
laid the foundation by proposing four state-of-the-art approaches intended to address
a situation in which the system and measurement noise covariance matrices cannot be
known during the design phase, or to correct for scenarios in which both covariance
matrices change over time [2]. These four techniques are Bayesian, correlation, Maximum
Likelihood Estimation (MLE), and covariance matching. These techniques have been
applied in various land, air, and space applications [13–17].

Many research investigations are being done on underwater vehicle positioning, and
navigation evolves during off-shore resources exploration. A study proposed modifications
of multi-model Kalman filters for underwater navigation by using the probabilistic data as-
sociation theory and claimed to improve the navigation accuracy [18]. Overall, the method
is computation- and memory-intensive due to the use of multiple Kalman filters, and
requires previous steps of states for autocorrelation calculation. Through probability calcu-
lations, they dynamically determine the most efficient navigation routes. Another piece of
research conducted recently used the MLE and RTS smoother for process and measure-
ment noise adaptation to eliminate range error [19]. According to them, using only one
acoustic beacon in this solution makes it more cost-effective. However, the RTS smoother
can significantly increase the computational time and memory requirement. In addition,
the main problem of the MLE method is high sensitivity to outlier auxiliary data.

The improved Sage–Husa adaptive Kalman filter was claimed to enhance the under-
water navigation accuracy of a tightly coupled, strapped down inertial navigation system
(SINS) and Doppler velocity log (DVL)-based system [20]. The method employed the
forgetting factor for memory optimization and variable sliding window for decreasing
computational time. Another study proposed a two-stage adaptive information filter that
used an ultra shot baseline (USBL) with DVL for estimation of an unknown sea current [21].
Their design is based on two information filters—one is a standard information filter for
estimation of states, and the other is based on the sequential least squares algorithm for
estimating the velocity of unknown sea currents. Furthermore, they introduced the forget-
ting factor for fast processing of new data. However, running two-stage filters can add
computational load, which is not discussed in the study.
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Recently, improvement in the variational Bayesian approximation-based adaptive
Kalman filter (VB-AKF) was proposed by using asynchronous auxiliary sensor measure-
ments [22]. They claimed that this technique significantly reduces RMSE for position
estimation. In recent years, there has been growing interest in neural network-based
underwater navigation. Various approaches have been proposed, and more recently, a re-
search study used a deep recurrent neural network involving sequential learning with
Long Short-Term Memory (LSTM) [23]. They claimed that their method outperformed
Kalman-based solutions in terms of accuracy. However, they did not mention the training
time requirement, processing load, and the total number of neurons used in the network.
Another current study proposed an end-to-end navigation solution based on deep hybrid
recurrent neural networks and used raw sensors data directly to estimate the location
underwater vehicle [24]. An investigation that was conducted recently took advantage of
Reinforcement Learning (RL) and incorporated the deep deterministic policy gradient for
tuning the process noise covariance matrix online from low-cost navigational sensors [25].
Their method used the positioning error as a reward function for training RL. However,
the performance of RL neural network-based algorithms are directly proportional to the
training period and previous data storage in the memory.

Several authors have also suggested the use of terrain-based underwater navigation,
which aims to solve the long-distance underwater navigation problem [26,27]. These
terrain-based navigation solutions utilize bathymetric data, underwater topographical fea-
tures, and underwater earth gravitational and magnetic profiles [28]. The concept behind
terrain navigation is to construct a terrain profile map from sensor measurements, then com-
pare it to a previous map database to get the best location estimate. For instance, a detailed
study targeting underwater vehicles used multi-model adaptive estimation (MMAE) for
terrain-based navigation. They utilized Principal Component Analysis (PCA) with MMAE
for underwater terrain matching [29]. In recent research, neural networks were combined
with terrain-based navigation [30]. They used the Rao-Blackwellized particle filter and
offline trained neural network with terrain maps for pattern recognition from time-series
data. However, terrain-based techniques are only useful when previous map databases are
available and sensors are accurate. Moreover, carrying these map databases on underwater
vehicles increase memory requirements, processing power, and computational load.

The application of the fuzzy set theory enables human experience, understanding,
and rationale to be used by computer programs. Fuzzy systems have been documented in
numerous control theories and state estimation filters since the invention of fuzzy logic
and the accompanying mathematics, notably the fuzzy Kalman Filter. Because they do
not require any mathematical model of the system, adaptive fuzzy filters are particularly
effective in dealing with nonlinearity and modeling inaccuracies. Sasiadek et al. made a
seminal contribution by employing fuzzy logic with a Kalman filter for adaptation of noise
covariance. The research work utilized nine rules, with covariance residuals and the mean
of residuals as input, for designing the exponential weighting factor [31]. A large number
of existing research studies in the broader literature has used fuzzy logic for designing
addition or multiplication factors to the noise covariances [5,32,33]. However, there are
wider choices of fuzzy inputs available in the literature depending on the application.
The popular choices of input are actual covariance, Degree of Divergence (DOD), Degree of
Mismatch (DOM), the difference between the theoretical and actual covariance, and mean
value of the residual [34,35]. More recently, adaptive fuzzy Kalman was proposed for space-
craft navigation based on DOM and DOD. They claimed that fuzzy-based methods require
fewer computing resources than the MLE-based method [36]. Despite this, the performance
of this method has not been tested with data affected by outliers, which are common in
underwater environments [37,38].

