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Abstract: This paper presents the technological status of robot-assisted gait self-training under real
clinical environment conditions. A successful rehabilitation after surgery in hip endoprosthetics com-
prises self-training of the lessons taught by physiotherapists. While doing this, immediate feedback to
the patient about deviations from the expected physiological gait pattern during training is important.
Hence, the Socially Assistive Robot (SAR) developed for this type of training employs task-specific,
user-centered navigation and autonomous, real-time gait feature classification techniques to enrich
the self-training through companionship and timely corrective feedback. The evaluation of the
system took place during user tests in a hospital from the point of view of technical benchmark-
ing, considering the therapists’ and patients’ point of view with regard to training motivation and
from the point of view of initial findings on medical efficacy as a prerequisite from an economic
perspective. In this paper, the following research questions were primarily considered: Does the level
of technology achieved enable autonomous use in everyday clinical practice? Has the gait pattern
of patients who used additional robot-assisted gait self-training for several days been changed or
improved compared to patients without this training? How does the use of a SAR-based self-training
robot affect the motivation of the patients?

Keywords: robot-assisted gait training; self-training; feedback to the patient; autonomous use; real
clinical environment conditions

1. Introduction

The independent and self-reliable training of patients independent of the therapist in
the rehabilitation process is becoming increasingly important in times of scarce financial
and human resources in public healthcare systems. Patients usually receive instructions
and recommendations from therapeutic staff on how to carry out self-training for time
windows when no therapies with therapists take place. Whether patients actually train and
perform the exercises accurately during this time remains an open question. In contrast,
self-training assisted by a training robot enables patients not only to exercise independently
of the presence of a physiotherapist, but also to receive recommendations for correction
from the robot, including positive feedback. In this way, training errors are avoided and
the progress of the therapy is strengthened. This “controlled” self-training could result in
faster rehabilitation and reintegration, which at the same time contribute to relieving the
therapeutic staff.

In the project “Robot-assisted gait training in orthopedic rehabilitation” (ROGER,
2016–2019), a mobile Socially Assistive Robot (SAR)-based self-training robot was devel-
oped based on our preliminary work [1], which assists patients after orthopedic operations
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such as hip or knee replacement surgery in clinical aftercare with personalized gait exer-
cises to restore a gait pattern that is as physiological as possible (see Figure 1). The training
robot can observe the patients during gait training by means of its onboard sensor system,
is mobile to actively guide them, recognizes errors in the gait training process, intervenes
to correct them, and records the course and progress of the training.

Figure 1. Patients during SAR-based self-training, where training robots drive in front of the patients
and provide motivational and corrective feedback on their gait behavior (left, middle). Patients can
pause the training at resting places (right).

The aim of this paper is to present and discuss the results achieved in ROGER during
user tests in a hospital from the technical benchmarking point of view, from the therapists’
and patients’ point of view with regard to training motivation, and from the point of view
of initial findings on medical efficacy as a prerequisite from an economic perspective.

Special focus was on the following three research questions: Does the level of devel-
opment achieved enable autonomous use in everyday clinical practice (Question 1)? Did
the gait pattern of patients who used additional robot-assisted gait training over several
days change or improve compared to patients without this training (Question 2)? How did
the use of a training robot affect the patients’ motivation to train (Question 3)?

This paper is based on [2–4], which contain concrete details to the results obtained from
SAR-assisted gait training and supplements these with considerations of the above issues.

2. Requirements

In order to assess the state of development of a technology such as the SAR-based
gait self-training discussed in this article, various aspects must be taken into account.
These are mainly the technological level of the hardware and software implementation, the
usability from the user’s point of view, and the integration into existing structures. Such
an assessment can also be made via the Technology Readiness Level (TRL) also used by
the European Union Horizon 2020 program [5] on a scale of 1 to 9, within which a TRL of
4 meaning the validation of functional capability in laboratory environments. Systems that
are suitable for everyday use require a TRL of at least 6.

2.1. Methodological–Technical Aspects

Mobile assistive robots require comprehensive technical capabilities suitable for ev-
eryday use in any application [6]. Basic skills comprise autonomous, obstacle-avoiding
navigation, the ability to robustly recognize, track, and identify people, and also the abil-
ity to interact with users. The concrete realization of these skills already determines the
degree of robot autonomy that can be achieved in an application. Only a high degree
of robot autonomy allows extensive user tests, as well as efficacy studies for which no
additional technical on-site support is possible. Advanced skills are required depending
on the specific training application. For example, keeping a patient constantly centered in
the detection range of the gait training robot’s sensors is essential for an exact gait feature
extraction and analysis [7].
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Further, the analysis of the gait pattern of patients after orthopedic operations on the
hip requires the extraction of gait characteristics such as equal step length, stance duration,
step width, tilt of the upper body, as well as flexion and extension of the knee and hip.
In ROGER, the correct use of the Forearm Crutches (FACs) in three-point gait was also
analyzed, because only the correct usage of FACs relieves the operated hip and yields the
desired therapeutic results. To provide the patient with immediate feedback on the gait
errors made, an evaluation of the extracted features is also necessary. Furthermore, the
selection of suitable robot sensors already has an influence on the methods to be used. In
ROGER, due to the requirement of low hardware costs, while having the same or compara-
ble quality as stationary laboratory systems, cost-effective sensors were preselected.

