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Abstract: Multi-image encryption technology is a vital branch of optical encryption technology. The
traditional encryption method can only encrypt a small number of images, which greatly restricts
its application in practice. In this paper, a new multi-image encryption method based on sinusoidal
stripe coding frequency multiplexing and deep learning is proposed to realize the encryption of
a greater number of images. In the process of encryption, several images are grouped, and each
image in each group is first encoded with a random matrix and then modulated with a specific
sinusoidal stripe; therefore, the dominant frequency of each group of images can be separated in
the Fourier frequency domain. Each group is superimposed and scrambled to generate the final
ciphertext. In the process of decryption, deep learning is used to improve the quality of decrypted
image and the decryption speed. Specifically, the obtained ciphertext can be sent into the trained
neural network and then the plaintext image can be reconstructed directly. Experimental analysis
shows that when 32 images are encrypted, the CC of the decrypted result can reach more than 0.99.
The efficiency of the proposed encryption method is proved in terms of histogram analysis, adjacent
pixels correlation analysis, anti-noise attack analysis and resistance to occlusion attacks analysis. The
encryption method has the advantages of large amount of information, good robustness and fast
decryption speed.

Keywords: optical information security; deep learning; sinusoidal coding; frequency multiplexing

1. Introduction

As the development of the Internet, networks and information systems are playing
an increasingly important role in people’s life, work and study. However, as people’s
expectations for informatization have deepened, a subject that cannot be ignored has
been placed in front of people, that is, the security of information. The resolution of
these security issues depends on the progress and development of information security
technology. Therefore, the research on information security technology plays a vital role,
which not only has academic value but also plays an important role in promoting the
development of the entire human society. Data encryption technology based on optical
theory and method is a new generation of information security theory and technology
that has begun to develop internationally in recent years. Compared with traditional
information security technology, optical information security technology has the following
advantages: firstly, optical cryptography system has parallelism [1]. Secondly, optical
cryptography systems usually have large key space. Thirdly, optical cryptography system
has the characteristics of multi-dimension [2]. Some inherent parameters of the system, such
as amplitude, phase, wavelength and optical element parameters, can be used as the key
parameters of the optical cryptosystem to achieve multi-dimensional encryption. Therefore,
optical information security technology has the characteristics of large capacity, fast storage
speed, multi-dimensional parallel processing and so on and has unique advantages in data
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transmission and protection. Today, with the growing development of optical information
technology, optical image encryption technology has made great progress.

In 1995, Refregier et al. [3] proposed an optical image encryption scheme based on
double random phase encoding for the first time, which means it uses two uncorrelated
random phase templates and Fourier transform to realize optical image encryption. In
essence, this scheme is based on optical transformation to disturb the information of
plaintext images and generate ciphertext images, such as fractional Fourier transform [4],
fractional wavelet transform [5], fractional Merlin transform [6], interference [7], single-
pixel imaging [8,9], etc. Optical image encryption belongs to parallel encryption with high
speed and high efficiency, but its encryption performance is limited by the technology and
precision of various optical devices in the optical path [10].

In addition, many previous studies [11–15] only consider the encryption of a single
image, which greatly reduced the efficiency of the encryption system. As another important
branch of optical encryption technology, multi-image encryption technology has attracted
an increasing number of attention since it not only improves the encryption ability but
also reduces the amount of ciphertext data. In recent years, multiple image encryption
methods have been proposed based on wavelength multiplexing [16], multiplexing po-
sition [17], phase mask only (PMO) multiplexing [18], lateral transfer [19], optical data
compression [20] and so on. Lee and Cho [21] proposed a double random phase encryption
method for multi-image transmission based on orthogonal coding. Li et al. [22] proposed a
multi-image encryption method based on compressed ghost imaging. Wu et al. [23] pro-
posed a multi-image encryption scheme based on different diffraction distances to calculate
ghost images. Zhang et al. [24] proposed a multi-image encryption scheme based on the
concept of compressed ghost imaging and the sampling principle of Fourier transform.
Yang [25] et al. proposed a multi-image encryption scheme based on compression coding
aperture imaging. However, with the advent of the era of big data, a growing number of
data need to be transmitted, and the above encryption methods can only encrypt a small
number of images. At the same time, during decryption, it takes a lot more time than
using the traditional multi-image encryption method, which greatly limits its application
in practice. This inspired us to adopt a more efficient method to encrypt more images.