1.2. Novelty and Contributions of the Proposed Research

The ultimate goal of this research is to take the benefits of correntropy’s strengths and
to address the current need for improving underwater vehicle navigation performance
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in the presence of nonlinearity and non-Gaussian outliers. There is no previous under-
water multi-sensor-fusion method, to the best knowledge of the authors, that augments
the benefits of correntropy, fuzzy, and Kalman filtering applied to the improvement of
autonomous underwater vehicle navigation. It is aimed at improving the performance by
using fuzzy logic, which has the benefit of handling nonlinearity based on expert knowl-
edge, correntropy for robust handling of a non-Gaussian outlier, and Kalman filter for
real-time minimum error variance processing. We named this algorithm FC-MSF, where FC
stands for Fuzzy Correntropy and MSF for Multi-Sensor data Fusion. Another noteworthy
contribution of this work is the introduction of new metrics based on correntropy, which
use high-order moments for improving covariance matching adaptation. We proposed
these metrics as a Degree of Similarity and Degree of Convergence that compare theoretical
and actual covariance statistically, which was not the case in previous DOM and DOD.
Moreover, the fuzzy logic and correntropy-based similarity measures together provide
more robustness to the large outliers which are commonly present in underwater acous-
tic position measurements and velocity measurements by DVL. Correntropy provides a
similarity measure based on kernels, specifically the Gaussian and Versoria kernels, be-
cause of their distinct advantages to the heavier tail underwater vehicle stochastic data. A
simulation study has demonstrated the superior performance of the proposed FC-MSF algo-
rithm and validated that the novel correntropy-based metrics improved outlier influenced
underwater navigation in the absence of global satellite-based positioning systems.

The remaining structure of this paper is organized as follows. Section 2 provides a
brief overview of the mathematical modeling of underwater vehicle sensors. This includes
a discussion on both on-board and off-board sensors of the underwater vehicle. In addition
to that, it briefly discusses navigation equations derived from the gyro and accelerome-
ter. The mathematical formulation of Kalman filtering with an error dynamic model is
briefly discussed in Section 3. This formulation acts as the foundation of the proposed
multi-sensor fusion. Moreover, it highlights the major shortcomings of Kalman filter-
ing. Furthermore, it highlights the major shortcomings of Kalman filtering. In Section 4,
a fuzzy correntropy-based multi-sensor fusion algorithm is proposed for adaptation of
unknown noise covariances. Section 5 discusses and compares the test results of the pro-
posed correntropy-based fuzzy multi-sensor fusion with previous methods. Importantly,
the suggested technique is evaluated by injecting the outlier as a shot non-Gaussian noise,
which is a prominent method used by many researchers to assess the robustness of the
filter [10,39,40]. Subsequently, a comparative analysis is performed, which enables the
authors to assess the accuracy of the suggested method. Monte Carlo simulations indicate
that the approach is technically feasible and has the potential of yielding positive results in
a harsh underwater environment. In the final section, conclusions are provided.

2. Mathematical Modeling of Underwater Vehicle Navigation

This section is divided into two parts. The first subsection discusses mathemati-
cal models of underwater vehicle sensors, while the second subsection provides a brief
overview of navigation equations.

2.1. Mathematical Models of Navigation Sensors

This section briefly highlights the sensors and motion model of an underwater vehicle.
For details, readers may refer to [41,42].

The system-level diagram of the underwater vehicle is shown in Figure 1.
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Figure 1. System level diagram of sensors used by vehicle while maneuvering underwater.

The navigation electronics shown in Figure 1 carry the main embedded microprocessor
and primary sensors used for navigation. The inertial navigation system (INS) is comprised
of an inertial measurement unit (IMU) which gives data at a high rate to the processor.
The IMU contains gyros and accelerometers, which are referred to as primary sensors.
The low-rate secondary sensors include a depth sensor, an electronic compass, and acoustic
position transceivers, which enable USBL connection with the vessel and DVL.

IMU is the most critical onboard instrument for autonomous underwater navigation.
For three-axis motion, the IMU consists of three gyroscopes and accelerometers.

The three orthogonal accelerometers f̂ b
ib and gyros actual output vector ω̂b

ib in the
body frame are modeled as

f̂ b
ib = f b

ib + bacc + $acc (1)

ω̂b
ib = ωb

ib + bg + $g, (2)

where the actual output of accelerometers f̂ b
ib is a combination of white noise $acc and

accelerometer bias bacc. The actual output of gyros ω̂b
ib is sum of white noise $g and gyro

bias bg. The accelerometer and gyro biases are modeled as the first-order Markov process.
The subscript acc is used for noise, and the bias values belong to the accelerometer output,
while the subscript g is used for noise and the values are used for gyro output. The unit of
gyroscope output is radians per second, and that of the accelerometer is meters per second.
The frames of references are represented by the superscript and subscript (i) for the inertial
frame, (n) for the north-east down frame (NED), (e) is the earth-centered, earth-fixed
frame (ECEF) frame, and (b) is the body frame. The relationship between the frames is
represented by subscripts and superscripts. For instance, ωb

ib shows an angular velocity of
frame (b) with respect to (i) represented in the (b) frame [41].