All these different basic abilities and advanced skills have to be integrated into a train-
ing application suitable for real clinical environment conditions. Therefore, the application
should be specified with all user groups, which are medical professionals, therapists, and
patients (see Section 4.1). The general procedure should be suitably documented if an
approval as a medical device (TRL 7) is supposed to be achieved.

The assessment of the state of development from a methodological–technical point
of view must be carried out by means of technical benchmarking at several development
stages, for which data from test persons (TRL 3), data from patients under laboratory
conditions (TRL 4), and finally, within the framework of an efficacy study on patients
(TRL 5–6) are collected and evaluated (see Section 5). Such a comprehensive assessment
also requires a data management plan to implement data protection and maintenance
procedures, a positive vote by an ethics committee, and insurance coverage for the users.

2.2. User Perspective

To consider the user perspective in the development of SAR-based gait self-training,
guidelines such as the MEESTAR model [8] can be used. Complementarily, fifteen ethical
guidelines for the use of age appropriate assistance systems were summarized in [9], e.g.,
self-determination, safety, privacy, ease-of-use. Other important aspects of the guidelines
include enabling social participation, equal opportunity for use, privacy, and liability.
In addition, user confidence in the correctness of the method is important for the acceptance
of the system. From the patient’s point of view, four aspects play an important role:
usability, safety, trust, and independence.

The target group of patients addressed by the robot-assisted self-training covers a
wide age range, but is dominated by seniors who have received a hip prosthesis. Therefore,
the robot as a digital therapy device must be easy to operate. This benefits not only the
patients, but also other users, such as therapists, who expect a device that is no more
difficult to operate than a smartphone. Furthermore, patients must generally feel safe
during training. Especially for initially insecure patients, the embodiment effect of a robot
is an element that can create sympathy and trust.

Patients also have different daily schedules, different levels of motivation, and time
windows between therapies that allow them to train on their own. A robot should make it
possible to train independently and safely, even outside of therapist working hours, e.g.,
in the evenings or on weekends. Therefore, the training procedure and the navigation
behavior of the robot must be predictable and clearly defined, the voice outputs and the
menu guidance must be formulated simply and clearly in terms of content, and they must
be taken into account accordingly in the design of the Graphical User Interfaces (GUIs).

From the point of view of therapists and physicians, training plans must be easy
to create individually for each patient and adaptable to the changing training progress.
Thus, it is also necessary that the therapists and physicians have access to the results of the
actual training.

2.3. Health Economic Aspects

The financial benefit of robot-assisted training in inpatient care can be cost saving
in the context of the case-based cost coverage (diagnosis-related group), resulting from,
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e.g., lower personnel expenses. Furthermore, faster throughput times of patients can also
provide a financial benefit, as they lead to an increase in turnover and thus in capacity,
as well. In the inpatient rehabilitation sector, the effects are more likely to be seen in
the optimization of staff deployment and internal work organization. In the outpatient
sector, costs are reimbursed by health insurance funds, whereby inclusion in the catalog of
remedies is a prerequisite for reimbursement.

In any case, proof of the health–economic and medical–therapeutic benefits through
medical efficacy studies is necessary. For the robot-assisted gait self-training presented
here, a noninferiority study would already be suitable to show that the medical device is at
least as good as the alternative treatment method. This can also have a supporting effect
for product launch (TRL 8).

The necessary integration of the robot system into the hospital or outpatient processes
requires a process analysis and evaluation, as well as intensive coordination with the
relevant stakeholders. From the hospital’s point of view, the robot must be robust enough
in its function that it can carry out the training autonomously without the involvement of
accompanying persons, technicians, or therapists (see Section 2.1), without hindering the
processes within the hospital.

3. State-of-the-Art

An assessment of the state-of-the-art was made on the one hand with regard to the
literature and on the other hand with regard to the market, which continues to develop
corresponding applications and make them available.

