
sensors

Article

Boosting Intelligent Data Analysis in Smart Sensors by
Integrating Knowledge and Machine Learning

Piotr Łuczak , Przemysław Kucharski , Tomasz Jaworski , Izabela Perenc and Krzysztof Ślot
and Jacek Kucharski *

����������
�������

Citation: Łuczak, P.; Kucharski, P.;

Jaworski, T.; Perenc, I.; Ślot, K.;

Kucharski, J. Boosting Intelligent

Data Analysis in Smart Sensors by

Integrating Knowledge and Machine

Learning. Sensors 2021, 21, 6168.

https://doi.org/10.3390/s21186168

Academic Editors: Panagiotis E.

Pintelas, Sotiris Kotsiantis,

Ioannis E. Livieris

Received: 20 August 2021

Accepted: 12 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22,
90-537 Łódź, Poland; pluczak@iis.p.lodz.pl (P.Ł.); pkuchars@iis.p.lodz.pl (P.K.); tjaworski@iis.p.lodz.pl (T.J.);
iperenc@iis.p.lodz.pl (I.P.); kslot@p.lodz.pl (K.Ś.)
* Correspondence: jkuchars@iis.p.lodz.pl

Abstract: The presented paper proposes a hybrid neural architecture that enables intelligent data
analysis efficacy to be boosted in smart sensor devices, which are typically resource-constrained
and application-specific. The postulated concept integrates prior knowledge with learning from
examples, thus allowing sensor devices to be used for the successful execution of machine learning
even when the volume of training data is highly limited, using compact underlying hardware. The
proposed architecture comprises two interacting functional modules arranged in a homogeneous,
multiple-layer architecture. The first module, referred to as the knowledge sub-network, implements
knowledge in the Conjunctive Normal Form through a three-layer structure composed of novel
types of learnable units, called L-neurons. In contrast, the second module is a fully-connected
conventional three-layer, feed-forward neural network, and it is referred to as a conventional neural
sub-network. We show that the proposed hybrid structure successfully combines knowledge and
learning, providing high recognition performance even for very limited training datasets, while also
benefiting from an abundance of data, as it occurs for purely neural structures. In addition, since the
proposed L-neurons can learn (through classical backpropagation), we show that the architecture is
also capable of repairing its knowledge.

Keywords: AI-enabled sensors; hybrid systems; feedforward neural networks; knowledge embedding

1. Introduction

In recent years, remarkable improvement has been shown in both the capabilities and
efficiency of intelligent systems [1], yet the state-of-the-art models continue to grow in size.
Not only are intelligent systems now capable of achieving state-of-the-art performance on
multiple complex games, as shown by AlphaZero [2], but they are also capable of solving
extremely complex real-world problems such as protein folding. The most recent release
of AlphaFold [3] proved to be capable of solving the 14th Critical Assessment of protein
Structure Prediction (CASP) challenge [4], thus providing an invaluable tool for modern
bioinformatics research. These performance improvements are achieved at the expense of
increases in model size, such as in the case of the GPT (Generative Pre-trained Transformer)
family of models that went from 1.5 billion parameters in 2019 [5] to 175 billion parameters
in 2020 [6]. These large models, while still feasible to train thanks to algorithmic and
technological advances, require ever-increasing amounts of input examples, which may
be unavailable, especially when application-specific tasks, typical for smart sensors, are
considered. In addition, implementing large neural networks on resource-limited devices
is infeasible, so if machine learning is to be considered as a problem-solving strategy for
smart sensors, one needs to look for network complexity reduction concepts that preserve
a sufficient capacity for handling real-world problems.

Since large neural models learn everything from scratch, a significant part of training
time is spent learning relations that are inherently obvious to a human expert. A possi-

Sensors 2021, 21, 6168. https://doi.org/10.3390/s21186168 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2530-0283
https://orcid.org/0000-0001-6051-2962
https://orcid.org/0000-0001-8600-3760
https://orcid.org/0000-0002-8761-4472
https://orcid.org/0000-0003-1228-0970
https://doi.org/10.3390/s21186168
https://doi.org/10.3390/s21186168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21186168
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21186168?type=check_update&version=2


Sensors 2021, 21, 6168 2 of 19

ble remedy to this problem is introducing expert knowledge into training, for example,
through appropriate initialization, placing additional constraints, or arranging a network
structure that provides general scaffolding for the model. This scaffolding could also help
to alleviate the ever-growing concern with the safety of AI [7], potentially providing a novel
approach to understanding the model [8] and eventually leading to the development of
genuinely Explainable Artificial Intelligence (XAI) [9]. The development of such algorithms
would enable machine learning agents to be deployed in solving critical tasks such as
decision making in medical applications [10] or the dynamic reconfiguration of critical
telecommunication infrastructure [11].

In the presented paper, we propose a novel hybrid neural architecture that can be
considered for implementation in resource-limited devices and which combines learning
from examples with expert knowledge using two interacting functional modules arranged
in a homogeneous, multiple-layer architecture. A core element of the proposed concept is
a novel model of a neuron, which we refer to as Logic-neuron (L-neuron), which embeds
propositional logic expressions and integrates seamlessly into a conventional, feed-forward
multiple-layer neural architecture, both during network training (using the classical back-
propagation approach) and during normal operation. We show that the insertion of the
proposed knowledge-embedding module—layered ensembles of L-neurons—into a con-
ventional multiple-layer structure significantly improves the performance of a network
trained on limited datasets (i.e., that embedded knowledge compensates a lack of sufficient
training data). As the proposed hybrid network compensates learning with knowledge,
its conventional neural part only needs to learn partial information on the considered
problem, so it can become simpler and thus, easier to implement. Moreover, we also show
that the proposed module is capable of fixing impaired knowledge during training by
adjusting or ignoring erroneous predicates of logical expressions or by refining logical term
aggregation rules.

We begin the paper with a short review of relevant work. Then. we provide detailed
information on the proposed concept: L-neuron definition, the description of network
architecture and training loss formulation. Finally, we present concept evaluation using a
sample problem of one-dimensional data analysis, together with a discussion of results
and concluding remarks.