The acoustic positioning system is the second most important instrument on the un-
derwater vehicle. Acoustic transponder beacons are used by underwater vehicle navigation
systems to determine the vehicle’s position. An underwater vehicle uses the Ultra-Short
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Baseline (USBL) system to position itself relative to a surface vessel that has GPS-calibrated
transponders.

The actual output of the USBL acoustic positioning system p̂h is represented as

p̂h = ph + bh + $h, (3)

where p̂h is a combination of the true acoustic position ph, time-varying bias bh, and white
noise $h.

The DVL measures the speed of the vehicle with respect to the bottom by measuring
the change in acoustic frequency [43]. The output of DVL v̂dvl measurement can be modeled
as a sum of the actual velocity measurement vector vdvl , noise $dvl , and bias $dvl , given as

v̂dvl = vdvl + bdvl + $dvl . (4)

The depth of the underwater vehicle is measured by a pressure sensor which has
an almost linear relationship. The actual depth sensor output ĥd is a combination of true
output ĥd with added noise $d, represented as

ĥd = hd + $d. (5)

The vehicle’s attitude is determined by an electronics compass, which senses the magnitude
and direction of the Earth’s magnetic field [44]. The actual output electronic compass qm is
a product of true output qm and noise. It is represented as

q̂m = qm$m. (6)

2.2. Navigation Equations

A strapdown INS configuration due to its weightlessness is widely used in underwater
vehicles. In this configuration, navigation equations are calculated in an embedded micro-
processor, that uses IMU data to determine the vehicle’s attitude, velocity, and position [45].

The rate of change of attitude of the vehicle is obtained from the gyro angular velocity
represented by a quaternion q̇e

b by the following equation:

q̇e
b =

1
2

Ωb
gqe

b, (7)

where qe
b is the attitude for which an initial value is required for the first-time calculation,

and it is comprised of four elements: [q1 q2 q3 q4]. The scalar component is q1, while the
vector part is qi, i = 2, 3, 4. The Ωb

g is a skew symmetric matrix. The attitude is obtained by
numerical integration of q̇e

b.
The differential equation for underwater vehicle velocity v̇e is determined from an

accelerometer measurement f b, angular velocity ωe
ie, and the gravity vector of earth ge is

expressed as [46,47]
v̇e = Re

b f b − 2Ωe
ieve + ge, (8)

where Re
b is the rotation matrix. Ωe

ie is a skew symmetric matrix. Numerical integration is
required for obtaining the current velocity of the vehicle.

The velocity ve obtained in the previous equation is related to the position ṗe by the
following differential equation:

ṗe = ve. (9)

For more details of kinematic equations, readers may refer to [42,45,48].

3. Shortcomings of Kalman Filtering with Error Dynamic Model

This Section begins by giving a brief overview of Kalman filtering with error dynamics,
and the last part discusses Kalman filtering’s shortcomings. The state space representation
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is based on the error dynamic model ẋ, which is the difference between the true state ˙̃x and
estimated state ˙̂x, written as

ẋ = ˙̃x− ˙̂x, (10)

where the true states are obtained from INS primary sensors. The complete error state
vector of position p, velocity v, attitude q, gyro bias bg, accelerometer bias bacc, and acoustic
fix bias bh is given as

x =
[

p v q bg bacc bh
]T . (11)

The nonlinear dynamics of the underwater vehicle state ẋ(t) and measurement output
equation z(t) are represented by

ẋ(t) = f (x(t), u(t), t) + w(t) (12)

z(t) = h(x(t), t) + v(t), (13)

where f and h are nonlinear functions. In the case of EKF, they are transformed linearly by
using Taylor approximation [F] and [H]. The states and measurements are corrupted by
process noise w(t) and measurement noise v(t), respectively.

EKF begins by the prediction or time update step that includes the error state x−k+1
and error state covariance P−k+1 prediction [47]. The superscript minus − and superscript
plus + denote the a priori and posteriori states.

x−k+1 = Φkx−k , (14)

where Φk is the state transition matrix which depends on error states in discrete form.