3.1. Approaches from Science

The presented SAR-assisted gait self-training with FACs mainly uses camera-based
motion analysis, in which body poses are determined and evaluated by recording and
evaluating 3D-based camera data. This field has developed rapidly since the release of
the Microsoft Kinect as the first low-cost sensor, with tens of thousands of publications.
Nevertheless, there are only a few robotics-related publications on therapy approaches that
affect a person’s gait [10].

In particular, mobile robotic systems that enable gait analysis even under changing
environmental conditions are of interest. In [11], a feasibility approach of using a mobile
robot equipped with a depth camera to realize a skeleton tracking compared to the skele-
ton obtained by a stationary Vicon system (https://www.vicon.com/applications/life-
sciences/gait-analysis-neuroscience-and-motor-control/, accessed on 13 September 2021)
as the ground truth was presented. In [12], a gait recognition method for service robots
was presented for the purpose of identifying people. Reference [13] used a robot to help in
geriatric assessments, such as the “Get up & Go”-test.

In various applications, smart walkers instead of mobile robots have been used [14,15].
However, with them, the recreation of a physiological gait pattern is not possible due to the
unnatural gait imposed by the walker. In addition, action recognition methods are used in
clinical applications [16,17] or could be adapted for this purpose [18,19].

The special feature of the robotic system presented here is the evaluation of the gait
pattern of persons using FACs. A literature search on Google Scholar provided the work
of Tsuda et al. as a further project, which explicitly evaluated gait pattern performed on
axillary crutches, whereby the axillary crutches were not explicitly recorded. In [20], a static
camera was used to evaluate the gait pattern of a person on axillary supports, including
the angle of the thighs (as an approximation of the stride length) and the acceleration of
the trunk as a measure of irregularities in the gait pattern. Reference [21] brought this
system to a robotic vacuum cleaner so that subjects could walk longer distances. In [22],
an experimental setup in the laboratory (TRL 4) was used to determine the step lengths of
the subjects walking on the axillary supports, and they were given instructions on how to
adjust the step length via a display.

https://www.vicon.com/applications/life-sciences/gait-analysis-neuroscience-and-motor-control/
https://www.vicon.com/applications/life-sciences/gait-analysis-neuroscience-and-motor-control/
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3.2. Related Products on the Market

In neurological therapy robotics, exoskeletons (orthoses) are known on the one hand
and gait training robots with devices for suspending patients who have low trunk stability,
such as after severe accidents or strokes, on the other. Here, the Andago system from
Hocoma (CH) or the robot from Gable Systems (NL) should be mentioned (the latter is not
yet available on the market). These systems do not perform camera-based evaluations to
improve gait. The robot-assisted gait self-training with FACs presented in this article thus
closes the gap between camera-based therapy systems and mobile gait training robots.

Further, in the area of stationary camera-based movement analysis, which is suitable
for a wide range of applications and based on relatively inexpensive sensor technology,
systems in the professional fitness sector such as those from Pixformance (DE) and SOLOS
Mirrors (DE) should be mentioned. In addition to the camera and an evaluation unit,
they have a large display for showing exercises and giving feedback to users. There are
also a number of similar systems for home use such as Mirror (USA), Tonal (USA), QAIO
(USA), or Vaha (DE). Motognosis GmbH (DE) offers motion-capture-based gait analysis for
neurological disorders. There are also applications on smartphones such as Kaia Health
(DE), an app for back training, among other things. These apps are also used in a stationary
manner, i.e., the devices are fixed in position, and users perform the exercises in front of
the devices in a spatially narrowly defined area.

4. Mobile Gait Self-Training under Real Clinical Environment Conditions

All patients of the clinical efficacy study were operated with the same surgical tech-
nique for hip replacement. Normally, with this surgical technique, patients are discharged
no later than Postoperative Day 7. Depending on the course of recovery, patients may be
discharged earlier. However, within the scope of the efficacy study, patients were asked to
remain in the hospital until Postoperative Day 7, at which time a final gait analysis was
performed. Therefore, the robot-assisted gait self-training together with the developed
training application were designed for patients who were already allowed to walk unat-
tended after hip replacement surgery from the second postoperative day with FACs in
three-point gait after permission by the physicians. For each patient, the robot-assisted
self-training was carried out twice a day for 5 to 10 min in addition to the clinic standard
therapy until the patient was discharged between the 5th and 7th postoperative day. The
duration of one session was predefined by the therapist for the patients appropriate for
their state of health individually. However, patients could also end the training prematurely
if they were exhausted. This resulted in a maximum number of 12 training sessions over 6
training days. Despite the seemingly low number of training sessions, the expectation of
the physicians and therapists was that early walking of the patients was not only important
for recovery, but also would lead to a better gait pattern by gait correction instructions,
which would lead to an earlier patient discharge in turn.