2. Related Work

Numerous attempts to seamlessly combine knowledge with neural networks have
been made since their inception. Some of them took advantage of the universal approxi-
mation property of neural networks [12–14] and focused on providing a more complete
description of the approximated function than what could be provided by the samples
alone. A very notable family of such approaches has been developed by Gori et al. [15]
by providing knowledge representation in the form of constraints injected as additional
components of a loss function. Roychowdhury et al. [16] present a way of constructing a
graph of logical expressions through which the error can be propagated in both directions
in order to create a constraint function that closely resembles a knowledge base. As flexible
as they are in terms of knowledge formulation, these approaches lack verifiability of both
knowledge inclusion and conservation after the network’s training settles down.

An intuitive approach for inserting knowledge into a network is to configure its
structure to resemble the knowledge base. Such a configuration can either be prepared
manually [17] or generated in the training process [18]. Numerous attempts at preloading
networks with knowledge have been proposed by Towell et al. [17,19], where nodes of
a network form a graphical model that represents knowledge, while logical operations
carried out by each node are set by the appropriate choice of weights and biases. Such
a network can be subsequently trained in a standard way, and it proved to be capable
of knowledge refinement [20]. Once trained, the network’s weights and biases can, at
least to some degree, be translated back into rules. Compared to previous propositions, it



Sensors 2021, 21, 6168 3 of 19

benefits from the control over initial knowledge incorporation but falls short on built-in
mechanisms of knowledge preservation in the trained model.

A Logical Neural Network (LNN) [21] maintains a one-to-one correspondence be-
tween neurons and elements of logical formulas, but it does not enable logical and data-
driven knowledge to be combined. In the case of Relational Neural Machines (RNMs) [22],
knowledge is provided through optimization constraints, thus being a part of the para-
metric regularization and not of the learner structure. In Deep Reasoning Networks [23],
prior knowledge is inserted into the network’s latent space in the form of constraints.
The method proposed by Herrmann and Thier [24] includes a set of neurons performing
logical disjunction and conjunction operations. However, to satisfy the constraints of such
operations, a special backpropagation method is introduced, which, apart from clipping
the weights to the desired range, also applies the winner-takes-most (WTM) weight-update
strategy.

An alternative approach to building knowledge-enabled neural models has been
proposed by Koh et al. [25]. An interpretable latent representation (a ‘bottleneck’) trained
to comprise high-level bird visual attributes (e.g., wing color, beak color, etc.) was used
for decision making. Using their expert knowledge, a user was able to validate final
predictions against a particular bottleneck’s neurons activation patterns, as well as correct
them to better describe the contents of the input image. This approach, while extremely
promising in terms of result interpretability, requires human involvement, so the proposed
concept is semi-automatic only.

Methods of building knowledge structure through training on available samples have
seen development as recently as 2019 [18]. The WANN approach is based on NEAT [26]
and involves the gradual, evolutionary growth of a network in order to obtain a structure
that fits the problem. Whereas the NEAT algorithm optimizes both network weights and
structure simultaneously, WANN simplifies the problem by only optimizing a structure,
using a single weight for all nodes. This approach can be seen as a gradual construction of a
knowledge base. The fundamental incompatibility with classical, layered neural networks
makes WANNs difficult to integrate with methods developed for ANNs. The SATNet
approach [27] focuses on learning a logical structure based on samples, with no expert
knowledge preloaded to the model.

An entirely separate category of solutions is represented by the ANFIS model [28],
which provides a way of refining fuzzy knowledge based on the available data. Unlike
other approaches described in this section, this technique is not based on neural networks
but instead explicitly operates on fuzzy membership functions. An obvious shortcoming
of the ANFIS approach is the requirement to represent the whole solution explicitly. De-
spite its inherent limitations, the ANFIS model has found many uses in both control and
classification tasks.

3. Materials and Methods

In intelligent systems with logic-based knowledge representation, the formulas are
usually simplified to clauses κ consisting of literals, i.e., statements and negated statements.
It has been proven that every logical formula can be transformed into a set of clauses
connected by conjunctions, which yields its Conjunctive Normal Form (CNF). Hence, each
knowledge base, KB, can be presented in the form:

KB = {κ1 ∧ κ2 ∧ · · · ∧ κn} ≡ {κ1, κ2, . . . , κn}. (1)

This allows for any knowledge base to be implemented by using only negation, conjunction
and disjunction operators. It is also worth noting that the clause consisting of sets of pi and
qj logical statements:

p1 ∨ p2 ∨ ...∨ pl ∨ ¬q1 ∨ ¬q2 ∨ . . .¬qk (2)



Sensors 2021, 21, 6168 4 of 19

can be rewritten as an implication expression:

q1 ∧ q2 ∧ · · · ∧ qk → p1 ∨ p2 ∨ ...∨ pl (3)

which directly realizes the if . . . then conditional statement, and which is typically used to
formulate the expert knowledge expressing causal relations between different entities of
the problem.

3.1. L-Neuron

The principal component of our approach is a novel model of a knowledge processing
unit, referred to as an L-neuron (Figure 1), with architecture resembling the Pitts–McCulloch
neuron model [29].

Figure 1. Architectures of the proposed L-neuron (right) and Pitts–McCulloch models (left) feature a
similar dataflow pipeline: input transformation (weighting vs. VCM), aggregation (scalar vs. vector-
ized, through T- and S-norms) and scalar output generation (nonlinear function vs. linear mixing).