P−k+1 = ΦkP+
k Φ>k + Qk, (15)

where Qk is the covariance of process noise vk.
In the next step, the filter performs corrections or a measurement update, in which

the posteriori error state x+k and error covariance P+
k are computed using Kalman gain Kk;

given by following equations:

Kk = P−k H>k
(

HkP−k H>k + Rk

)−1
(16)

x+k = x−k + Kk
(
zk − Hkx−k

)
(17)

P+
k = (I − Kk Hk)P

−
k , (18)

where Rk is the covariance of measurement noise wk.
The complete corrected navigation state x̂+k can be written as the sum of the error

estimate from Equation (17) and prior full state estimate x̂−k as

x̂+k = x̂−k + x+k . (19)

Nevertheless, when the measurements are contaminated by non-Gaussian noise, such
as outliers or impulsive noise inference, EKF will perform poorly and even diverge [49]. The
term

(
zk − Hkx−k

)
is known as innovation. It is the difference between the measurement

error vector zk and its predicted error vector Hkx−k . If the heavy outliers impact measure-
ment or process modeling by including errors caused by nonlinearity, the innovation term
will produce erroneous results, causing the filter to diverge. Specifically, in underwater
conditions, a major limitation for using Kalman filtering is the limited prior knowledge of
process noise and measurement noise covariances. Incorrect initialization of covariance
can cause filters to diverge. Moreover, the statistics of noise can change according to under-
water conditions. Consequently, the adaptation of process and measurement covariance is
necessary to get explicit navigation accuracy of the underwater vehicles.
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4. Correntropy-Based Fuzzy Multi-Sensor Fusion

The proposed modifications improve the performance of Kalman filter-based multi-
sensor fusion by utilizing the strengths of correntropy and fuzzy logic. Fuzzy logic has
been shown to control nonlinear processes by using human linguistic expressions, and this
capability is combined with Kalman filters to solve divergence problems and improve
accuracy [4,32]. Covariance matching has been a popular methodology for adaptive fuzzy
Kalman filtering in earlier research [8,33,50]; however, there is no reliable way for matching
covariance when data have significant nonlinearity and heavy outliers, as in the case of
an underwater vehicle navigation system. Therefore, we propose a correntropy-based
covariance matching for fuzzy system input because of its robustness to outliers and non-
Gaussian noise [51]. The top-level block diagram of our proposed multi-sensor fusion
algorithm is depicted in Figure 2.

INSIMU
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Pressure 
sensor

Compass

Corrected Full State

Error Correction

Acc

Gyro

Kalman Filter

Estimated Error 

Correntropy
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Actual Theoretical
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Acoustic 
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Primary Sensors

Se
co

nd
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 S

en
so

rs

Adaptation Block

Figure 2. Top-level diagram of proposed integrated navigation architecture for underwater vehicle.

As shown by the above block diagram Figure 2, the primary sensors data from IMU
and auxiliary sensors, such as the depth sensor, DVL, the acoustic position from USBL,
and compass is fed into the Kalman-based fusion algorithm. The fusion algorithm works
on the error dynamics of input data. The correntropy computation block is the part of
the adaptation block that receives actual and theoretical covariance as input from the
fusion block. The correntropy block provides a similarity measure from 0 to 1, where
1 means maximum similarity. The numerical value from the correntropy block is used
for fuzzification. The fuzzified linguistic terms are passed through an inference engine
that takes human expert-driven rules base. To obtain the adaption factor, the result of the
inference engine is defuzzified. The correction is applied to covariance matrices which
protect divergence and improve the accuracy of the filter.
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4.1. Adaptation by Covariance Matching

The most commonly used approaches for adaptation are based on the covariance
matching approach, which makes the theoretical value and actual value consistent with
each other. The approach for adaptation of covariance matrices involves the simultaneous
adaptation, both of the process and measurement noise covariances, or the adaptation of
either of those two covariances if only one is known.

The theoretical covariance is used as a basis of comparison. It is given as

Sk = HkP−k HT
k + Rk. (20)

The actual covariance is calculated by taking a moving windows average of measure-
ment innovation [15]. It is given as

Ck =
1
λ

λ

∑
i=i0

sksT
k , (21)

where λ is the size of the window.
The most commonly used criteria used for fuzzy adaptive Kalman filter are DOM

and DOD [35,36,52]. They are mathematically given by the following equations:

DOD = Tr(Sk)− Tr(Ck) (22)

DOM = Sk(j, j)− Ck(j, j). (23)

The DOD gives one scalar value by subtracting the trace of theoretical and actual covariance
matrices. On the other hand, DOM is a vector as a result of the diagonals difference of
theoretical and actual covariance matrices.

When theoretical and actual covariance are perfectly matched, the DOD and DOM
are close to zero. Moreover, the positive or negative values of these metrics indicate positive
or negative direction of tuning for covariance matrices.

There are two major problems with this approach. Firstly, it ignores outliers and
nonlinearity, both of which are frequent in underwater settings. Secondly, innovation’s
autocorrelation does not reflect actual covariance. As a result, using DOM or DOD, the
impact of outliers is reflected in the tuning process, which negatively influences the filter
response. Furthermore, in the case of impulsive non-Gaussian noise, they do not provide
accurate results.