Tests of the robot-assisted gait self-training took place at Waldkliniken Eisenberg, an
orthopedic hospital located in Thuringia, Germany. Training sessions always took place
in the same hallway in the hospital. To ensure the patient’s privacy (see requirements in
Section 2.2), the starting and ending dialogues of the training (using the research platform)
took place in a separate area beside the training hallway. To ensure the safety of the patient
(see requirements in Section 2.2), a training hallway was chosen where clinic staff were
always within hearing distance and were instructed to help the patient, if the patient were
to call them.

During the first training session, a therapist instructed the patient in the use of the
robot. According to the requirements in Section 2.1, the robot moved in front of the patient
at a fixed distance while the patient’s gait characteristics were extracted [23] and evaluated
in a rule-based manner with regard to thresholds specified by the therapist [3]. If gait
errors were detected, corrective voice and GUI outputs were given to the patient. Patients
were able to pause at any time during the training for which they could use chairs in
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the corridor. The training robot could detect such pauses and autonomously parked at a
waiting position until the training resumed.

4.1. Training Application

In the following, the phases of a typical ROGER gait self-training session of the
research platform (see Section 4.2) are outlined as described in [2]. To initiate a training, the
patient has to go to the robot, log in by using a personalized RFID transponder, and take a
seat in a nearby chair. To enable an interaction, the robot approaches the sitting patient
and turns so that the patient can see and reach the display [24]. Then, the robot starts to
interact by speech, e.g., “Hello, I am your robotic gait coach! At first, I’d like to remind
you of the procedure and the focus of our training session”. In addition, the patient can
optionally view a video on how to walk in three-point gait with FACs. At the end of the
introduction, the patient is asked to rate her or his physical condition. After that, the robot
asks, “Are you ready? After confirming on my display, I move to the hallway, and we are
going start the training.” While driving to the starting position in the hallway, the training
robot generates a temporarily, nonidentifying, color-based model of the patient’s clothing
to recognize them among other people in the training hallway.

During the training session, the robot leads the patient a certain constant distance and
keeps the patient at a suitable position in the sensoric field of view in order to continuously
obtain an analyzable 3D skeleton [7]. If a deviation from the expected physiological gait
pattern is detected, the training robot gives speech and GUI-based feedback to the patient,
e.g., “Make sure to take equally sized steps with both legs”.

At the end of the hallway, the robot stops, turns around, and waits, while the patient
walks around it and is sensed behind the robot again. After that, the robot continues
guiding the patient while training. Along the hallway, chairs were placed to allow the
patient to rest. If the robot detects that the patients has taken a seat, it starts approaching
the patient in the same way as the robot approaches the sitting patient after initially logging
in. The robot states “I notice you want to pause the training. Do you want to take a break
or rather finish the training?”. If the patient decides to continue training, he/she gets up
after his/her break and continues walking. In the case of finishing training, the patient will
be guided to the starting position to terminate the training session with a closing dialogue,
e.g., “You walked 100 m very well. For the next training, please pay attention to the usage
of crutches and straighten your upper body”. After finishing the regular training time, a
similar dialogue appears, as well.

The physiotherapists have access to the results of each training. According to the
results, they may adjust the training time for the next training session. Depending on the
way the robot is integrated into the hospital infrastructure, physiotherapists might also be
able to follow the gait training session in real time.

4.2. Robot Platforms Used

To assess the robot-assisted gait self-training, two technologically different stages
of training robots were used. To investigate the general technical feasibility, a research
platform was used (see Figure 2, left). Based on this, the transferability of the developed
methods to a prototype platform that is closer to a product and equipped with low-cost
sensors and hardware was also investigated (see Figure 2, right).

The base of the research platform is a customized SCITOS G3, and the base of the
product prototype platform a TORY, both developed by MetraLabs GmbH (www.metralabs.
com/en, accessed on 13 September 2021). Both robots have a similar height of 1.5–1.7 m, a
footprint of 0.45 × 0.55 m, 0.5 m as the diameter, and can reach a speed of up to 0.9 m

s .
As the primary user interface, two touch displays are mounted on the research plat-

form at different heights, allowing standing or sitting patients to comfortably interact with
the robot. To reduce costs, the product prototype platform has only one display, mounted
at a height to interact when standing.

www.metralabs.com/en
www.metralabs.com/en
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Figure 2. Sensors and hardware of the research platform (left) and product prototype platform (right).