The energy of a natural image in the Fourier frequency domain is concentrated in the
low-frequency component [26,27], and such multiplexing of the frequency information
would be of few resolution loss. Codes with Fourier coefficients following impulse-shaped
distribution can conduct effective frequency multiplexing [28]. Typical Fourier encoding is
sinusoidal modulation, which shifts the Fourier spectrum of the original image to a specific
region determined by the modulation frequency.

Inspired by the above theory, this paper introduces the sinusoidal stripe coding on the
basis of random matrix. Specifically, the plaintext images are grouped before encryption,
and each group of images is first subjected to random matrix coding and then sinusoidal
stripe coding during encryption. The specially designed sinusoidal stripe moves the
frequency components of each group of images in the Fourier frequency domain with
different offsets. In this way, the number of encrypted images is far more than that of the
traditional encryption method. In order to improve the quality of decrypted image and
the speed of decryption, deep learning (DL) is used to reconstruct the plaintext during
decryption, which is a powerful tool in many areas [29–34]. A predominant characteristic
of DL is that it enables neural networks to automatically analyze the relationship between
data and data. Therefore, we can use this characteristic of the neural network to study
the corresponding relationship between the plaintext and the ciphertext in optical image
encryption, that is to say, we can successfully realize the ciphertext decryption by analyzing
the relationship between them.

The main contributions of the proposed encryption methods can be summarized as follows:

1. A multi-image encryption method based on sinusoidal coding frequency multiplexing
and deep learning is proposed.
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2. The proposed encryption method can realize the encryption of a greater number of
images, which makes it more widely used.

3. In the process of decryption, deep learning is used to improve the quality of the
decrypted image and the decryption speed.

The rest of this paper is organized as follows. The second part is to analyze the
theories, which will include the introduction of sinusoidal stripes and the adoption of deep
neural networks. The third part will explore the process of encryption and decryption in
detail. Furthermore, the security and robustness will be analyzed in the fourth part. The
final part is a conclusion.

2. The Theoretical Analysis
2.1. The Encryption Process

A multiplexed coding scheme will be proposed to encrypt images, and the encryption
process is shown in Figure 1.
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Assuming that there are many n × m plaintext images, the encryption process is
described as follows:

1. All the n × m plaintext images are divided into n groups; the plaintext images in each
group and the sinusoidal code corresponding to each group of the plaintext images
are successively sent to a spatial light modulator (SLM1) for display.

2. The L2 and L3 lenses form the 4F system, and the hole P is located on the spectral
plane of the 4F system, which is used to extract the zero-order frequency after SLM1
and reduce the influence of errors caused by other orders. The random matrix
corresponding to each plaintext image is uploaded to SLM2 for coding.

3. The superimposed light intensity recorded by the CCD is the time integral of the light
field reaching the target surface within a certain period of time. Therefore, we make
the exposure time of the CCD equal to the sum of the encoding time of all images in
the SLM. In addition, their starting time should be synchronized, and the encoding
time of each image should also be the same, which can be expressed as follows:

I(
→
p ) =

n

∑
j=1

m

∑
i=1

sj(
→
p )ri(

→
p ) Iij(

→
p ) (1)
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Here I(
→
p ) represents the ciphertext, sj(

→
p ) represents the j-th specially designed

sinusoidal stripe, ri(
→
p ) represents the i-th random matrix, Iij(

→
p ) represents the plaintext

image, and ∑ (·) represents the sum of the elements.

1. According to the number of pixels with superimposed light intensity, an integer
random sequence without repeating elements is generated. Secondly, replace the light
intensity value on each pixel of the superimposed light intensity according to the
value of the random sequence, so as to realize the scrambling operation. Scramble
(S) [25] I(

→
p ) to get the final ciphertext.

2.2. The Decryption Process
2.2.1. Downsampling in Fourier Frequency Domain

If we convert the obtained ciphertext image to the Fourier domain after scrambling
recovery, its spectrum can be expressed as:

Ĩ(
→
p ) =

n

∑
j=1

m

∑
i=1

[
aδ(
→
ω) +

b
2
(
→
ω +

→
ω j)e−φ +

b
2
(
→
ω −→ω j)eφ

]
∗ F
[
ri(
→
p )Iij(

→
p )
]