4.2. Correntropy-Based Robust Adaptation of Process Noise Covariance by Gaussian Kernel

Correntropy is a similarity metric between two random variables [53]. It is based
on kernel methods that take into account both a statistical distribution and temporal
structure [9]. It is defined as

M(A, B) = E{κ(ak, bk)}, (24)

where κ is the kernel that satisfies Mercer conditions [54] and E is the expectation operator.
Random variables are represented by A and B. In a practical situation, the joint distribution
is not available and correntropy is calculated by using finite samples of random variables.
It is calculated by using N samples of distributions as

M̂(A, B) =
1
N

N

∑
i=1

κσ(ak, bk). (25)
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The most commonly used kernel is Gaussian, which reaches the maximum value when
ak = bk. Moreover, the correntropy function based on the Gaussian is positive and bounded.
It is written as

κσ(ak, bk) = exp

(
−‖ak − bk‖2

2σ2

)
, (26)

where σ is the width of the kernel. The robustness will be good but the convergence speed
will be slow if the kernel width is too small; conversely, if the kernel width is too large,
the convergence speed will be rapid, but iterations may take a longer time. Selecting the
appropriate kernel width is vital to the performance.

In this work, a new metric based on the correntropy Gaussian kernel is introduced
to calculate a new comparison parameter named Degree of Convergence (DOC), which is
the opposite of DOD and has better performance in nonlinear conditions. Furthermore, it
solves two major problems by having the property to suppress the negative effects of the
large outliers and providing better results in non-Gaussian conditions. The theoretical and
actual covariance are matched using the DOC function, which is defined as

DOC =
1
N

N

∑
i=1

κσ(ek), (27)

where ek is calculated as
ek = Tr(Sk)− Tr(Ck). (28)

4.3. Fuzzification of Degree of Convergence

Fuzzification is the process of converting crisp values into fuzzy sets based on vague
linguistic variables [55]. Fuzzification of DOC is based on its properties. In particular, DOC
is maximum when theoretical and actual covariance is matched, and there is no need to
tune Q. Furthermore, DOC is a symmetric positive function, therefore fuzzy variables are
defined in a symmetric manner. Fuzzification of DOC used eight input linguistic terms:
Positively Full Converge (PFC), Negatively Full Converge (NFC), Positively Moderate
Converge (PMC), Negatively Moderate Converge (NMC), Positively Slight Converge (PSC),
Negatively Slight Converge (NSC), Positively Diverge (PD), and Negatively Diverge (ND).
The output linguistic variables are no change (NC), Moderate Decreased (MD), Moderate
Increased (MI), Limited Decrease (LMD), Limited Increase (LMI), Significant Decrease (SD),
and Significant Increase (SI). The fuzzy adaptation parameter for process noise covariance
is donated by αk. The fuzzy rules for DOC are given as

• IF DOC is PFC THEN NC in αk
• IF DOC is NFC THEN NC in αk
• IF DOC is PMC THEN MD αk
• IF DOC is NMC THEN MI αk
• IF DOC is PSC THEN LMD αk
• IF DOC is NSC THEN LMI αk
• IF DOC is PD THEN SD in αk
• IF DOC is ND THEN SI in αk

A fuzzy set can be visually represented using membership functions. Different forms
are determined by different sorts of mathematical formulas when expressing fuzzy sets
with membership functions. The range [0, 1] is used to define fuzzy sets. The membership
function of a fuzzy set J can be represented by

J =
{(

l, µJ(l)
)
, such that l ∈ L

}
. (29)

The membership value of the element l in fuzzy subset J is denoted as µJ(l). The uni-
verse L contains the crisp variable l.
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The triangular function is defined by the following equations:

µ J̇(l) =


0, l ≤ a
l−a
m−a , a < l ≤ m
b−l
b−m , m < l < b
0, l ≥ b

(30)

where the lower limit is defined by a, an upper limit b, and a value m, where a < m < b.
The trapezoidal functions are used on the extreme left and right. The right trapezoidal

function is defined as

µJ(l) =


0, l > d
d−l
d−c , c ≤ l ≤ d
1, l < c

(31)

The left trapezoidal function is defined as

µJ(l) =


0, l < a

l−a
b−a , a ≤ l ≤ b
1, l > b

(32)

Fuzzy inference is a method for determining how probable an input is to correspond to
a specific output. The work utilizes Mamdani inferencing, which assumes that the output
membership functions are fuzzy sets. Fuzzy “and” operation is computed Zadeh-min,
taking the minimum of the two membership values.

Defuzzification is the process of transforming a fuzzy output, which cannot be used
directly in a distinct crisp value. The center of gravity (COG) method [56] is used to get a
crisp value of αk, given by the following equation

αk =
∑n

i=1 ∆i × ei

∑n
i=1 ∆i

, (33)

where n depends on the partition of linguistic rules. ∆i represent the area under the
membership function (i), and ei is the ith centroid.