The main difference in the sensors between the product prototype and the research
platform is that the latter one uses a robot head with an omnicamera to detect people
and distinguish the patient undergoing training from other people [25]. To assess the
patient’s gait during training, a Kinect2 was mounted on a pan-tilt unit so that it can
move on the research platform. Therefore, despite the Kinect2’s relatively narrow field of
view of 70◦, patients can be kept in view actively [7] even when the robot has to evade
obstacles or persons that are encountered on the training track. Using only low-cost sensors,
a fixed Orbbec Astra Pro camera combined with the Nuitrack SDK for skeleton estimation
was utilized on the product prototype platform. The detection of the patient during the
training was carried out on the product prototype platform via the skeleton captured
with the Nuitrack SDK and the re-identification of the patient by an identification card
that differs in color from the environment and is worn by the patient. A Kinect2, for
which numerous accuracy studies are available in the literature, could not be used on
the product prototype platform because Microsoft stopped its production in 2015 and
a product prototype platform should contain sensors that will be available on the market
in the future only. Therefore, the decision was made to use an Orbbec Astra Pro camera in
combination with our preliminary accuracy studies (see Figure 3).

Accuracy studies in the gait laboratory should show whether the Orbbec Astra Pro
has similar accuracy to the Kinect2, whose accuracy has already been shown to be sufficient
in our preliminary studies (see also [23]) compared to the Vicon reference system (a static
marker-based motion capture system). For this, Kinect2 and Orbbec Astra Pro were
simultaneously attached to the robot, and the 3D skeleton points obtained by them were
compared regarding the accuracy of these from the Orbbec Astra Pro to those of the Kinect2
and the Vicon system. While the standard deviations of the errors for the joint positions of
the lower body estimated with the Kinect2 were between 3 and 5 cm, they were slightly
higher with the Orbbec Astra Pro (see Figure 3). Despite the slightly higher error values for
the Orbbec Astra Pro sensor, it was used for deployment on the product-related platform.
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Figure 3. Histograms of the errors between the Kinect2 (blue) and Orbbec Astra Pro (orange)
compared to a Vicon system for different joints.

4.3. System Architectures for Both Robot Platforms

To manage the complexity of the application for the SAR-assisted gait training, a hi-
erarchically organized software system with multiple abstraction layers was used (see
Figure 4). As described for the research platform in [2,3], here, for both platforms, the
robotic middleware MIRA [26] was utilized, allowing decomposing the application into
modules, which can be developed and tested independently.

Figure 4. Multilayered functional system architecture of both self-training robots consisting of a Hardware Layer to control
the onboard sensors and actuators, a Skill Layer with person perception, gait analysis, navigation, and HRI-specific methods
and skills, a Behavior Layer comprising more complex skills, and an Application Layer implementing the whole training
session. The shaded modules are used for the research platform only.

In the Hardware Layer, the onboard sensors and actuators used in the robot platforms
(see Section 4.2) are organized.

The Skill Layer builds on the sensor information and actuator’s signals of the hard-
ware layer to provide the core functions of the robot-assisted self-training. These core
functions can be categorized into modules for navigation, person perception, gait analysis,
and HRI. Only the main modules are discussed in the following. For more technical details
and experimental evaluation, refer to the given references below.
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Navigation: Both robot systems use similar approaches of mapping and localization,
but different concepts for motion planning. The robot plans its path to the end of the
hallway and adapts its speed to that of the patient so that the patient will be kept at a
certain distance from the robot. The robot stops when the patient is outside its sensor
detection range and continues when the patient is detected again.

Extending this, the research platform processes 3D information based on [27,28] for
localization and obstacle detection. When the robot moves in a hallway of the hospital,
other people (staff, patients, visitors, other bystanders) may also be present and have to
be taken into account to realize a polite navigation. Therefore, these persons have to be
considered in the robots motion planning methods based on a multi-objective optimization
with an evolutionary algorithm [29]. The resulting motion trajectory is intended to keep
the patient at a predefined distance from the robot and in the center of the Kinect2’ field of
view, such that the patient is fully visible to the Kinect2 [7], but also to navigate politely by
avoiding other people as much as possible.

Furthermore, the research platform uses pose finding skills to determine poses to
approach and observe the patients when they take a break in a chair. These skills depend
mainly on the accuracy of the input of the localization and obstacle detection module
providing the current pose and the location of obstacles in the robot’s vicinity. By using
a multi-objective optimization approach based on particle swarm optimization, the best
poses to approach and observe the patient [24,30] can be calculated.

Person perception: Both platforms use different approaches to detect and track people,
both capable of estimating the positions and velocities of persons in the robot’s vicinity.
Re-identifying the patient among other persons is crucial for the training application since
in the hallway, other persons may cross the robot’s path. As described in Section 4.2,
the product prototype platform uses the Nuitrack SDK for person tracking and skeleton
estimation and for re-identification a colored identification card.

