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Abstract: In this paper, we demonstrate the potential of a knowledge-driven framework to improve
the efficiency and effectiveness of care through remote and intelligent assessment. More specifically,
we present a rule-based approach to detect health related problems from wearable lifestyle sensor
data that add clinical value to take informed decisions on follow-up and intervention. We use
OWL 2 ontologies as the underlying knowledge representation formalism for modelling contextual
information and high-level concepts and relations among them. The conceptual model of our
framework is defined on top of existing modelling standards, such as SOSA and WADM, promoting
the creation of interoperable knowledge graphs. On top of the symbolic knowledge graphs, we
define a rule-based framework for infusing expert knowledge in the form of SHACL constraints
and rules to recognise patterns, anomalies and situations of interest based on the predefined and
stored rules and conditions. A dashboard visualizes both sensor data and detected events to facilitate
clinical supervision and decision making. Preliminary results on the performance and scalability are
presented, while a focus group of clinicians involved in an exploratory research study revealed their
preferences and perspectives to shape future clinical research using the framework.

Keywords: wearables; sensors; ontologies; symbolic reasoning; knowledge graphs; ehealth; multiple
sclerosis

1. Introduction

Advances in sensing technology, namely the Internet of Things (IoT), combined with
intelligent analysis and Artificial Intelligence (AI), promise to revolutionize care and
mitigate the implications of chronic disease, often coupled with inaccessible or limited
therapy options. A primary example and field of application is the ageing population
support. According to the World Health Organization (WHO), people aged above 65 years
old amount to 702.9 million in 2019—projected to reach 1548.9 million in 2050, where they
would outnumber the children under the age of 14 [1]. This massive ageing population
creates an impact on the social welfare and healthcare, causing a shift of the lifestyle and
healthcare needs towards ailments associated with elders. The most prominent of those is
dementia, which has great social and also financial impact [2]. People with dementia start
to lose their ability to live independently as their condition progresses, which forces them
to withdraw from their active role in society and the workforce, and eventually require
daily assistance from informal carers like family members.
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Although less prevalent in population, but similar to dementia, in terms of neurode-
generation and debilitation, is Multiple Sclerosis (MS). MS is an autoimmune disease
affecting the brain and the spinal cord (central nervous system) disrupting communication
with the rest of the body. As a result, the patient may suffer from symptoms such as vision
impairment, muscle weakness, motor coordination and balance issues, cognitive deficit and
mental health issues including depression. The effect on personal, social and professional
life is detrimental. Its onset is not limited by age, but the majority lies between 15 and
45 years of age. Of two million cases worldwide, 65–70% are women [3]. While its course
follows a relapse–remission cycle, 60–70% of the cases present secondary-progressive MS,
a steady progression of symptoms regardless of remission periods.

Chronic disease, and particularly MS, require regular monitoring, effective support
and personalized guidance to ensure the best possible outcomes [4], allowing specialised
doctor’s to develop tailored treatment plans. Thus, the need for affordable, unobtrusive
and easy-to-use healthcare solutions to support medical assessment and enable proactive
intervention is growing [5]. In this quest, holistic and objective information to clinicians
about patient health status can drive the development of personalised interventions to
improve the patient’s health, psycho-social balance and quality of life, alleviating ailments
and slowing down the progression of the disease. Solutions for effectively monitoring
living conditions and habits, suggesting activities towards well-being and preventative
actions, play a fundamental role in supporting individuals to maintain and continue their
daily activities and live independently. Such solutions can also proactively help people who
have no health problems to improve their lifestyle and adopt healthier living routines [6].

Wearable sensors are emerging as an effective tool for lifestyle monitoring and, thus,
prevention, early detection and management of disease [7]. Coupled with the growing
demand, they usher a paradigm shift toward digital self-management of chronic disease.
Technological advancements grow the range of wearable sensors from smartwatches to tex-
tiles and smart glasses. Advancements in Artificial Intelligence (AI) and data analytics [8,9]
allow detection and prediction of patterns and risk indicators over wearable sensor data and
can enable more timely and efficient decision making. Still, interoperability and universal
knowledge representation and management are needed to address the vast heterogeneity
of data sources, devices and vendors to allow such knowledge extraction [10].

This paper describes a lightweight framework for detecting lifestyle and health-related
problems, able to be easily configured and adapted to different environments, contexts,
behaviours and monitoring objectives, supporting the integration of a variety of general
purpose lifestyle wearable sensors. To achieve interoperability at different levels, we use
OWL 2 ontologies [11] as the underlying knowledge representation formalism, generat-
ing interoperable Knowledge Graphs (KGs) that are aligned with existing vocabularies
and conceptual models, such as the Sensor, Observation, Sample, and Actuator (SOSA)
ontology [12], the Web Annotation Data Model (WADM) [13] and the Descriptions and
Situations pattern [14]. The symbolic knowledge is further enriched with rules to de-
rive logical consequences and semantically enrich the KGs. This involves the detection
of behavioural patterns, habits and critical situations, encoding background knowledge
and profile information using SHACL rules [15] to describe the patterns, resulting in a
lightweight, standard-based reasoning and interpretation layer. Finally, intelligent and
adaptive visualisations on a Clinician Dashboard further support the objective monitoring
and evolution of the lifestyle behaviour.