To enable the flexible implementation of logic terms, L-neurons need to enable recruit-
ing input variables (crisp or fuzzy) either in their original or complemented forms. They
should also be able to discard these variables if they appear irrelevant. This functionality
needs to be trainable, so one needs to elaborate an appropriate, continuously differentiable
parametric function that appropriately preprocesses each L-neuron’s input. The proposed
variable conditioning module (VCM, see Figure 1) transforms an input variable, xi, into a
logic-term literal, vi, using a function defined as:

vi(ni, xi, z) = φ(n)xi + ψ(n) + ξ(n)z (4)

where n ∈ [nmin, nmax] is a control parameter, z is a binary value representing a neutral
symbol for either of the two logic operators: for conjunction or its fuzzy extension—T-norm,
z = 1 (as T(x, z = 1) = x, where T(.) denotes binary T-norm operation on variables
x and z), whereas for disjunction, or T-conorm (S-norm) z = 0 (as S(x, z = 0) = x).
Inclusion of the parameter z enables one to ignore irrelevant input variables. The sym-
bols φ(·), ψ(·), ξ(·) denote some parametric functions that provide the continuity and
differentiability of (4), as well as enforce the fulfillment of transformation bounds. These
bounds are defined as follows: for the two extreme control parameter values, the func-
tion is to implement either negation (vi(nmax, xi, z) = 1−xi) or passthrough operation
(vi(nmin, xi, z) = xi), whereas for the central value of the control parameter
(nmean = 0.5(nmin+nmax)), the transformation should produce a neutral
element (vi(nmean, xi, z) = z).

Variables involved in prior knowledge expressions are transformed by VCM units
with control parameters initialized to either of the extreme values (n = nmin or n = nmax).
Since our knowledge may be incomplete, the remaining variables can be linked to each
L-neuron in a neutral manner (n = nmean). Changing VCM control parameters during
training enables knowledge extension (by adopting inputs that were initially not included
in logical terms) or knowledge repair (by altering variable forms or removing variables
from terms).

The proposed control mechanism does not guarantee logic axioms satisfaction neither
during learning nor after training is completed, as a variable can be biased towards
“neutrality” (if n ∈ (nmin, nmean) or if n ∈ (nmean, nmax)). However, this divergence is



Sensors 2021, 21, 6168 5 of 19

permanently restricted by logically valid concepts, protecting knowledge from being
wholly erased during training. Furthermore, "relaxed" (biased towards neutrality) forms of
negation or passthrough can be seen as means for reflecting uncertain knowledge.

The simplest possible candidates for continuous and differentiable VCM transforma-
tions (4), which enable gradient-based training, are second-order polynomials. However,
in order to minimize divergence from logic principles, we also want to keep the result of
the transformation (4) bounded within a legitimate range of logic values (i.e., between 0
and 1) at all times. Therefore, throughout the remaining research, we adopted a slightly
more complex VCM form, involving the third-order polynomial:

vi = −(2ni − 1)3xi + (1− 2ni)
2ni + (−4n2

i + 4ni)z (5)

where the parameter n range is from [nmin = 0 to nmax = 1]. Linear transformations
of input variables provided by (5) for selected values of the control parameter and three
different modes (complement, passthrough and neutral) are shown in Figure 2 , while the
complete transformation is depicted in Figure 3.

Figure 2. Sample transformations of input variables for control parameters (left) n ≥ nmean (“nega-
tion” mode); (right) n ≤ nmean (“passthrough” mode).

Figure 3. VCM transformation (left) z = 0 (T-conorm neutral value); (right) z = 1 (T-norm
neutral value).



Sensors 2021, 21, 6168 6 of 19

The gradient of (5) with respect to ni has a form:

∂vi(ni, xi, z)
∂ni

= −6xi(2ni − 1)2 − 4ni(1− 2ni) + (1− 2ni)
2 + z(−8ni + 4). (6)

Since z is constant (either z = 0 or z = 1), the two possible forms of (6) are:

∂vi(ni, xi, 1)
∂ni

= −6xi(2ni − 1)2 − 4ni(1− 2ni) + (1− 2ni)
2 + (−8ni + 4) (7)

and
∂vi(ni, xi, 0)

∂ni
= −6xi(2ni − 1)2 − 4ni(1− 2ni) + (1− 2ni)

2. (8)

Gradient distributions for both T-conorm neutral value and T-norm neutral value
are depicted in Figure 4. Observe that local minima at nmin = 0 and nmax = 1 drive
gradient-based optimization towards either “passthrough” or “negation” configurations
of the VCM. As a consequence, it can be asserted that the application of standard neural
network optimization algorithms, such as Stochastic Gradient Descent or Adam, which are
known to be convergent [30], results in training convergence for the proposed model.

Figure 4. Gradient of the considered VCM transformation (left) for z = 0 and (right) for z = 1.

Preprocessed input values are subsequently evaluated by means of fuzzy T-norm and
T-conorm. Since T-norms and T-conorms are binary operators, the following recursive
extensions can be applied to enable the evaluation of multiple-element vectors vm×1:

T(v) : T′(v1, T′(v2, . . . T′(vm−2, T′(vm−1, vm) . . . )

S(v) : S′(v1, S′(v2, . . . S′(vm−2, S′(vm−1, vm) . . . ).
(9)

Whilst binary T′ and S′ functions could, in theory, be any pair of differentiable T-norm and
T-conorm, it has been observed that the algebraic [31] norms (10) provide the best results.

T′(v1, v2) = v1 · v2

S′(v1, v2) = v1 + v2 − v1 · v2.
(10)

The results of T-norm and T-conorm evaluation, performed by each L-neuron, are
subsequently linearly combined in the aggregation block:

f (v, α) = αT(v) + (1− α)S(v) (11)



Sensors 2021, 21, 6168 7 of 19

where α ∈ [0, 1] is the conjunction/disjunction bias of the neuron and v ∈ [0, 1]m is the
output of the VCM. The aggregation block f (.) provides a smooth transition between the
AND and OR operators and resembles a uni-norm [32], while being easier to interpret
and configure. At the beginning of training, all L-neurons are initialized with crisp values
(either 0 or 1) of the α parameter, reflecting the CNF formulation of the initial knowledge.
However, the optimization algorithm is free to change norm-mixing proportions, and after
training is completed, the initial configuration can even be completely inverted. A clear
benefit of this approach is the ability to embed uncertain knowledge in which the expert
may be unsure of the exact nature of the described relations.

Our formulation of the L-neuron attempts to provide seamless integration with classi-
cal neurons and gradient-based learning methods. However, satisfying this objective limits
the range of available T-norms and T-conorms, as it disallows the use of Zadeh, Bounded,
Fodor, or Drastic [31] norms due to non-differentiability of the underlying minimum and
maximum operator definitions.