(2)

where F[•] represents the Fourier transform,
→
ω and φ represent the frequency and phase of

the sinusoidal stripe, respectively. As shown in Figure 2, here we take m = 4 and n = 8 as an
example. Each group is coded using four random matrices, followed by eight sinusoidal
codes that move the frequency components of each group by different offsets; therefore,
their dominant frequencies are staggered in Fourier domain. For each group, the shifted
frequencies have two symmetrically conjugated positions (denoted by solid and dashed
circular of the same color).
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Since most energy of the plaintext images and the random matrix concentrates at low
frequencies, ∑m

i=1 ri(
→
p )Iij(

→
p ) can be extracted via the operation ε as follows:

Ij(
→
p ) =

m

∑
i=1

ri(
→
p )Iij(

→
p ) =

2
b

∣∣∣F−1
[
ε
[

Ĩ(
→
p )
]]∣∣∣ (3)

Here the operation ε includes two steps: first extracting the Fourier modulus from
Ĩ(
→
p ), and then padding its surroundings with zeros to keep the original pixel resolution.
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Then, Ij is taken as the input to the network, and the output is m plaintext images. The
detailed process of deep neural network decryption will be described in the next section.
So far, we can extract and decrypt m plaintext images from each group of Ij.

2.2.2. The Network Structure

Deep learning (DL) is a powerful tool in many areas. In the aspect of network structure,
this paper adopts the classic U-Net [35] network structure, which is applied to plaintext
reconstruction after modifying the output layer and loss function of U-Net. The input of the
network is a single-channel two-dimensional image, and the final output is an m-channel
two-dimensional image after passing through five down-sampling convolutional layers
and five up-sampling deconvolution layers. Each channel represents a plaintext image. Its
network structure and specific parameters of each layer are shown in Figure 3.
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In the process of neural network training, the datasets play an important role. A high
quality dataset can often improve the quality of model training, speed up the progress of
training and improve the final output results. Considering the particularity of the image
encryption method proposed in this paper, we choose the self-made dataset, in which the
data pair consists of m plaintext images and ciphertext. In this paper, 15,000 images are
selected from MNIST handwritten dataset as the plaintext images, and then encrypted
according to the encryption method mentioned above, so as to obtain the ciphertext-
plaintext data pairs.

In order to better restore the plaintext images, mean-square error (MSE) is utilized
and defined as follows:

MSE =
1

M× N

M×N

∑
i=1

(xi − yi)
2 (4)

where M and N represent the width and height of the image respectively, and xi and yi
represent the output value of the last layer of the network and the truth value of the original
image respectively. Since the last layer of the modified U-Net network is M-channel, the
loss function is:

Loss1 =
1

M× N

m

∑
i=1

M×N

∑
j=1

(xij − yij)
2 (5)

We further optimize the loss function and the benefit of this is to improve the training
ability of the network. Specifically, the m plaintext images output from the network
are encrypted again according to the proposed encryption method, and then the MSE is
calculated with the real ciphertext, which can be expressed as:

Loss2 = MSE(I(
→
p ), I ′ (

→
p )) =

1
M× N

M×N

∑
i=1

(Ii(
→
p )− Ii

′ (
→
p ))

2
(6)
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where I(
→
p ) represents the real ciphertext, and I ′ (

→
p ) represents the reconstruction cipher-

text that is re-encrypted using the plaintext image output from the network. Therefore, the
total loss function is:

Loss = Loss1 + Losss2 =
1

M× N

m

∑
i=1

M×N

∑
j=1

(xij − yij)
2 +

1
M× N

M×N

∑
i=1

(Ii(
→
p )− Ii

′ (
→
p ))

2
(7)

In the training process, the learning rate is set to 0.001 and the Adam optimizer [36]
is used to optimize and update the parameters of the network. The number of training
epoch is 50. All programs run in Python 3.7 with NVIDIA GeForce GTX 3060 GPU
for acceleration.

3. Experiment Results

In order to prove the feasibility of our method in encryption and the superiority of
decryption, we conduct numerical simulation experiments to verify it. In the process of
encryption, 32 images are selected from MNIST handwritten digital dataset and divided
into eight groups, with four images in each group, and the resolution is 256 × 256. Figure 4
shows the encryption process for multiple images.
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The first line (a–d) in Figure 4 shows the plaintext images in the first group, Figure 4e
represents one of the corresponding four random matrices, and Figure 4f–h represent the
images encoded by random codes and sinusoidal stripes of the first group, the 8 groups of
superimposed ciphertext image and the scrambled ciphertext images respectively. It can
be found intuitively that it is almost impossible to detect any information of the original
image from the ciphertext.