The adaptation of process noise covariance is given by the following equation [8,52]:

Qk+1 = (gqαk + 1)Q̃k, (34)

where Q̃k = diag[Qk] and gq are gain scaling factors.
Algorithm 1 shows iterative steps for Q adaptation using fuzzy correntropy-based

Kalman filtering by the Gaussian kernel.
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Algorithm 1 Fuzzy Correntropy-based Kalman Filtering by Gaussian Kernel

Initialize:
1: Initialization of KF state and covariance variables
2: Initialization of fuzzy correntropy variables

Time update:
3: Time update state

x−k+1 = Φkx+k
4: Time propagation of covariance

P−k+1 = ΦkP+
k Φ>k + Qk

Calculation of Kalman gain:
5: Kalman gain:

Kk = P−k H>k
(

HkP−k H>k + Rk

)−1

Innovation calculation:
6: The difference between measured and predicted value

sk = zk − Hkx−k

Measurement Update:
7: State is corrected by using Kalman gain and innovation

x+k = x−k + Kksk

8: State covariance corrected by Kalman gain

P+
k = (I − Kk Hk)P

−
k

9: Theoretical covariance calculation

Sk = HkP−k HT
k + Rk

10: Actual approximated covariance in moving windows

Ck =
1
λ

λ

∑
i=i0

sksT
k

11: Correntropy based Degree of Convergence (DOC) calculation by using Gaussian kernel

DOC =
1
N

N

∑
i=1

κσ(sk, ck)

κσ(sk, ck) = exp

(
−‖ek‖2

2σ2

)
Fuzzy adaptation of Q

12: Fuzzification using triangular and L and R type trapezoidal functions given in
Equations (30)–(32).

13: Application of rules using inference engine.
14: Defuzzification to crisp output for αk by Equation (33).
15: Updated process noise covariance

Qk+1 = (gqαk + 1)Q̃k

16: Next iteration (posterior becomes prior)
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4.4. Correntropy-Based Robust Adaptation of Measurement Noise Covariance Using
Versoria Kernel

Multi-path is one of the most challenging problems that acoustic systems face under-
water. In shallow water, the signal propagates by reflections from the surface and bottom,
in addition to the direct channel which causes the multi-path effect. On the other hand,
in deep waters, a multi-path is created mainly as a result of ray bending due to refraction.
Moreover, the sound speed profile which depends on temperature, depth, and salinity is
also a critical contributor of multi-paths. Furthermore, air bubbles and marine animals
have their parts for outliers. Figure 3 shows the multi-path in deep and shallow water.

Shallow WaterDeep Water

Sea shore

AUV AUV

Multi‐Path 
Underwater

Hydrophones

Hydrophones

Figure 3. Multi-path effect in deep sea and shallow water.

The heavy-tailed distribution is a feasible representation for data that has been cor-
rupted by multi-path outliers, which is common in underwater acoustics. The direct
subtraction for covariance matching does not reduce the effects of outliers. These outliers’
heavier tail represents how the probability of extreme outcomes is higher in the tails than
in the normal distribution. The Versoria correntropy kernel is well-suited in an underwater
environment for its robustness to outliers. The tail of the Versoria function is heavier than
Gaussian and Student’s t distributions [57]. Moreover, the Versoria kernel error converges
faster than the exponential-based kernel. In addition, it has less computation complexity
as compared to the Gaussian Kernel. We define another new metric called the Degree
of Similarity (DOS), which is used to calculate correntropy using the Versoria function,
given as:

DOS =
1
N

N

∑
i=1

κσ

(
εi

k

)
. (35)

The Versoria function is given as

κσ(εk) =
A3

A2 + (
∣∣εi

k

∣∣)2
, (36)

where A = 2r and r are the radii of the circle located at (0, r) and εk represents the error,
which is given as

εi
k = Si

k(j, j)− Ci
k(j, j), (37)

where Sk(j, j) ,Ck(j, j) i to N samples are drawn from the storage of diagonal elements of
the covariance matrix. The value of the DOS is positively bounded, and the direction of
tuning is determined by the positive or negative sign of εi

k.
The alternate representation of the Versoria function with the shaping factor τ is given as

κσ(εk) =
2r

1 + τ(
∣∣εi

k

∣∣)2
, (38)

where the shaping factor τ = 1
(2r)2 is constant, and it is dependent on the diameter of

the circle.
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The adaptation of measurement noise is performed by the following equation [8,52]:

Rk+1(j, j) = ζ(j)R̃k(j, j), (39)

where R̃k = diag[Rk] and ζ(j) are given as

ζ(j) = gr(j)γk(j) + 1, (40)

where gr(j) is the scaling factor and γk(j) is the fuzzy adaptation parameter for the jth
element of the measurement noise covariance matrix.

4.5. Fuzzification of Degree Of Similarity

Six linguistic terms are defined as Positive Perfect Matched (PPM), Negative Perfect
Matched (NPM), Positive Moderate Match (PMM), Negative Moderate Match (NMM),
Positive Mismatch (PM), and Negative Mismatch (NMS). The positive and negative terms
are defined by signs of the εk. The output linguistics terms are defined as No Change (NC),
Moderately Decrease (MOD), Moderately Increase (MOI), Large Decrease (LD), and Large
Increase (LI).

4.6. Fuzzy Rules and Membership Functions

Fuzzy rules for DOS are defined by IF-THEN statements which are based on the
knowledge of the system using linguistic variables. The rules draw conclusions based on
one or more premises that act as an input to the system.