The framework is applied in the context of the eHealth4MS project, presenting a use
case for improving the care of Multiple Sclerosis (MS). The eHealth4MS project aims to
develop an intelligent monitoring and decision support platform, integrating wearable
sensors, data analytics and visualization dashboards. The platform will enable objective
and reliable remote monitoring in non-clinical environments (e.g., patient homes), leading
to more efficient, cost-effective and more accessible care, but also allowing self-management
of their disease, increasing their quality of life. As such, we recruited patients with MS
and clinician experts in the field to explore their views on the usefulness and relevance
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of the detected problems visualized on the Clinician Dashboard. Finally we evaluated
performance in terms of scalability.

The contribution of our work can be summarised in the following:

• We integrate off-the-shelf wearable lifestyle sensors in a modular and extensible
manner to extract data streams for steps (physical activity), sleep (onset, duration and
stages) and heart rate.

• We reuse and combine different ontologies in a structural and modular manner to
define the conceptual model of the underlying KGs at different levels. Capitalising
on existing modelling standards (OWL 2 ontologies) and recommendations (SOSA,
WADM, patterns), our framework supports the aggregated representation of obser-
vations, higher level knowledge and user-centred information to facilitate intelligent
interlinking that can be easily shared and used inside rules.

• We use the latest W3C recommendation (SHACL) for encoding domain knowledge
and monitoring patterns, defining the logic to monitor situations of interests.

• We present visualization on a web application dashboard for clinicians to review not
only the original wearable data streams but also the detected health-related events in
time, to enable decision making and tailored interventions for MS.

• We demonstrate use cases with real-world data from MS patients and perform an
exploratory research study on a focus group of clinical experts to investigate their
preferences and advice on how the framework fulfils their needs.

• We evaluate the performance in terms of scalability using real-world data.

The rest of the paper is structured as follows: Section 2 presents background and
related work on eHealth solutions for MS and Semantic Web technologies. Section 3
gives an overview of the proposed framework, presenting the conceptual architecture and
highlighting key concepts. Section 4 describes our approach for symbolic modelling and
reasoning in order to detect situations of interest. Section 5 presents the dashboards that
have been developed to assist clinical experts in decision making, while Section 6 presents
evaluation results on the use of our framework on real-world data from MS patients.
Finally, Section 7 concludes our work.

2. Background and Related Work
2.1. eHealth Solutions for MS

Several chronic diseases, such as dementia and cardiovascular disease, are lacking in
pharmaceutical treatment or require lifestyle change. With spiralling costs and often lack
of access to care, sensor and IoT technology is promising to provide timely, objective and
remote monitoring, self-assessment and clinical decision support for intervention more
efficiently and affordably. Several ehealth solutions exist to monitor and intervene in a
single aspect of health, such as physical activity or exercise, sleep quality, serious games
etc. [16]. Meanwhile, commercial solutions are also emerging in the market with lifestyle
sensors available in retail and telehealth services in various mobile and web app stores.
Despite that, analysis and extraction of features related to a pertaining disease that are
clinically relevant are also lacking [17].

Particularly to MS, services are limited to telehealth, facilitating doctor and patient
communication with messages [18,19] and video calls [20]. Another application is support-
ing rehabilitation through technology that takes place in clinics [21]. Fortunately, patients
with MS, especially those younger in age, are willing and able to accept and use technology
for self-management and support [18]. In parallel the pharmaceutical industry adopts and
utilises digital biomarkers, i.e., metrics provided by technology as opposed to traditional
medical assessments and tests, in clinical trials to expedite execution and drug delivery.
Specifically, the RADAR-CNS (The RADAR-CNS Project: https://www.radar-cns.org/,
accessed on 13 September 2021) utilizes an integrated platform to collect remote monitor-
ing technologies such as sensors and apps with various applications in Central Nervous
System (CNS) ailments, including MS. Yet, there is still potential in extracting features and
interpreting data for clinician decision making.

https://www.radar-cns.org/
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Our approach aims for holistic monitoring of multiple aspects of life coupled with
event detection through data interpretation to support clinician decision making. The
platform integrates comfortable off-the-shelf sensors that provide physical activity, sleep
monitoring and heart rate, while analysis extracts health-related problems related to the
domain of movement, sleep quality and stress. Through visualizing the sensor data and
the detected events, clinicians can take quick decisions pertaining to interventions and
follow-up.