As shown in Figure 5, the detailed decryption process is described as follows:

1. The pixel location of the ciphertext is rearranged by the correct index keys to get the
superimposed images;

2. Fourier transform is applied to the superimposed ciphertext image and appropriate
down-sampling is carried out according to the specific spectrum distribution of
each group;

3. Its surroundings are padded with zeros to keep the original pixel resolution;
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4. Inverse Fourier transform is carried out and it is fed into the trained U-Net network.
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The correlation coefficient (CC) is used to calculate the similarity between the original
plaintext image and the decrypted image, which is defined as follows:

CC =
E{[It − E(It)]− [I − E(I)]}

σIt σI
(8)

where E{·} denotes the expected value operator, and σ is the standard deviation of the
corresponding image. It and I are the original plaintext images and decrypted images,
respectively. The closer CC value is to 1.0, the better the quality of the reconstructed
images. The decryption results are shown in Figure 6, with CC of 0.9939, 0.9903, 0.9951,
and 0.9966, respectively.
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Figure 6. The first set of decryption results.

Obviously, these final decrypted images with high quality are very similar to the
corresponding plaintext images. At the same time, as the deep neural network is used to
decrypt, the decryption time is very fast. Using Intel(R) Core(TM) i7-9700K CPU without
using GPU acceleration, the entire decryption process can be completed in only 3.15 s. The
decryption results for all groups are shown in Figure 7.

In addition, we use some plaintext images that do not belong to the training set for
reconstruction to test the generalization of the encryption model proposed in this paper.
For convenience, Handwritten English alphabets are used for testing and the reconstructed
plaintext images are shown in Figure 8.
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Although the network has been trained with MNIST handwritten datasets, it can
perform high-quality reconstruction of handwritten English alphabet, which indicates that
the U-Net networks can learn the correspondence between ciphertext images and original
plaintext images very well.

In order to further verify the feasibility of the encryption method, we use FEI FACE
Database [37] for training, in which the images are gray images with more complex content
and richer details. In the process of encryption, four face images are used and divided into
two groups, according to the encryption steps mentioned above. By reducing the number
of encrypted images, each group of images can obtain a large sampling rate in the Fourier
frequency domain to ensure high quality plaintext reconstruction. The decryption result is
shown in Figure 9.
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4. Algorithm Analysis

We know that the ciphertext and the key will inevitably be attacked or changed in
the process of transmission, such as data missing, affected by the noise and so on. A good
information security system can not only guarantee the confidentiality of information but
also ensure the integrity of information decryption, so the information encryption system
proposed by researchers is required to have good security and robustness.

4.1. Key Security Analysis

The proposed encryption method has great security, even if the attacker knows what
kind of network structure to use and the corresponding encryption method, and tries
to attack the encryption system through training, but the use of random matrix in the
encryption process is unknown, based on the wrong random matrix training network
leading to decryption failure. The top row of Figure 10 shows the decryption results under
the correct random matrix, and the bottom row shows four images that failed to decrypt
based on incorrect random matrix training.
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It can be seen that if the wrong random matrix is used for training, no useful informa-
tion can be seen from the decryption results. This fully shows that the proposed encryption
algorithm has good security.
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4.2. Anti-Noise Attack Analysis

It is also necessary to evaluate the robustness of the encryption algorithm when the
ciphertext is attacked by noise. In order to verify that the encryption method has good
anti-noise ability, speckle noise and Gaussian noise are added in the process of network
training to improve the robustness. The mean values of speckle noise and Gaussian noise
added in the training process are all 0, and the variance is randomly selected in (0.05, 0.06,
0.07, 0.08, 0.1). At the same time, four different types of noise attacks are added into the
ciphertext: Gaussian noise, speckle noise, raylrnd noise and salt and pepper noise. CC
change curve of decrypted image under noise attack is shown in Figure 11.
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For Gaussian noise and speckle noise, the abscissa represents the variance parameter.
It can be seen from Figure 11 that the proposed encryption model has a very good ability
to resist Gaussian noise. Even when the variance is 0.5, CC is still higher than 0.9. At the
same time, when the network is attacked by other kinds of noise, although the decryption
quality decreases with the increase of noise, the image can still be decrypted clearly.