The research platform uses a complete multimodal person tracking framework [31],
which is also capable of re-identifying the patient among other detected persons. As
detection modules, OpenPose [32], YOLO (https://pjreddie.com/darknet/yolo/, accessed
on 13 September 2021), and a laser-based detector are able to detect persons’ legs, even
when mobility aids [33], i.e., crutches, walkers, or wheelchairs, are used. Tracking the
position and velocity of the detected persons is performed by utilizing a multivariate
Kalman filter. The re-identification was based on a face-based approach [34] and the
patient’s overall appearance by using a metric-learning approach with color and texture
features [35].

Gait analysis: Both robots rely on the same methods for gait analysis, but use different
sensors (see Section 4.2). Using the Kinect2 or the Orbbec Astra Pro in conjunction with the
Microsoft’s SDK or the Nuitrack SDK, a fully functioning 3D skeleton tracker that robustly
estimates a 25-joint skeleton (Kinect2) or 19-joint skeleton (Orbbec) in real time (both with
30 fps) was utilized.

To describe the patient’s gait, a workable approach is to analyze the time course of the
3D skeleton points. Using the extracted 3D information, gait features can be determined,
e.g., step length, stance duration, step width, trunk lean, and flexion/extension of knee
and hip. Furthermore, all patients walked with FACs in three-point gait, whereas the
correct execution, as an important factor for the healing progress, was also analyzed using
the point cloud of the depth image of the 3D camera and relating the patient’s feet to the
crutch position.

Besides the extraction of gait features, these also have to be evaluated regarding a
pathological gait and deviations from the expected gait. Therefore, in a previous study,
the patients’ walks during training sessions were filmed by the robot and labeled by four
physiotherapists regarding various deviations from physiological gait. The predefined
error labels concerned step length, stance duration, step width, tilt of the upper body,
flexion/extension of hip and knee joints, as well as the correct usage of the FACs. To assess
related gait features, absolute values and also symmetry values, obtained by the ratio of

https://pjreddie.com/darknet/yolo/
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the same feature of both legs, were used, e.g. to assess the step length, the ratio of the
step length of both legs must be considered. However, the assessment of, e.g., the step
width was based on an absolute value. For further details on the extracted gait features
and assessment algorithms, see also [2].

HRI: Both robots have skills for displaying graphical user interfaces on the robot’s
touch display(s) (as depicted in Figure 2) and a text-to-speech system (TTS, Nuance,
https://www.nuance.com, accessed on 13 September 2021). On the research platform,
this TTS generates spoken language in real time, allowing customizing the gait correction
instructions to the patient’s needs, while the product prototype platform used the TTS’
presynthesized language.

Behaviors in the Behavior Layer realize directly observable functions of the robots by
controlling the interplay of the required modules in the Skill Layer. They can be regarded
as small state machines, parameterizing and coordinating the activation and deactivation
of skills. Examples of behaviors are “Guide User” (using the skills, e.g., “Evolutionary
Motion Planning”, “Keep in View”) and “Gait Correction” (using the skills, e.g., “Gait
Feature Extraction” and “Gait Assessment”) to analyze the patients’ gait while guiding
them through the hospital hallways.

The Application Layer is the top layer of the hierarchical system architecture and con-
tains the implementation of the whole training session (see Section 4.1) as a state machine.

5. State of Development from a Methodological–Technical Point of View
5.1. Technical Benchmarking

With the two technologically different stages of the training robots, two series of
user tests were carried out at the Waldkliniken Eisenberg in the period 6–8/2019 and
9/2019 (see Figure 1). In the first series of tests, two of the questions set out in Section 1
were investigated with the product prototype platform: whether the level of development
achieved already enables autonomous use in everyday clinical practice (Question 1) and
whether the gait pattern of patients who used additional robot-assisted gait training
over several days had changed compared to patients without this additional training
(Question 2). The aim of the second test series was a technical benchmarking of the
methods used on the research platform, especially those that were not transferred to the
prototype platform due to the stage of their development or deliberately reduced sensor
technology. During both test series, a technology evaluation was carried out from the
perspective of patients and therapists (see Section 6) to answer Question 3: how the use of
a training robot affects the patients’ training motivation.

5.1.1. Product Prototype Platform

In the period from 6–8/2019, the first and small-scale clinical efficacy study was
conducted with the product prototype platform without technical on-site support. Two
patient groups of a total 37 patients were formed, and their gait patterns were compared.
While one group with 15 patients (20 patients planned and 5 drop-outs for standardized
gait analysis in the gait laboratory on the 7th postoperative day) received the usual standard
therapy until discharge from the hospital, the other group with 15 patients (17 patients
planned and 2 drop-outs for standardized gait analysis in the gait laboratory on 7th
postoperative day) completed an additional robot-assisted self-training for 5–10 min twice
a day. The participating patients could log in to the robot at any time using a personalized
RFID transponder. The first training session took place together with a therapist who
instructed the patients in the use of the robot.