2.2. Semantic Web Technologies

Over the past few years, considerable attention has been given to the use of Seman-
tic Web technologies in various application domains as they have been proven to be an
efficient means of tackling challenges associated with the description, integration and
interoperability of information [22]. The rationale is to convert unstructured and semi-
structured data and knowledge into interlinked graphs of resources (Knowledge Graphs)
with explicit semantics based on W3C standards, like RDF(S) and OWL 2 [11]. The abil-
ity to formally capture the intended semantics as symbolic models allows both human
experts and machines to interpret unambiguously the information and to further enrich
the knowledge graphs using symbolic inference mechanisms, such as native Description
Logics inference [23] and rule-based reasoning [24–26]. In the rest of this section, we give
an overview of key Semantic Web technologies and standards and we describe the related
work on the domain of behavioural monitoring using Semantic Web technologies.

2.2.1. Knowledge Representation and Ontologies

An ontology is defined as a set of statements that describe a domain of interest. The main
purpose of these descriptions is to prevent misunderstandings, ensuring that the developed
solutions and services follow a uniform manner of exchanging information with a certain
behaviour (https://www.w3.org/TR/owl2-overview/, accessed on 15 September 2021).

Ontologies have a strong theoretical background, while their expressivity depends
on the knowledge representation language that is used to define the models. The Web
Ontology language (OWL/OWL 2) [11] has been widely used by the community for
defining and sharing ontologies. The theoretical background and semantics of OWL
is strongly influenced by Description Logics (DL [23]). Key modelling notions include:
(a) axioms, basic facts that can be modelled in OWL, (b) entities, which represent real-world
entities, and (c) expressions, which combine entities in order to form complex statements
and descriptions. In practice, an OWL model consists of a set of DL axioms (concept
inclusions (K v T), role inclusions (L v M), concept assertions (K(a)) and role assertions
(L(a, b)), where K, T are concepts, L, M are roles and a, b are instances.

Reasoning is used in order to make logical derivations, capitalising on the formal
semantics of the ontology language. Examples of reasoning services include [23]: class
membership, class equivalence, consistency checking, instance classification and realisation.
Among other solutions, such as native DL reasoners, symbolic rule-based frameworks [24]
have been used in many domains to derive additional relations and enrich the underlying
models. Such systems are able to derive relations that are not supported by the standard
semantics of the ontology language, like temporal reasoning and structured objects [27,28].
The main concept is to use an existing rule formalism, such as SWRL [29], SPIN [30] and
SHACL Rules [15,31], to define custom logic on top of the knowledge graphs describing
the conditions that drive the derivation of complex events and situations, expressing richer
semantic relations coupling ontological and rule knowledge.

2.2.2. Modelling and Interpreting Activities and Behaviours

Several ontology-based modelling and reasoning frameworks have been developed to
cope with challenges relevant to domain modelling, context interpretation and knowledge
sharing, with a great number of work focused on home-based activity settings. When it
comes to knowledge-driven frameworks, there are mainly two directions: frameworks that

https://www.w3.org/TR/owl2-overview/
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make use of native ontology reasoning, and hybrid approaches that extend native ontology
reasoning with rules.

Under the first paradigm, knowledge representation formalisms are used for mod-
elling activities explicitly by domain experts. Different profiles of OWL, such as OWL
2 DL, have been widely used within the community for defining domain knowledge,
using the underlying semantics (e.g., DL axioms) to capture the modelling requirement
of the application domain. Such an approach is presented in [32] where an integrated
ontology-based approach is followed for activity modelling (objects and activities), ex-
ploiting logical semantic reasoning for activity recognition. The main goal is to support
machine understandability through high-level interoperability and intelligent process-
ing. A similar approach is followed in [33–35], where complex activities are recognised
based on subsumption reasoning. In [35], well-defined symbolic knowledge provides the
logic to derive the most probable activity that a user performs among a set of candidates
that are identified by statistical methods. In [34], a knowledge-driven approach for real-
time, continuous activity recognition is proposed, using ontologies for explicit context
and activity modelling, while semantic reasoning performs activity classification. Finally,
Riboni, D. et.al [33] presents a system architecture that integrates a novel OWL 2 activity
ontology and reasoning modules for sensor data aggregation and activity inferencing.
KnowSense [36] has been proposed to support monitoring of activities of people with de-
mentia in controlled environments. Everyday activities are modelled using OWL 2, while a
reasoning mechanism identifies activities and problems in different stages of the disease,
assisting the clinical evaluation. Okeyo, G. et.al [37] tackles the challenges of real-time
continuous activity recognition as sensor data segmentation. The authors present a novel
approach to define a dynamic segmentation model, based on the notion of varied time win-
dows, following a knowledge-driven activity recognition algorithm based on ontologies.
iKnow [38] tackles the same problem by introducing the notion of telicity in recognising
interleaved activities, implementing an ontology-based meta-interpretation layer.