Since all L-neuron operations are defined in terms of addition and multiplication
(either element-wise or matrix), its formulation is differentiable and thus compatible with
all gradient-based learning methods. This property, in turn, renders our contribution
directly compatible with existing neural frameworks, such as PyTorch or TensorFlow, for
both training and inference.

3.2. Proposed Network Architecture

The proposed hybrid architecture comprises two sets of processing units: L-neurons
and classical neurons, arranged in a multiple-layer, feed-forward-only structure, presented
in Figure 5. Interconnections between the two types of units are non-symmetric: classical
neurons are fed with outputs produced by preceding layer neurons of both types, yet
L-neurons are fed only by preceding knowledge units. This asymmetry isolates knowledge
from concepts learned by conventional neurons, which are not suitable for ‘logical’ inter-
pretation, enabling rule explainability at any phase of training. The outcome produced
by the two processing modules, the L-neuron-based knowledge sub-network and the
conventional neural sub-network, is merged at the last layer comprising classical neurons
with dense input connection. These neurons linearly combine information produced by
the two processing pipelines and generate the network’s output.

All neurons of the proposed hybrid network are trained using the backpropagation al-
gorithm. To emphasize the significance of inserted knowledge, weights of output-layer neu-
rons are manually initialized to favor the importance of decisions produced by the knowl-
edge module (initial couplings with knowledge module outputs are significantly stronger).

As logical expressions operate on concepts rather than on raw data, a ‘concept extrac-
tion’ unit needs to be used to transform input to the knowledge sub-network. This can be
carried out by input fuzzification (similar to the ANFIS paradigm) or by implementing
any other relevant input data aggregation rules that produce logic literals. Many sensors
deployed in edge computing devices are well suited for direct data fuzzification, as they
are fed with scalar measurements. This approach can also be applied in more complex
solutions, such as the intelligent reconfiguration of HMIMOS [11] or AI-assisted methods
described by Cao et al. [33]. In situations where the classical fuzzy-logic approach for input
conversion cannot be applied, an alternative approach for concept extraction proposed by
Koh et al. [25] can be used in order to generate logically tractable values. Since classical
neurons are also fed with outputs from L-neurons that are restricted within the [0 . . . 1]
interval, all classical neurons use sigmoid activations to ensure the compatibility of both
sources.



Sensors 2021, 21, 6168 8 of 19

Figure 5. Architecture of the proposed hybrid network.

3.3. Loss

The proposed loss, L, is a linear combination of weighted Categorical Cross-Entropy
loss (LwCCE), which attempts to enforce correct network responses (one-hot output, i.e.,
single-class sample membership is assumed), and regularization terms, applied to parame-
ters of both classical neurons and L-neurons:

L=LwCCE+λ1Lα(α)+λ2Ln(n)+λ3LL2(θ, w) (12)

where Lα(α) and Ln(n) are L-neuron-specific regularization terms, LL2 is the L2 regularization
[34] of parameters of conventional neurons and λ1, λ2, λ3 are mixing hyperparameters.

The weighted Categorical Cross-Entropy (wCCE), which we adopt, differs from the
standard formulation of CCE-loss only by the insertion of additional weights, ωc, that reflect
within-batch class proportions, thus balancing uneven amounts of class representatives in
a training set. A component of wCCE-loss that corresponds to some input sample, xi, of a
class, c, assumes the form: LwCCE(xi) = −ωc log yc, where yc is an actual network’s output
at a position c.

The two L-neuron-specific loss components are defined separately for coefficients that
combine T-norm and T-conorm evaluation results (α = [α1 . . . αNL ], where NL is a number
of L-neurons) and for parameters of VCM modules (arranged in a matrix n = [n1 . . . nNL ]).
In the former case, our objective is to maximize the interpretability of knowledge repre-
sentation, i.e., we choose to favor ‘crisp’ L-neuron output expressions (either T-norm or
T-conorm rather than a linear combination of the two). This can be accomplished using the
following loss term:

Lα(α) =
1

NL

NL

∑
i=1

(⌊
αi +

1
2

⌋
− αi

)2
(13)

where b. . .c denotes the floor operation. A plot of (13) can be seen in Figure 6.
Similarly, in the case of the second L-neuron-specific loss component, Ln(n), which is

concerned with VCM learning, we attempt to favor logical expression clarity and try to
enforce explainable argument conversions (producing either unaltered, negated or neutral
values). The proposed loss term is the following:

Ln(n1 . . . nNL) =
γ

mNL

NL

∑
i=1

m

∑
j=1

Ui
j

Ui
j =min

{(
ni

j−nmax

)2
,
(

ni
j−nmean

)2
,
(

ni
j−nmin

)2
} (14)

where ni
j refers to current value of j-th input VCM control parameter of i-th L-neuron,

γ > 0 controls regularization strength and m is a number of L-neuron inputs. The shape of
the loss component (14) is shown in Figure 6.



Sensors 2021, 21, 6168 9 of 19

Figure 6. L-neuron-specific loss components.

3.4. Experimental Evaluation

The objective of the experiments was to examine the classification performance of
the proposed hybrid network in realistic scenarios, where knowledge of the problem is
limited and only a handful of examples are available. Our primary goal was to demonstrate
the proposed hybrid structure’s ability to learn effectively from examples even for highly
limited datasets while benefiting from prior knowledge seamlessly introduced into the
network. We also analyzed the influence of knowledge correctness on the network’s final
performance, including its ability to repair that knowledge.

For benchmarking the proposed hybrid structure and the L-neurons, we chose the
problem of detecting palindromes in bit strings, which is defined by a clear set of rules
and enables easy manipulations of data volume and knowledge impairment. An inherent
property of the palindrome detection problem is that the two underlying classes are
strongly imbalanced (e.g., for 11 bit strings, there are 32 times more non-palindromes than
palindromes). Therefore, the scarcity of palindrome class representatives in limited sets of
examples is likely to result in overfitting if conventional machine learning approaches are
used. It is well known that providing more training data results in the better performance
of machine learning [35,36]. However, in practice, expanding the dataset is often costly, if
not impossible. Enforcing in our experiments gradual training set size reduction complies
with the perspective laid out by data efficiency evaluation, proposed by [25], and proves
the utility of the proposed hybrid approach.