• IF DOS is PPM THEN NC in γk
• IF DOS is NPM THEN NC in γk
• IF DOS is PMM THEN MOD γk
• IF DOS is NMM THEN MOI γk
• IF DOS is PMS THEN LD in γk
• IF DOS is NMS THEN LI in γk

Fuzzy membership functions are defined using a combination of triangular and
trapezoidal curves. The outer left and right are trapezoidal, and the inner curves are
triangular. These curves have the advantage of faster processing time as compared to
other types. The inference is used to assess how probable it is that an input correlates to a
specific output; in this case, each of the rules employed only has one premise by utilizing a
minimum fuzzy operator. Defuzzification is performed by the COG method, as discussed
in the previous Section 4.3.

The Algorithm 2 shows iterative steps of measurement noise covariance R adaptation
using fuzzy correntropy-based Kalman filtering by the Versoria kernel.
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Algorithm 2 Fuzzy correntropy-based Kalman filtering by the Versoria kernel.

Initialize:
1: Initialization of KF state and covariance variables
2: Initialization of fuzzy correntropy variables

Time update:
3: Time update state

x−k+1 = Φkx+k
4: Time propagation of covariance

P−k+1 = ΦkP+
k Φ>k + Qk

5: Kalman gain:

Kk = P−k H>k
(

HkP−k H>k + Rk

)−1

Innovation calculation:
6: The difference between measured and predicted value

sk = zk − Hkx−k

Measurement update:
7: State is corrected by using Kalman gain and innovation

x+k = x−k + Kksk

8: State covariance corrected by Kalman gain

P+
k = (I − Kk Hk)P

−
k

9: Theoretical covariance calculation

Sk = HkP−k HT
k + Rk

10: Actual approximated covariance in moving windows

Ck =
1
λ

λ

∑
i=i0

sksT
k

11: Correntropy based Degree of Similarity (DOS) calculation by using Versoria kernel

DOS =
1
N

N

∑
i=1

κσ

(
εi

k

)

κσ(εk) =
2r

1 + τ(
∣∣εi

k

∣∣)2

Fuzzy adaptation of R
12: Fuzzification using triangular and L and R type trapezoidal functions given in

Equations (30)–(32).
13: Application of rules using inference engine.
14: Defuzzification to crisp output for γk is done by using Equation (33).
15: Update measurement noise covariance

Rk+1(j, j) = ζ(j)R̃k(j, j)

16: Next iteration (posterior becomes prior)
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Figure 4 shows a flow chart representation of Algorithm 1 and Algorithm 2 working
together for process noise covariance and measurement noise covariance adaptation.

Kalman gain calculation 

Innovation and theoretical Innovation 
covariance calculation

Observed  Innovation covariance 
calculation

State estimate measurement update

Covariance measurement update

 State estimate time update

State covariance time update

Correntropy based Degree of Similarly 
(DOS)  calculation

Correntropy based Degree of 
Covergance (DOC) calculation

Fuzzy for adaption factor
 gamma calculation

Fuzzy adaption factor 
alpha calculation

Measurement noise covariance update  Process  noise covariance update

Figure 4. Flow chart representation of the proposed FC-MSF method.

5. Simulation Results and Discussion

This section is divided into two subsections. First, Section 5.1 briefly explains the
simulation scenario, and second, Section 5.2 discusses the simulation results.

5.1. Simulation Scenario

The performance of the proposed fuzzy correntropy-based multi-sensor algorithm is
compared with Kalman-based multi-sensor fusion and fuzzy multi-sensor fusion using
Monte Carlo simulation. The root mean square error (RMSE) was chosen as the main
metric for comparison because it compares overall filter estimation performance over a
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longer length of time. Calculating the RMSE for the ith state of the estimated state vector
xest and reference state xre f is given by

RMSE =

√
1
n

n

∑
i=1

(
xi

re f − xi
est

)2
(41)

In order to assess the combined effects of the north, east, and down position and velocity,
where the average RMSE is computed as

Average RMSE =
1
3

(
RMSEnorth + RMSEeast + RMSEdown

)
. (42)

The trajectory of the underwater vehicle is simulated by using different values of accelera-
tion and angular velocities. All filters are tested on similar conditions with the same input
data for valid comparison. The vehicle is assumed to be in the normal mode of operation,
with no onboard or off-board sensor failures. The initial velocities of all three axes are
zero. For position Initialization, the Latitude is initialized at 50◦, Longitude is initialized
at 5◦, and height is initialized at zero. The attitude is represented in quaternion, and it is
initialized at [1 0 0 0] in the ECEF frame. The INS simulation model employs raw IMU
measurement data and a starting position, velocity, and attitude to build underwater vehi-
cle navigation profile. All the units used in this study are based on SI units. The position is
represented in meters, and velocity in meters per second.

The input and output triangular and trapezoidal membership functions used in this
work are displayed in Figure 5.

200Plot points:

(a)

200Plot points:

(b)

200Plot points:

(c)

200Plot points:

(d)

Figure 5. Fuzzy membership functions: (a) Input membership functions for DOS; (b) Output
membership functions for DOS; (c) Input membership functions for DOC; (d) Output membership
functions for DOC.