Under the second paradigm, ontologies and rules are combined [24,28] to overcome
the expressive limitations of OWL in modelling, aggregating, linking and recognising
the monitoring context. These limitations are mainly relevant to features that have been
restricted in order to retain the decidability of the language. For example, temporal reason-
ing and structured objects [27,28] are not supported by the standard ontology semantics.
SWRL [29] has been used in a substantial number of relevant solutions, aiming at increasing
the interoperability of rule-based systems from the Semantic Web perspective. OWL is
combined with RuleML (http://wiki.ruleml.org/index.php/RuleML_Home, accessed on
13 September 2021), providing reasoning capabilities beyond the ones supported by the
DLs. For example, Okeyo, G. et al. [39] uses SWRL to model activities and their temporal
relations, based on [40]. A framework for behavioural analysis with SWRL is presented
in [41,42], generating reminders and applying strategies to promote a healthier lifestyle.
HABITAT [43] aims to improve the quality of life, supporting elderly through their main
daily life activities. It uses the SPARQL Event Processing Architecture (SEPA) to perform
SPARQL updates and queries on the underlying RDF graph, enabling to monitor the
daily behaviour of people that face problems in home settings due to ageing or illnesses.
HEARTDROID [44] uses a rule inference engine for Android mobile devices. It allows
the definition of semantic annotations of its components in order to increase intelligence
and transparency of the model and the reasoning services. In [45], multimodal historical
and real-time sensor data are acquired, feeding a rule-based activity recognition system.
The system corrects erroneous sensor data through simple heuristics and cross-validation
against other modalities, achieving indoor localisation and activity recognition through the
SPHERE ontology.

As described in [46], the modelling approaches fall into two categories: knowledge-
driven approaches, as the ones presented above, leveraging logical and knowledge rep-
resentation formalisms and reasoning, and data-driven approaches that exploit machine
learning. Both strands have their strengths and weaknesses. In the knowledge-based

http://wiki.ruleml.org/index.php/RuleML_Home
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approaches, domain and common sense knowledge is directly incorporated into activ-
ity models. This works particularly well in cases where there are no data for training.
In addition, the activity models can be reused across domains and users or even to be
manually refined, according to specific behavioural aspects. However, the logic-based
approaches are not robust against noise and uncertainty and require carefully crafted rules.
On the other hand, data-driven approaches [47–50] work better when large collections of
training sets are available, being generally robust to noisy, uncertain and incomplete data.
However, the models are not reusable, compared to knowledge-driven solutions, having
limitations on the amount of common sense knowledge that can be incorporated. Finally,
one more category of behavioural modelling could be considered the hybrid approaches
that combine the knowledge- and data-driven approaches, such as [51–54], focusing on
increasing the performance of ontology-based activity recognition, and vice versa, through
data-driven pre-processing (e.g., the learning of activity models).

Our framework follows the knowledge-driven paradigm where activity and be-
havioural models are predefined. Our solution has been primarily used in the domain of
Ambient Assertive Living, providing integrated information to clinicians about patient
behaviour and health status, while supporting individuals to improve their lifestyle and
adopt healthier living routines. In this context, the logic that underpins the predefined
behavioural patterns and the detection of abnormal situations is given by the clinical
experts, allowing them to configure it on demand, guiding and controlling monitoring
to take into account certain behavioural aspects. As such, clinical experts can easily and
directly adjust the logic that underpins the detection of certain situations, according to
monitoring goals and user background knowledge. In addition, the patterns can be reused
among individuals or even further refined, without needing to rebuild models or collect
additional data.

This work capitalises on and considerably extends previous work of ours in the
domain [55]. More specifically, we present here in detail the specifics and logic of the
underlying conceptual model that is used to represent observations, introducing the no-
tion of situations and enriching the interoperability of our KGs using existing modelling
standards. A new rule-based extension is presented, using SHACL as the underlying rule
language for detecting problematic situations. Finally, we present user- and system-centred
evaluation results.

3. Overview of the Framework

The aim of the framework is to support the monitoring of problematic areas of daily
living, utilising wearable sensors and mobile devices for feedback and intelligent analysis in
an Ambient Assisted Living context. To this end, it integrates state-of-the-art technologies
on knowledge representation, data integration, access and visualisation of information,
providing to clinicians, patients and caregivers with the information and feedback necessary
for the detection and management of lifestyle and health-related problems. Through the
extensive use of Semantic Web technologies and frameworks, we provide an intelligent,
easy-to-adapt framework for personal and clinical use, using structured knowledge graphs
to represent both behavioural (observations) and personalised health knowledge in the
form of aggregation rules. Coupled with adaptive user interfaces, we support, on one
hand, individuals to improve their lifestyle and adopt healthier living routines, and, on the
other hand, health experts to monitor specific behavioural aspects and design personalised
interventions and care plans.