3.4.1. Mapping Knowledge Structure onto L-Neurons

In order to build an appropriate knowledge base, we used the general rule for palin-
drome detection, defined as:

∀
n=1...b 1

2 Pc
an = aP−n+1 (15)

where bits of a palindrome a of length P (P ≥ 3) are represented with an. The complemen-
tary rule can be obtained by taking the negation of the above formula. These iterative rules
can be equivalently expressed by a set of first-order-logic formulas corresponding to (3)
(the nsymbol is used to denote the symmetric bit in the string, that is aP−n+1 = a n):

(an ∧ a n)∨(¬an ∧ ¬a n)→ symmetric(an, a n)

(an ∧ ¬a n)∨(¬an ∧ a n)→ ¬ symmetric(an, a n)
(16)

∧
∀pairs

symmetric(an, a n) → palindrome(a)

∨
∀pairs

¬ symmetric(an, a n) →¬ palindrome(a).
(17)

The primary advantage of the above schema is that it can be trivially mapped onto
a network of proposed L-neurons (observe that for the considered case, inputs can be



Sensors 2021, 21, 6168 10 of 19

considered as literals, so there is no need to introduce the ‘concept extraction’ module).
For a palindrome of length P, the first layer consists of a total of 2(P− P mod 2) logical
AND operations that act on every pair of symmetrically located elements. There exists
1
2 (P− P mod 2) such pairs.

The subsequent second layer, containing (P− P mod 2) expressions, is used to com-
bine each pair of expressions that share the same negation pattern, that is, an even or odd
number of negations, in order to determine whether it forms a symmetrical pattern. It is
worth noting that Equation (16) denotes the operations performed by both layers, since the
expression in the brackets denote an intermediate concept, and as such, require a separate
neuron to implement them.

The final, third layer consists of two rules expressed by (17), which classify a given
string of bits a as palindrome or not palindrome. For an exemplary 5 bit palindrome
problem, the mapping of the knowledge base onto the L-neuron structure is shown in
Figure 7. One should note that it is not necessary to map the rules onto nodes in a layer in
any particular order. As long as the correct rule structure between layers is maintained, the
order of the mapping does not matter.

Figure 7. Five bit palindrome rule mapping onto a layered structure of L-neurons. The second layer
of the network contains all the top-level expressions from (16), while the final layer implements (17)
(passthrough connections are marked with solid lines, negations are marked with a dashed line and
neutral connections are skipped for clarity).

3.4.2. Metrics

In order to measure how knowledge impairment affects classification performance,
a simple method for tampering with the embedded rules was developed. Values drawn
from a standard normal distribution were added at some assumed number of randomly
selected entries of both α vector (L-neuron’s norm-mixing parameters) and n matrix (VCM
module parameters).

To take into account the strong class imbalance, the adjusted balanced accuracy
score [37] was adopted for network performance evaluation. This ensures that a perfect
prediction would result in an accuracy of 1, while a random prediction would yield 0. For
the considered binary case, this is equal to Youden’s J statistics [38], which is defined as:

J = TPR+TNR−1 =
TP

TP+ FN
+

TN
TN+ FP

− 1 (18)

3.4.3. Training Configurations

Palindrome detection in eleven bit long strings was considered throughout the experi-
ments. All considered networks were trained on subsets comprising 1372, 1024, 512, 256,
or 128 samples, i.e., providing, respectively, 67%, 50%, 25%, 12.5%, and 6.25% of the whole
pool of examples. Furthermore, five levels of knowledge impairment were used: 1%, 5%,
10%, 25%, and 50%.



Sensors 2021, 21, 6168 11 of 19

All of the considered structures were trained using 32-element batches for 300 epochs
(in each case, the loss flattened out at least 50 epochs earlier). Additionally, every 100
epochs, the VCM’s parameters were rounded to the nearest exact value (nmin, nmean or
nmax ) corresponding to one of its modes of operation.

The hyperparameters λ, used in loss estimation (12), were optimized using the
Bayesian approach, based on the adaptive Parzen–Rosenblatt estimator.

3.4.4. Model Structure

The hybrid network used for palindrome detection was composed of four layers,
comprising N1 = 30 neurons in the first layer (made up of N1L = 24 L-neurons and
N1C = 6 classical neurons), N2 = 15 neurons in the second layer (N2L = 12, N2C = 3),
N3 = 4 neurons in the third one (N3L = 2, N3C = 2), and 2 classical neurons in the
output layer. The amounts of L-neurons in subsequent layers were chosen to provide
20% excess over the minimum required to correctly embed the domain knowledge for the
considered case. The adopted overhead was determined empirically to enable a different,
albeit still valid, set of rules was arrived at after training settled down.

To ensure the supremacy of knowledge in decision making, initial couplings between
the knowledge sub-network and output-layer neurons were nine times stronger than
couplings with the conventional neural sub-network.

To assess the quality of the proposed hybrid network, we compared its performance
with classification results produced by three reference architectures. The first one was a
network composed exclusively of L-neurons, with the structure identical to the knowledge
sub-network of the proposed hybrid architecture (N1 = N1L = 24, N2 = N2L = 12 and
N3 = N3L = 2). The second and the third reference structures were purely neural ar-
chitectures of two different complexities: matching the layer widths of the whole hybrid
network (N1 = N1C = 30, N2 = N2C = 15 and N3 = N3C = 2) and matching only
its neural sub-network (N1 = N1C = 6, N2 = N2C = 3 and N3 = N3C = 2). To maxi-
mize performance of the reference, purely neural structures, ReLU activations were set for
all of their units.

4. Results and Discussion

The results of palindrome detection experiments prove that both hybrid and L-neuron-
only structures are capable of outperforming classical neural networks in the case of limited
training dataset sizes, even when available knowledge is impaired (as shown in Figure 8,
top, and Figure 8, middle, respectively). These results are also summarized in Table 1.