The data of the participating patients were entered by the therapists with their re-
spective specific training parameters (side of surgery, duration of training) via a therapist
interface. The robot itself was located on a charging station in a separate room of the clinic
outside of the training times during the test period. In the morning, the room was opened
by the clinic staff, and the robot was started (in the evening, the robot returned to the room
to its charging station, was put into stand-by mode by the clinic staff, and the room locked).

https://www.nuance.com
https://www.nuance.com
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After leaving the charging station, the robot moved to its starting position in the adjacent
training corridor autonomously.

As a result, the 17 patients (with drop-outs for gait analysis in the gait laboratory)
completed 142 training units (8.35 training units/patient), which took place on 40 training
days with a total training time of 16.1 h (7 min/training unit) and a total training distance
of 34.8 km (240 m/training unit); thereby, no external intervention in the training process
was necessary.

Within the framework of the small-scale clinical efficacy study, we wanted to clarify
whether and which gait characteristics changed in the patients who additionally com-
pleted training with the robot. For this purpose, Waldkliniken Eisenberg carried out a
standardized gait analysis in their own gait laboratory on the preoperative day and on the
seventh postoperative day in conjunction with the recording of clinical scores, which are a
subjective measure of perceived pain and quality of life.

The results of the efficacy study are summarized from a medical point of view in [4].
Based on literature studies, it was shown in [4] that patients after hip prosthesis surgery
walk more slowly and have a lower hip range of motion than healthy individuals. In
addition, ref. [4] discussed the importance of corrective gait training after hip arthroplasty
surgery as an important aspect of fall prevention, as it corrects pain avoidance strategies
acquired before surgery that may lead to falls.

Therefore, the results obtained in our study can be considered promising from a
medical point of view. Thus, the group that received additional robotic training showed
several statistically significant better postoperative gait parameters, namely knee flexion
angle (important for a more physiological gait) and higher walking speed (more than
25% faster than the group without additional training), which also shortened the stance
duration, including that of the operated leg.

The similar results in the clinical scores of both groups were also positive, as patients
in the group with additional training did not have higher subjectively perceived pain
despite the increased movement. The details of the results achieved from a medical point
of view together with details to statistically significant improvement of gait parameters
were shown in [4].

An evaluation of the accuracy of the recorded gait parameters and gait corrections
during training was not performed due to the lack of ground truth data. However, the
proof of the sufficient accuracy of the extracted gait parameters was already shown in a
prestudy [2,23].

5.1.2. Research Platform

During the second test series in 9/2019, investigations were carried out with the
research platform on 16 training days with 22 patients. They used the robot on up to three
consecutive training days for a total of 91 training units (4.14 training units/patient), with a
total training time of 11.6 h (7.6 min/training unit) and a total training distance of 17.8 km
(195 m/training unit).

With the technical benchmarking carried out in this context, it was possible to evaluate
methods in the area of view-based recognition and autonomously finding and approaching
the waiting and interaction positions, among others. For this purpose, technical support
was provided on-site in order to be able to intervene in the training process in a corrective
manner. In addition, the patients were asked to take several breaks in a chair in the training
corridor during the training to evaluate a few of the person perception and navigation
skills (sitting estimation, find approach pose, find waiting position) under field conditions.

By means of technical benchmarking, it could be shown that the patient was held at a
specified distance and angle to the robot during 99.6% of the training time, even without
readjustment by means of a pan-tilt unit. In 86% of the cases, it was possible to approach
“sitting” patients to establish an interaction distance in such a way that an interaction with
the robot display was easily possible (distance approximately 0.66 m and a 10° deviation
orientation). The autonomously determined waiting positions of the robot during the
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patients’ breaks were chosen such that the seated patient remained in the focus of the robot
sensors to detect when the patient got up again. In 5% of the cases, the selected robot
position would have made access to rooms difficult or uninvolved persons would have
had to avoid the robot in the corridor. These and other results were presented in detail
in [3].

As in the first test series, no evaluation of the recorded gait parameters and the gait
correction cues given to the patients was performed due to missing ground truth data.
In future work, therapists should evaluate video excerpts from the user tests and the
corresponding gait correction cues with regard to their quality, so that corrective feedback
can be evaluated and improved.