The implementation of the framework is based on well-established Semantic Web
technologies, standards and ontologies. To this end, it can be easily reused and adapted to
different application domains and monitoring requirements. As we explain in Section 4.2,
the framework promotes portability and it can be easily adapted to different monitoring
traits, according to clinical goals and user preferences. The main building blocks of our
approach are depicted in Figure 1. More specifically:
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Figure 1. The conceptual architecture of the proposed framework.

• Wearable Sensors: The input to our framework is data collected by users using
various wearable sensors. The framework does not impose any restriction on the
modalities that can be integrated, provided that the underlying ontologies contain
the necessary constructs to support their representation. The framework currently
supports the representation of information about sleep attributes, steps, heart rate
and other activity-related measurements. The sensor used currently is Fitbit Charge 3
(https://fitbit.com. accessed on 13 September 2021), which provides steps as an
indication of physical activity level, sleep staging and heart rate, collected through the
Fitbit smartphone app and extracted from Fitbit’s cloud API (after authorised by the
user using OAuth).

• RDF Mapping and Knowledge Graphs: The incoming data are then transformed into
RDF observations, generating the structured RDF Knowledge Graphs. The conceptual
model follows the SOSA ontology, which has been extended to meet the observation
types supported by the implementation. A general-purpose semantic graph database
is used (https://graphdb.ontotext.com/, accessed on 13 September 2021) to persist
the Knowledge Graphs, interfaced with a DL reasoner [56] to handle the semantics of
the schema.

• Symbolic Reasoning: We follow a knowledge-driven approach, using a set of precon-
figured rules to detect problematic situations and activities of interest. The detection
logic, which follows clinical guidelines and user preferences, is encoded in a set of
SHACL SPARQL Rules (see Section 4.2) that run on top of the Knowledge Graph and
generate problems.

• Visualisations: A web application has been designed and developed to serve the
needs of clinical experts, based on their requirements. The dashboard visualisations
design takes into consideration performance, acceptance, clinical and therapeutic
value characteristics, based on design choices of previous works in other eHealth
fields [57].

A modular, Service-Oriented Architecture was used to integrate multiple kinds of
wearable smartwatches, wristbands and any type of smart home sensor in an extensible
manner. Most devices available in the market provide their data through their own well-
defined Cloud APIs or Software Development Kits (SDKs). For each device integrated, a
“connector” module is developed that leverages according APIs or SDKs to retrieve device
data and in turn expose it through its own secure API accessible to the platform, which
stores it in a uniform, semantic format. Platform data become available for further analysis

https://fitbit.com
https://graphdb.ontotext.com/
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and interpretation, as well as for display in user applications through semantic search and
consumption protocols (SPARQL endpoints).

For the purposes of MS monitoring, we chose to deploy the FitBit Charge 3 smartwatch
device due its long battery life and ability to extract sufficient data for the study. The
discrimination of awake and sleep stages in this study is entirely based on the Fitbit device
and algorithms, which in a recent systematic review are deemed highly accurate, especially
in differentiating wake from sleep [58]. The goal of the framework is to extract further
health-related problems from the sensor’s data, that are clinically relevant to MS. The
connector module developed retrieves intraday data, up to a per minute sampling rate,
from FitBit Cloud through secure user authorisation (OAuth protocol) after the end-user
(patient) authorises it. Namely, the available data are listed on Table 1. Notably, the
wearable does not provide raw accelerometer data but rather pre-processed/aggregated
data that can later be used to extract events and patterns. In the following section, we
elaborate on the specifics of the framework.

Table 1. Data streams available from the wearable device.

Data Stream Data Type and Metric Resolution Description

Steps Number (Amount of
steps)

Per Minute An estimation of physical ac-
tivity levels in “steps” per
minute

Sleep Duration Number (Time in mil-
liseconds)

Per Sleep Session Total sleep duration for every
continuous sleep session

Minutes to Fall
Asleep

Number (Time in min-
utes)

Per Sleep Session Total minutes to fall asleep
(awake in bed until first sleep
occurrence) in a sleep session

Minutes in Deep/-
Light/Rem/Awake

Number (Time in min-
utes)

Per Sleep Session Total minutes in sleep stage
(Deep/Light/Rem/Awake)
during a sleep session

Number of Awaken-
ings

Number (Amount of
awakenings)

Per Sleep Session Number of awakenings
(sleep interruptions) during
a sleep session

Heart Rate Number Per Minute Heart rate measurement per
minute

Minutes in Fat Burn/-
Cardio/Peak

Number (Time in min-
utes)