The design parameters for fuzzy logic are selected empirically, where the input gain
for fuzzy scaling for process covariance adaptation is selected as 1, and output gain is
selected as 0.001. For process noise adaptation, fuzzy input scaling is selected as 1 and
the output is selected as 0.01. Another critical design parameter is the width of the kernel.
In general, a wider kernel width provides a quicker convergence speed, but it generally
results in worse shot noise performance. The kernel width of the Gaussian correntropy
function is empirically selected as 0.01 and the Versoria shaping factor is chosen as 0.5.
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The IMU was simulated at a data rate of 100 Hz, and the other secondary sensors at
10 Hz. For simulation of gyros bias and noise power spectral density are assumed to be
1◦/h and 0.1◦/s/

√
Hz respectively. The accelerometers bias is considered to be 250 µg and

noise power spectral density is 30 µ
√

Hz. The DVL standard deviation is assumed to be
±0.005 m/s and random noise 0.1 m/s, whereas the electronic compass was supposed to
have bias 5◦ and random noise 1◦. Lastly, the depth sensor had 0.2 m random noise.

The outliers were modeled as shot noise that is simulated by the amplitude of the
noise which abruptly increases or decreases [39].

wk = (0, Qk) + Shot noise (43)

vk = (0, Rk) + Shot noise (44)

5.2. Simulation Results

The performances of KF-MSF, Fuzzy (F-MSF) and correntropy-based fuzzy (FC-MSF)
are compared in Table 1.

Table 1. Comparison of RMSE for position and velocity in the presence of shot noise by running
200 Monte-Carlo simulations with both R and Q adaptation.

RMSE KF-MSF F-MSF FC-MSF

North Position 26.887 2.145 0.345
East Position 39.562 2.469 0.412
Down Position 9.513 0.353 0.051
Avg Position 25.321 1.655 0.269
North Velocity 1.608 0.388 0.146
East Velocity 1.529 0.485 0.121
Down Velocity 0.159 0.148 0.067
Avg Velocity 1.331 0.308 0.125

The RMSE of the position displayed in Table 1, it can be observed that estimation of
KF-MSF has a very large error due to its inability to cover the correct position with the
application of shot noise. However, F-MSF and FC-MSF have much lesser position errors
as compared to KF-MSF. In comparison, the RMSE of the FC-MSF for the north and east
positions is significantly better than F-MSF because it does not provide robust similarity
measures as with correntropy-based similarity metrics. As compared to the north and east
positions, the depth error is less since it does not suffer from random bias. Nevertheless,
estimation of depth from FC-MSF is far better than KF-MSF and F-MSF.

The estimation of velocity from FC-MSF showed considerable improvement compared
to the KF-MSF and FC-MSF. The overall northern velocity error was almost twice improved,
like that of the F-MSF. Noticeable improvements were seen in east and downward velocities.
The RMSE of the FC-MSF was found to be roughly twofold better than the ESKF for
the north, east, and down velocities. Overall, with our proposed FC-MSF algorithm,
the average of all RMSE velocities was almost two times better than F-MSF. In comparison
to F-MSF and FC-MSF, the KF-MSF has inferior estimation performance due to the lack of
a robust adaptation mechanism.

These results support the hypothesis that the correntropy-based fuzzy multi-sensor
fusion is less susceptible to disturbances than the F-MSF and KF-MSF. Furthermore, the ro-
bustness property of the correntropy kernel allows the FC-MSF to perform better when
shot noise is present. Moreover, FC-MSF estimation results are much better than position
and velocity since the correntropy has the potential to capture high-order information.
Conversely, conventional fuzzy Logic correction and KF-MSF without correntropy has
a negative impact on the performance, given that these solutions are exposed to the
same noise.

Figure 6 shows a comparison of KF-MSF, F-MSF, and FC-MSF where we estimated
the position and velocity.
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Figure 6. Simulation results with shot noise: (a) Shot noise amplitude added to the system; (b–d) show
only FC-MSF velocities errors remain close to the actual, while KF-MSF significantly diverges from
the actual value; (e,f) show position errors of the north and east, and it is evident that shot noise
negatively influences KF-MSF and F-MSF position estimations.

The above-mentioned graphs clearly illustrate that FC-MSF has superior performance
and errors are far less than KF-MSF and F-MSF. However, the suggested method is not
restricted to underwater positioning applications; it may also be utilized to improve aerial
positioning and navigation. Furthermore, autonomous cars can be another potential use
for this approach. Additionally, satellite attitude estimates can be improved with the
proposed technique.
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6. Conclusions

This research study attempted to bridge a gap by providing a novel adaptive fusion
method for underwater vehicle positioning by taking advantage of fuzzy and correntropy.
The performance of the proposed algorithm is compared with Kalman and fuzzy-based
sensor fusion techniques. It was found to have a better position and velocity estimation
under the negative influence of shot noise. The primary aim of this work was to take
advantage of correntropy and improve the covariance matching technique by using two
new metrics, degree of similarity, and degree of convergence. The purpose was to improve
the estimation performance of conventional methods for underwater vehicle positioning.
The two proposed metrics help to enhance estimation accuracy through better matching
of theoretical and actual covariance. The suggested technique is designed for use in
underwater seabed mapping applications for ocean exploration.
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