6. State of Development from the Users’ Point of View

Both series of user tests, with the prototype product and with the research platform,
were externally examined from a social science perspective by the Institute for Social
Research (SIBIS GmbH, http://www.sibis-institut.de/en/, accessed on 13 September 2021).
In both test series, patients rated the usability of the system on the System Usability Scale
(SUS) [36], the most widely used standardized questionnaire for evaluating perceived
ease-of-use. The aim was to determine whether both platforms could be used by the
patients. For this purpose, the aspects of easy operation, the comprehensibility of the
speech output, and the readability of the GUI displays were considered, as well as whether
the robot adapted well to the walking speed of the patient and whether the robot behaved
as expected. Using the SUS, the product-related platform was rated 81.2 (very good) and
the research platform 90.7 (excellent). The better rating of the research platform may be due
to the fact that the tests with it were conducted under supervision, the slightly different
navigation behavior, or perhaps due to its different appearance in combination with the
robot head and the robot eyes, which always keep the patient in view, which was positively
evaluated. Further, it was shown that the patients trusted that both robots provided the
correct corrective cues.

Further, the patients of both groups of the clinical efficacy study (n = 30) that received
standardized gait analysis in the gait laboratory on the seventh postoperative day were also
asked to assess their own exercise motivation outside of the training and therapy times. All
patients who trained with the robot in addition to the standard therapy (n = 15) rated their
exercise motivation as good or very good, compared to only 11 patients in the comparison
group without robotic training (n = 15). All patients (n = 20) who trained with the research
platform and answered the questionnaire agreed (fully) that they would exercise more
often if they could use the robot for this purpose, thus confirming the positive effect of
the robot on the patients’ motivation. Furthermore, in a survey of 22 patients who had
also used the robot in pretests that went beyond these tests, 21 agreed that they would
use the robot-assisted training independently without the presence of a therapist after
being instructed.

Robot training was carried out during therapy-free intervals in the clinic routine, and
13 of 15 patients agreed (fully) that they felt very safe during robot training. Two patients
answered “partly/partly”. This information confirmed the good implementation of the
requirements from Section 2.2 for independent and safe training with robots. A quotation
from the user survey showed that the use of the robots was very intuitive: “Anyone who
can withdraw money from an ATM can also operate the ‘ROGER’ device”.

7. State of Development from an Economic Perspective

The technical possibilities of SAR-assisted gait self-training show that therapists can
spend more time on “hands-on therapy”, e.g., muscle and joint techniques, cryotherapy,
scar massages, etc., if the robot takes care of the patient’s self-training activities. This could
in turn lead to a faster recovery. This hypothesis was supported by the initial results of the
small-scale clinical efficacy study, which showed a significant improvement in the hip and
knee joint flexibility of the patients [4].

http://www.sibis-institut.de/en/
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For the prototype product platform, components were used that were as inexpensive
as possible, but still suitable to be used in a medical device and therefore durable and
reliable. This helps to ensure that a product can be offered in the future that is economically
viable (TRL 8). With regard to integration into clinical processes, interfaces with clinic
systems would be useful in order to achieve process automation.

Within the framework of the ROGER project, the first findings on medical efficacy
accompanied by financial benefits for the stakeholders, the requirements for approval as
a medical device, and the integration into clinical processes were collected and further
explored through stakeholder interviews.

These findings on the economic perspective are all important aspects on the way from
the demonstrator (TRL 6) to the finished product (TRL 8) and require further work.

8. Conclusions on the Questions of the Article and Outlook

Autonomous use in everyday clinical practice (Question 1): The product prototype
platform ran for several weeks without technical or therapeutic support in everyday
training in the hospital (see Section 5.1.1), which demonstrated sufficient robustness and
autonomy of the robot used, the integrated methods especially for navigation, and of the
overall application. In future work, it will be necessary to examine which of the robot
skills initially implemented on the research platform can be implemented for everyday
robot-assisted training without on-site support.

Improved gait pattern (Question 2): The clinical study showed no differences between
the comparison groups with regard to the clinical scores recorded. However, the group
with additional robotics training showed statistically significantly better gait parameters
postoperatively. The clinical study so far has only covered part of the functionalities that
a gait training robot has to fulfil. Thus, randomized clinical studies are still necessary to
demonstrate the effectiveness of robot-assisted gait self-training on a broad scale. Further
developments will also concern improved gait pattern recognition algorithms.

Training motivation (Question 3): By interviewing patients and therapists, combined
with the demonstrated use of the robots over several weeks, it could be shown that the
acceptance criteria of safety, usability, confidence, and independence were met. For further
development with regard to the design of the platform, it is important to realize that the
research platform with its distinct embodiment features was obviously perceived very
positively and not at all irritating by the patients.
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