Per Exercise Session Total minutes in fat burn/car-
dio/peak heart rate zone dur-
ing an exercise session

4. Semantic Web Approach to Detection

Our solution is based on the use of Semantic Web technologies to support the in-
teroperable representation of the different modalities integrated in our framework and
to facilitate their intelligent aggregation and interpretation for activity and behavioural
monitoring. More specifically, we have developed a number of OWL 2 ontologies and mod-
elling patterns to capture information at different levels of abstractions, aiming to capture
information and background knowledge as interlinked RDF Knowledge Graphs (RKGs).
Apart from the advanced connectivity and interoperability that is offered through the use
of formal semantics, the RKGs provide also a framework for intelligent data integration,
unification, analytics and sharing. This is achieved by implementing a symbolic reasoning
layer on top of the RKGs consisting of a set of inference rules that aggregate and combine
the underlying descriptions and elicit an understanding of situations.

In the following sections, we describe the schema and the data semantics of the RKGs,
and we elaborate on the specifics and capabilities of the symbolic reasoning layer.
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4.1. Semantic Representation and Knowledge Graphs

Conceptually, our framework supports two levels of abstraction through which do-
main information can be modelled: observations and situations.

• Observations: The semantics and structure of the various modalities are captured as
observations. This involves information about the types of the sensors and the devices
used for monitoring, and the attributes of the measurements they produce. SOSA is
used as the main building block to describe the measurements.

• Situations: It corresponds to higher level knowledge, providing the constructs to
capture the logic for the detection of problematic situations through aggregation rules
that combine the available input and generate additional inferences. It also serves as
the root for modelling problems and behavioural aspects. DUL [59] is used as the un-
derlying conceptual model, exploiting the alignment of SOSA to the DOLCE UltraLite
upper ontology (https://www.w3.org/ns/ssn/dul, accessed on 13 September 2021),
promoting interoperability with other DUL-aligned ontologies [60–62].

In addition to the inherent association of observations with situations that is part
of DUL, we implement an additional alignment of our conceptual model with the Web
Annotation Data Model (WADM [13]) that describes a structured model and format to
enable annotations to be shared and reused across different hardware and software plat-
forms, following a standard and lightweight description model. This additional level of
annotation serves as a valuable tool for querying, sharing and reusing the knowledge in
domains that follow a simple conceptual model. In the following sections we present the
specifics of each abstraction layer, together with examples.

4.1.1. Observations

The measurements that are generated by the various sensors and devices are captured
as observations. This involves measurements about sleep (e.g., duration, efficiency), heart-
related measurements (e.g., average fat burn rate), activity-related characteristics (e.g., step
count, calories burnt) and other modalities, as these are described in Table 1.

The SOSA ontology is used as the core data model, providing the necessary vocabulary
to capture measurements, sensors and observable features. A conceptual model of obser-
vation types has been defined to organise observations into hierarchies, capitalising on
OWL 2 class subsumption and class equivalence semantics. Figure 2 depicts a subset of the
ontological schema we are using to capture information about observations, following the
conceptual model of SOSA. The core pattern of SOSA revolves around feature of interests,
observable properties and actual observations. A feature of interest captures the notion
whose (observable) property is being estimated or calculated in the course of an observation.
In our example (Figure 2), this corresponds to sleep, movement and heart features (upper
left model), whose properties (upper right model, e.g., steps, fat_burn and duration) are
estimated in terms of observations (model at the bottom). Furthermore, in order to assist
querying and reasoning processes, observations are organised into a hierarchy of types.
It is worth noting that the thresholds (or logic) to generate these observations from the
sensor data depend on DL reasoning [63]. Examples of such axioms are given in Table 2.
For example, a generic observation instance whose observedProperty is associated with
an instance of the HeartProperty and has the feature heart as a feature of interest, is
automatically classified as a HeartObservation. In that way, our framework separates the
modelling logic from the technical specifications of the incoming observations, enabling the
further adaptation and extension of the conceptual schema without requiring any change
on the data collection mechanism.

https://www.w3.org/ns/ssn/dul


Sensors 2021, 21, 6230 10 of 28

Figure 2. Examples of concepts and instances that have been defined on top of the SOSA conceptual
model for capturing domain-specific observation types.