For the hybrid structure, this observation holds for training set volumes reduced by
up to 25% of the complete dataset (up to 512 out of 2048 examples) and for knowledge
impairment levels up to 50%, whereas for the purely L-neuron-based structure, this remains
true for sizes up to 12.5% of the original volume. It is worth noting that the reference,
purely a neural network of the same size (thus, of similar capacity) as the hybrid structure
performs noticeably better than the second, smaller reference neural network (see Figure 8,
bottom). Therefore, results obtained for the ’larger’ neural structure were considered for
comparisons presented in Figure 8, top, and Figure 8, middle.

4.1. L-Neuron Network Evaluation

The logical L-neuron-only structure itself exhibits a noticeable level of trainability, as
presented in Figure 9, middle. As it could be anticipated, when prior knowledge of good
quality is injected into the network (only 1% impairment), only slight training-induced
improvements are sufficient to achieve a high final performance. For models with more
than 5% knowledge impairment, the majority of final performance can be attributed to
training (spectacular jumps in classification accuracy after training can be seen in Figure 9,
middle). This proves that a network composed only of L-neurons is capable of improving
its initial, even severely impaired knowledge. However, if the amount of training data
increases (which, for the considered problem, occurs in around 512 samples), L-neuron-



Sensors 2021, 21, 6168 12 of 19

based architecture is not able to match the performance of the purely neural reference when
being fed with severely impaired knowledge.

Regarding the issue of violating logic principles that might occur as an effect of L-
neuron training, due to the regularization provided through the adopted loss function,
rounding to the pure logic outcome was applied rarely, only every 100 epochs. In all cases,
it only resulted in minor parameter alterations, i.e., deviations from what logic expects,
were minor.



Sensors 2021, 21, 6168 13 of 19

Table 1. Aggregated values of the J statistics for the L-neuron-only and hybrid architectures evaluated on test subsets. The size of considered datasets is shown in row (1), rows designated
with (2) are the mean values of J statistics for 25 trials and those designated with (3) present performance gains with respect to the ‘larger’ reference neural network. Labels ki indicate
levels of knowledge impairment. Gains in performance are marked in bold font.

ki = 0.01 ki = 0.05 ki = 0.1 ki = 0.25 ki = 0.5

(1) 128 256 512 1024 1372 128 256 512 1024 1372 128 256 512 1024 1372 128 256 512 1024 1372 128 256 512 1024 1372

L-neuron-only

(2) 0.96 0.96 0.95 0.96 0.96 0.69 0.82 0.79 0.77 0.81 0.49 0.61 0.71 0.72 0.72 0.22 0.25 0.48 0.59 0.54 0.11 0.20 0.41 0.48 0.49

(3) 0.87 0.79 0.45 −0.04 −0.04 0.61 0.64 0.29 −0.22 −0.19 0.41 0.43 0.20 −0.27 −0.28 0.14 0.07 −0.02 −0.41 −0.45 0.03 0.02 −0.10 −0.51 −0.51

Hybrid

(2) 0.83 0.94 1 1 1 0.69 0.87 0.99 1 1 0.41 0.68 0.95 0.97 0.99 0.19 0.39 0.86 0.94 0.95 0.08 0.24 0.74 0.91 0.93

(3) 0.74 0.76 0.50 0.01 0 0.61 0.70 0.48 0 0 0.33 0.51 0.45 −0.03 −0.01 0.11 0.21 0.35 −0.06 −0.05 −0.01 0.06 0.24 −0.09 −0.07



Sensors 2021, 21, 6168 14 of 19

Figure 8. Adjusted classification accuracy scores for the hybrid network, L-neuron-only network and
the two reference classical networks for different knowledge impairment levels and different training
set volumes. (Top) Hybrid network performance (JH). (Middle) L-neuron-only network performance
(JL). (Bottom) Performance of the reference neural networks. "REF" indicates performance of the
reference, "larger" neural network. Confidence intervals of 95% are marked with whiskers.



Sensors 2021, 21, 6168 15 of 19

Figure 9. Relative classification accuracy scores for the knowledge subnetwork of hybrid network,
learned performance of L-neuron-only network and the comparison between the performance of
knowledge subnetwork of hybrid network and L-neuron-only network . (Top) Relative performance
JHL /JH . (Middle) Relative performance: (JL − JL0 )/JL. (Bottom) Relative performance: JHL /JL.
JHL denotes performance of hybrid network’s knowledge sub-network, JL0 —initial performance of
L-neuron-only network. Confidence intervals of 95% are marked with whiskers.



Sensors 2021, 21, 6168 16 of 19

4.2. Knowledge Repair

Although the final structure produced by training (Figure 10) does not fully recover the
correct logical palindrome-detecting expression, it is cleaned from malformed or redundant
terms. In the presented example, one can observe a significant reduction in the number of
connections in the graph. Additionally, the “empty” L-neuron with no inputs is eliminated
during optimization.

Observations of the resulting structures across all experiments indicate a tendency of
optimizers towards disabling misconfigured L-neurons from the structure (node disabling
is achieved by neutralizing their inputs by corresponding VCM modules).

Figure 10. Comparison of L-neuron structures in a purely knowledge-based model for 0.05 im-
pairment and the 1024 element dataset. Dashed lines indicate complemented connection, while
continuous lines depict passthrough connections (neutralizing connections are skipped for the sake
of clarity). Circular green nodes indicate dominance of logical AND (α→ 1), whereas triangular grey
nodes indicate dominance of OR (α→ 0). Black squares designate inputs, while the blue rhombus
indicates an L-neuron with no inputs. Neurons in each layer are drawn in the same order in all
graphs. Neurons that do not influence the output value are removed to further improve readability.
The inputs are placed in a paired order (1, 11, 2, 10, 3, 4 (not shown), 9, 5, 8, 6, 7) in order to increase
readability. (Top) Initial, impaired rule layout. (Middle) Rule layout obtained after training. (Bottom)
A desired “perfect” rule structure.



Sensors 2021, 21, 6168 17 of 19

It is notable that in the presented case, the last neuron in the first layer was neutralized,
and its role was filled by correctly rewiring a different neuron to implement the missing
rule. This observation provides a further explanation of the limited learning capabilities
of the L-neuron-only structure. The optimization process appears to favor the removal of
infringing rules over correcting them. As a result, the final structure is fully compliant with
the information provided by the samples but is incomplete, and as such, it cannot reach
perfect performance.