4.3. Resistance to Occlusion Attacks

Next, we analyze the influence of the occlusion attack on the decryption results. Three
different occlusion styles and their corresponding decrypted images are shown in Figure 12.
The corresponding plaintext images are shown on the right side of Figure 12, from which
the primary information of the original plaintext images can be recognized visually.
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4.4. Correlation Analysis

The correlation of adjacent pixels reflects the correlation degree of pixel values at
adjacent positions of the image. A secure encryption algorithm should reduce the degree of
correlation between pixel values in adjacent positions of the image. The correlation of the
image should include horizontal correlation, vertical correlation and diagonal correlation.
The formula for calculating correlation coefficient is as follows:

rxy =
cov(x, y)√
D(x)D(y)

(9)

E(x) =
1
N
×

N

∑
i=1

xi, D(x) =
1
N
×

N

∑
i=1

(xi − E(x))2 (10)

cov(x, y) =
1
N
×

N

∑
i=1

(xi − E(x))(yi − E(y)) (11)

As shown Table 1, the correlation coefficients between adjacent pixels of plaintext
images are all greater than 0.9, indicating a high correlation. In the ciphertext image, the
average correlation coefficient of adjacent pixels in three directions is closer to 0. This
means that the pixel distribution of the ciphertext image is very chaotic and there is no
statistical correlation.

Table 1. Correlation coefficient between adjacent pixels of plaintext image and ciphertext image in
each of three directions.

Test Image Horizontal Vertical Diagonal

Img1 0.9831 0.9749 0.9779

Img2 0.9689 0.9594 0.9638

Img3 0.9337 0.9220 0.9321

Img4 0.9605 0.9487 0.9548

Ciphertext −0.0115 −0.0063 0.0038
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At the same time, in order to show the correlation between adjacent pixels of the image
intuitively, one of the four plaintext images is selected and the correlation analysis diagram
of three directions is drawn. The correlation analysis results are shown in Figure 13.
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The experimental results show that the adjacent pixels of the ciphertext image have
low correlation in horizontal, vertical and diagonal directions, which reduces the statistical
characteristics of pixel correlation, thus proving that the proposed method for image
encryption can resist the statistical attack based on pixel correlation.

4.5. Histogram Analysis

In the case of image feature leakage, it is vital that the encryption scheme can resist
statistical analysis. The histogram of the image shows the distribution of pixel values in the
image, so the histogram is a key indicator reflecting the robustness of the image encryption
scheme [38]. The histograms of four plaintext images, ciphertext images, and decrypted
images are shown in Figure 14. The experimental results show that the distribution of pixel
values in the ciphertext image is significantly different from that of the plaintext image. It
can be seen from the histograms of the four plaintext images that the encryption model has
successfully changed the distribution of pixel values, removed the statistical characteristics
of pixel values, and can effectively resist attacks based on statistical analysis.
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4.6. Analysis of the Number of Encrypted Images

The number of encrypted images in multiple image encryption will directly affect the
application of the algorithm in practice. Next, we analyze the relationship between the
number of encrypted images and the quality of decrypted images. As shown in Figure 15,
taking four images per group, as the number of encrypted images increases, the decryption
result decreases. However, when the number of encrypted images is 64, the content of the
image can still be clearly distinguished, which cannot be achieved by the traditional multi-
image encryption algorithm [21–25]. Due to the limitation of image size, the sampling ratio
in the frequency domain is too small to achieve better decryption when the number of
encrypted images is 128.
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5. Conclusions

In this paper, we propose a multi-image encryption method based on deep learning
and sinusoidal stripe coding frequency multiplexing. The CCD camera can detect the
superposed image after grouping, random matrix coding and sinusoidal stripe modulation
operation. Then the deep neural network is trained to learn the correspondence between
the plaintext and the ciphertext. After the training, the ciphertext image is transmitted to
the trained network for decryption after scrambling recovery, Fourier transform, downsam-
pling and inverse Fourier transform. Compared with the previous multi-image encryption
methods, the proposed encryption method has more encrypted images and faster decryp-
tion speed, which makes it more widely used. Moreover, theoretical analysis, numerical
simulation experiment results and robustness test all verify the feasibility and safety of the
proposed method. In future work, we will further optimize the encryption method and
deep neural network structure to enable it to encrypt more general grayscale images. Fur-
thermore, the Bayer matrix can be used to preprocess color images into grayscale images,
which is expected to restore the original color of the decrypted image after the introduction
of De-Mosaic algorithm, thereby realizing color image encryption.
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