Rich semantic relationships for instance class membership have been defined to
support the automated classification of the incoming observations in the hierarchy of
observation types. To this end, the definition of the observation classes have been enriched
with OWL complex class descriptions (OWL is used in this paper to refer to both OWL and
OWL 2 ontologies interpreted under Direct Semantics) using DL axioms. For example, the
MovementObservation class is defined as:

MovementObservation ≡ Observationu ∃observedProperty.MovementProperty
u ∃hasFeatureOfInterest.{movement}

(1)

Equation (1) is an example of the complex class expression capabilities of OWL 2 on-
tologies. More specifically, it uses a class equivalence axiom (≡) that defines necessary and
sufficient conditions for instance class membership, i.e., restrictions that should be satisfied
in order for an instance to belong to the class MovementObservation. The restrictions are
defined as an intersection (u) of multiple existential restrictions (∃). More specifically, the
first existential restriction defines that the instance should define at least one property asser-
tion of type observedProperty, whose value should belong in the class MovementProperty.
Similarly, the second existential restriction defines that there should be at least one property
assertion of type hasFeatureOfInterest, whose value should be the instance movevent.
These complex class expressions are used throughout the paper and in Table 2. All in all,
the class equivalent concept in (1) defines the MovementObservation concept as the set
of all observation instances that have at least one observedProperty property assertion
that associates the observation with an instance of the MovementProperty concept. At
the same time, all the relevant observations should have hasFeatureOfInterest property
assertions with the instance value movement. Intuitively, each observation that measures
the quality of movement through a movement property, such as steps, is classified in the
MovementObservation class.

The complex class descriptions are inherited to the subclasses, following the class
subsumption hierarchy, where they can be further extended with local definitions. For
example, the WalkingFeature observation class inherits the DL axioms defined in (1) and
further enriches its definition with the following axioms:

WalkingFeature ≡ MovementObservation

u ∃observedProperty.{distance, elevation, floors, steps}
(2)
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The description in Equation (2) further restricts the observedProperty assertions to
contain one of the four observed properties that are associated with walking-related attributes.

As an example, consider the observation instance in Figure 3 that measures the quality
of movement through the number of steps. More specifically, the figure illustrates the
excerpt of the RDF knowledge graph that captures the basic concepts of the SOSA con-
ceptual model. We can observe that the observation instance (type of sosa:Observation)
acts as a container that links together other entities of the conceptual model, like the ob-
served property (steps), feature of interest (movement), as well as additional descriptive
information relevant to the temporal extension and actual result. One unique feature of
the RDF model, and thus of the RDF knowledge graphs, is the possibility to dynamically
change the underlying schema, based on domain knowledge and inference rules. As such,
the knowledge graphs can be further enriched with additional relations, enabling the
capturing of additional semantics. In our domain, using OWL 2 reasoning, the observa-
tion is classified as an instance of the MovementObservation class (due to Equation (1)).
Moreover, due to Equation (2), the observation finally belongs to the class extension of
WalkingFeature. Similar logical axioms have been defined for the other observation types,
fostering the automated classification of incoming observations using ontology reasoning.
Table 2 presents the set of axioms that is currently supported for basic observation types.

Figure 3. Example classification of an observation instance. Based on complex class description ax-
ioms in the observation hierarchy, the instance is automatically classified in the MovementObservation
and WalkingFeature classes through ontology reasoning (highlighted in blue).

4.1.2. Situations

At a higher level of abstraction, our conceptual model supports the definition of
situations. Compared to observations that capture asserted information (e.g., sensor mea-
surements), situations encapsulate aggregated views of state of affairs, such as behaviours
and problems, that are derived by intelligently analysing and aggregating contextual in-
formation. As we describe in Section 4.2, a symbolic reasoning layer is responsible for
aggregating and interpreting the asserted knowledge, deriving situations of interests based
on user preferences and clinical guidelines.

The conceptual model of situations consists of two parts: the Core Vocabulary and
the Descriptive Context. The Core Vocabulary models the specifics of the domain in terms
of behavioural aspects and problems. Figure 4 presents an example of the hierarchy
that supports the modelling of problematic traits relevant to sleep, activity and heart-
related characteristics.

More specifically, following the same conceptual modelling principles described in
the previous section regarding observations, problems are further organised into specific
categories, allowing user to browse more efficiently the underlying knowledge graphs,
while the dashboards presented in Section 5 have direct access to specific type of informa-
tion, easing the development of the necessary interface to get access to specific parts of the
underlying knowledge graphs. As illustrated in Figure 4, problems are categorised into
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Table 2. Complex class descriptions (DL axioms) of basic observation types.

Class DL Axioms

HeartObservation HeartObservation ≡ Observationu ∃observedProperty.HeartProperty
u ∃hasFeatureOfInterest.{heart}

Cardio Cardio ≡ HeartObservationu ∃observedProperty.{cardio}
FatBurn FatBurn ≡ HeartObservationu ∃observedProperty.{fat_burn}

HeartRate HeartRate ≡ HeartObservationu ∃observedProperty.{heart_rate}
Peak Peak ≡ HeartObservationu ∃observedProperty.{peak}

MovementObservation MovementObservation ≡ Observationu ∃observedProperty.MovementProperty
u ∃hasFeatureOfInterest.{movement}