4.3. Hybrid Network Evaluation

The proposed hybrid architecture, where the L-neuron-only network is supplemented
with the classical neural structure, enables a leap in performance (Figure 8, top), providing
almost perfect classification performance for a wide range of training set sizes and initial
knowledge impairment levels. It is noteworthy to observe that for a limited size of a
training set (up to 12.5%), the final performance of the hybrid structure, comparable to the
one offered by the L-neuron-only network, is ensured mainly by its knowledge-based part
(see Figure 9, top). This smoothly changes in favor of the conventional neural sub-network,
as the amount of available training data increases. Additionally, the decision-making role
of the neural sub-network of the hybrid structure further increases as initial knowledge
impairment levels become higher.

To assess how the presence of the neural sub-network affects the outcome of knowl-
edge sub-network training, we confronted classification accuracy provided by the knowl-
edge module, extracted after training completion from the hybrid network, with scores
produced by separately trained L-neuron-only network. As can be seen in Figure 9, bottom,
the knowledge sub-network of the proposed hybrid structure mostly trains better than its
L-neuron-only counterpart. Only for high knowledge impairment levels (25% or more)
and extreme—either very small or very large—amounts of data, L-neuron-only structure
training is more effective. These results indicate that the proposed hybrid model maintains
the ability to correctly train its knowledge sub-network, enabling interpretability of the
resulting, corrected knowledge.

5. Conclusions

The concept proposed in the paper was aimed to enable intelligent data analysis using
smart sensors, where compensating learning by knowledge reduced a need for having
large training datasets and highly complex neural networks. We have shown that the
presented idea of combining knowledge and learning may result in better problem-solving
performance. Mutual benefits of merging knowledge and learning have been demonstrated
through knowledge impairment correction and data-scarcity compensation. In the former
case, a logical reasoning structure with an impaired inference path has been appropriately
amended through a subnetwork of regular neurons. In the latter case, the proposed way
of injecting prior knowledge has enabled complexity reduction in a neural structure, as
regular neurons only need to learn the missing pieces of problem–solution principles.

The performance of the hybrid model proves our intuitive expectation that the pro-
posed hybrid structure would be capable of leveraging information contained in the
provided dataset in order to compensate for erroneous rules. Such behavior could be
interpreted as an analog to the two systems described by Kahneman [39]. The L-neurons
may be thought of as the more logical and rigid System 2, whilst the classical nodes could
be considered to be akin to the intuitive System 1.

The primary contribution of this work is the concept of the L-neuron, not only capable
of representing knowledge in the form of logical rules but also of being trained using
classical backpropagation methods.

Another essential contribution is that our approach does not need a specific part of
knowledge to be fully and correctly defined. We have shown that the knowledge sub-
network of the proposed hybrid structure, as well as the L-neuron-only structure, are
capable of partial self-correction over the course of training.



Sensors 2021, 21, 6168 18 of 19

The third contribution is that the embedded knowledge maintains a high degree
of comprehensibility even after training and is not overpowered by the added classical
neurons. This opens up a route towards explainable neural models, which, due to their
extreme number of parameters, have thus far been treated primarily as black-box models.

Finally, since the underlying operators used for embedding knowledge have been
adopted from fuzzy logic, the system is also capable of carrying out fuzzy inference. The
augmentation of the proposed models with a more general method for input fuzzification
would allow our proposed approach to operate in any domain. Such augmentation was
deemed to be out of the scope of this article. Nevertheless, it is a promising area of
future work.

Author Contributions: Conceptualization, P.Ł., J.K. and K.Ś.; methodology, P.Ł., T.J., I.P., J.K. and K.Ś.;
software, P.Ł.; validation, P.K., I.P. and T.J.; formal analysis, J.K. and K.Ś.; investigation, P.Ł.; resources,
P.K., J.K. and K.Ś.; data curation, P.Ł.; writing—original draft preparation, P.Ł. and T.J.; writing—
review and editing, P.K., I.P., J.K. and K.Ś.; visualization, P.Ł.; supervision, J.K. and K.Ś.; project
administration, J.K.; funding acquisition, J.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was financed by the Lodz University of Technology, Faculty of Electrical,
Electronic, Computer and Control Engineering as a part of the statutory activity.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was completed while the first author was the Doctoral Candidate in
the Interdisciplinary Doctoral School at the Lodz University of Technology, Poland.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hernandez, D.; Brown, T.B. Measuring the Algorithmic Efficiency of Neural Networks. arXiv 2020, arXiv:2005.04305.
2. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al. A

General Reinforcement Learning Algorithm That Masters Chess, Shogi, and Go through Self-Play. Science 2018, 6419, 1140–1144.
[CrossRef]

3. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al.
Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 2020, 577, 706–710. [CrossRef]

4. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]

5. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models Are Unsupervised Multitask Learners.
OpenAI Blog 2019 , 1, 9.

6. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models Are Few-Shot Learners. arXiv 2020, arXiv:2005.14165.

7. Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schulman, J.; Mané, D. Concrete Problems in AI Safety. arXiv 2016,
arXiv:1606.06565.

8. Lillicrap, T.P.; Kording, K.P. What Does It Mean to Understand a Neural Network? arXiv 2019, arXiv:1907.06374.
9. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.;

Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward
Responsible AI. Inf. Fusion 2019, 58, 82–115. [CrossRef]

10. Gerke, S.; Babic, B.; Evgeniou, T.; Cohen, I.G. The Need for a System View to Regulate Artificial Intelligence/Machine Learning-
Based Software as Medical Device. NPJ Digit. Med. 2020, 3, 1–4. [CrossRef]

11. Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Renzo, M.D.; Debbah, M. Holographic MIMO
Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wirel. Commun. 2020, 27, 118–125. [CrossRef]

12. Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
13. Kolmogorov, A. On the Representation of Continuous Functions of Several Variables by Superpositions of Continuous Functions

of Lesser Variable Count. Dokl. Akad. Nauk SSSR 1956, 108, 2.
14. Arnold, V.I. On Functions of Three Variables. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1957;

Volume 114, pp. 679–681.
15. Gori, M. Machine Learning: A Constraint-Based Approach; Morgan Kaufmann: Burlington, MA, USA, 2017.

http://doi.org/10.1126/science.aar6404
http://dx.doi.org/10.1038/s41586-019-1923-7
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1038/s41746-020-0262-2
http://dx.doi.org/10.1109/MWC.001.1900534
http://dx.doi.org/10.1007/BF02551274


Sensors 2021, 21, 6168 19 of 19

16. Roychowdhury, S.; Diligenti, M.; Gori, M. Image Classification Using Deep Learning and Prior Knowledge. In Proceedings
of the Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018;
pp. 336–342.

17. Towell, G.G.; Shavlik, J.W. Knowledge-Based Artificial Neural Networks. Artif. Intell. 1994, 70, 119–165. [CrossRef]
18. Gaier, A.; Ha, D. Weight Agnostic Neural Networks. In Proceedings of the NeurIPS 2019: Thirty-Third Conference on Neural

Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 5364–5378.
19. Shavlik, J.W.; Towell, G.G. An Approach to Combining Explanation-Based and Neural Learning Algorithms. Connect. Sci. 1989,

1, 231–253. [CrossRef]
20. Towell, G.G.; Shavlik, J.W. Extracting Refined Rules from Knowledge-Based Neural Networks. Mach. Learn. 1993, 13, 71–101.

[CrossRef]
21. Riegel, R.; Gray, A.; Luus, F.; Khan, N.; Makondo, N.; Akhalwaya, I.Y.; Qian, H.; Fagin, R.; Barahona, F.; Sharma, U.; et al. Logical

Neural Networks. arXiv 2020, arXiv:2006.13155.
22. Marra, G.; Diligenti, M.; Giannini, F.; Gori, M.; Maggini, M. Relational Neural Machines. arXiv 2020, arXiv:2002.02193.
23. Chen, D.; Bai, Y.; Zhao, W.; Ament, S.; Gregoire, J.; Gomes, C. Deep Reasoning Networks for Unsupervised Pattern De-Mixing

with Constraint Reasoning. Proc. Mach. Learn. Res. 2020, 119, 1500–1509.
24. Herrmann, C.; Thier, A. Backpropagation for Neural DNF- and CNF-Networks. Knowl. Represent. Neural Networks 1996, 63–72.
25. Koh, P.W.; Nguyen, T.; Tang, Y.S.; Mussmann, S.; Pierson, E.; Kim, B.; Liang, P. Concept Bottleneck Models. Proc. Mach. Learn.

Res. 2020, 119, 5338–5348.
26. Stanley, K.O.; Miikkulainen, R. Evolving Neural Networks through Augmenting Topologies. Evol. Comput. 2002, 10, 99–127.

[CrossRef] [PubMed]
27. Wang, P.W.; Donti, P.L.; Wilder, B.; Kolter, Z. SATNet: Bridging Deep Learning and Logical Reasoning Using a Differentiable

Satisfiability Solver. arXiv 2019, arXiv:1905.12149..
28. Jang, J.S. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man. Cybern. 1993, 23, 665–685. [CrossRef]
29. McCulloch, W.S.; Pitts, W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
30. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980
31. Czogala, E.; Leski, J. Fuzzy and Neuro-Fuzzy Intelligent Systems; Physica-Verlag HD: Heidelberg, Germany, 2000; Volume 47.

[CrossRef]
32. Yager, R.R.; Rybalov, A. Uninorm Aggregation Operators. Fuzzy Sets Syst. 1996, 80, 111–120. [CrossRef]
33. Cao, X.; Yang, B.; Huang, C.; Yuen, C.; Di Renzo, M.; Han, Z.; Niyato, D.; Poor, H.V.; Hanzo, L. AI-Assisted MAC for

Reconfigurable Intelligent-Surface-Aided Wireless Networks: Challenges and Opportunities. IEEE Commun. Mag. 2021, 59, 21–27.
[CrossRef]

34. Ng, A.Y. Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. In Proceedings of the Twenty-First International
Conference on Machine Learning; Association for Computing Machinery: New York, NY, USA, 2004; p. 78. [CrossRef]

35. Halevy, A.; Norvig, P.; Pereira, F. The Unreasonable Effectiveness of Data. IEEE Intell. Syst. 2009, 24, 8–12. [CrossRef]
36. Banko, M.; Brill, E. Scaling to Very Very Large Corpora for Natural Language Disambiguation. In Proceedings of the 39th Annual

Meeting on Association for Computational Linguistics, ACL ’01, Toulouse, France, 6–11 July 2001; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2001; pp. 26–33. [CrossRef]

37. Mosley, L. A Balanced Approach to the Multi-Class Imbalance Problem. Ph.D. Thesis, Iowa State University, Ames, IA, USA,
2013. [CrossRef]

38. Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [CrossRef]
39. Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011.

http://dx.doi.org/10.1016/0004-3702(94)90105-8
http://dx.doi.org/10.1080/09540098908915640
http://dx.doi.org/10.1007/BF00993103
http://dx.doi.org/10.1162/106365602320169811
http://www.ncbi.nlm.nih.gov/pubmed/12180173
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/978-3-7908-1853-6
http://dx.doi.org/10.1016/0165-0114(95)00133-6
http://dx.doi.org/10.1109/MCOM.001.2001146
http://dx.doi.org/10.1145/1015330.1015435
http://dx.doi.org/10.1109/MIS.2009.36
http://dx.doi.org/10.3115/1073012.1073017
http://dx.doi.org/10.31274/etd-180810-3375
http://dx.doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3

	Introduction
	Related Work
	Materials and Methods
	L-Neuron
	Proposed Network Architecture
	Loss
	Experimental Evaluation
	Mapping Knowledge Structure onto L-Neurons
	Metrics
	Training Configurations
	Model Structure


	Results and Discussion
	L-Neuron Network Evaluation
	Knowledge Repair
	Hybrid Network Evaluation

	Conclusions
	References