MovementIntensity MovementIntensity ≡ MovementObservationu ∃observedProperty.
{fair_activity, high_activity, light_activity, sedentary}

WalkingFeature WalkingFeature ≡ MovementObservation
u ∃observedProperty.{distance, elevation, floors, steps}

SleepObservation SleepObservation ≡ Observationu ∃observedProperty.SleepProperty
u ∃hasFeatureOfInterest.{sleep}

AsleepCount AsleepCount ≡ SleepObservationu ∃observedProperty.{asleep_count}
AsleepDuration AsleepDuration ≡ SleepObservationu ∃observedProperty.{asleep_duration}

AwakeCount AwakeCount ≡ SleepObservationu ∃observedProperty.{awake_count}
AwakeDuration AwakeDuration ≡ SleepObservationu ∃observedProperty.{awake_duration}

heart-, activity- and sleep-related ones, according to the type of observations used to derive
these problematic situations. In contrast to the observation hierarchy that the classification
of observation instances is based on DL reasoning, the different types of problems are
derived through rule-based symbolic reasoning (see Section 4.2).

Figure 4. Example hierarchy of the Core Vocabulary relevant to problematic situations whose
monitoring and detection is currently supported by the framework.

On the other hand, the Descriptive Context acts as the “semantic glue” between
observations and situations, providing the definitions and a formal structure for describing
implicit and explicit concepts and relationships between the asserted and inferred context.
To this end, the implementation of the Descriptions and Situations (DnS [14]) pattern in
DUL is used, exploiting the already defined DUL-SSN alignment (https://www.w3.org/
ns/ssn/dul, accessed on 13 September 2021).

https://www.w3.org/ns/ssn/dul
https://www.w3.org/ns/ssn/dul
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The OWL encoding of DnS assumes DOLCE as a ground top-level vocabulary. The
DOLCE+DnS Ultralite (DUL) is a light version, which provides simplifications and im-
provements of some parts of DOLCE and DnS. Its purpose is to provide a set of upper level
concepts that can be the basis for easier interoperability among many middle and lower
level ontologies. More specifically, DnS tries to capture the notion of “Situation” out of a
state of affairs, with their interpretation being provided by a “Description”:

• Situation: A set of domain entities that are involved in a specific pattern instantiation.
• Description: Serves as the descriptive context of a situation, defining the concepts

that classify the domain entities of a specific pattern instantiation, creating views
on situations.

• Concepts: Classify domain entities describing the way they should be interpreted in a
particular situation.

The basic implementation of the DnS pattern in DUL allows the relation of situations
(dul:Situation) and descriptions (dul:Description) with domain concepts (dul:Concept).
More specifically, a situation describes the entities of a context and satisfies (dul:satisfies)
a description. The description in turn defines (dul:defines) concepts that classify
(dul:classifies) the entities of the situation, describing the way they should be interpreted.

The Descriptive Context in our framework is defined as an adaptation of the DnS pattern,
reusing the DUL-SSN alignment and defining the necessary domain concepts to facilitate
the interlinking of observations with problematic situations. Figure 5 presents the domain
extensions of the pattern. More specifically, the classes in yellow represent core classes of
the DnS pattern, while our class extensions are represented in red. Intuitively, problems are
situations that can be interpreted in terms of view on specific observations. This conceptual
model is in line with the DnS model, where situations are linked to description that point
to concepts and entities. In that way, by following a foundational upper level ontology and
general-purpose pattern (DUL and DnS), we promote interoperability of the underlying
knowledge graphs, as they can be easily aligned to existing standards, such as SOSA.

More formally, the alignment and adaptation to the DnS pattern is given by the
following DL axioms:

ms:Problem vdul:Situationu ∃em:hasView.ms:View
u ∃em:interprets.sosa:Observation

(3)

ms:View vdul:Descriptionu ∃dul.defines.(dul:Concept
u ∃dul:classifies.sosa:Observation)

(4)

em:hasView v dul:satisfies (5)

em:interpets v dul:isSettingFor (6)

sosa:Observation v dul:Event (7)

Problems are captured as situations that are associated with views and interpret a set
of observations (axiom Equation (3)). Each view defines one or more domain concepts that
classify the observations relevant to the detected problem (axiom Equation (4)). Certain
properties (subproperties of DUL relations) are used to associate problems with views
(axiom Equation (5)) and observations (axiom Equation (6)). Finally, observations are
defined as subclasses of DUL events (axiom Equation (7) is part of the DUL-SSN alignment).

Figure 6 presents an example instantiation of the pattern. The knowledge graph cap-
tures information about the detection of an activity problem p1 about the lack of movement.
Following the pattern of the Descriptive Context, p1 represents a problematic situation that
has a view and interprets one or more observations. The view v1 (em:hasView property
assertion) defines movement as a concept (through the dul:defines property assertion),
which in turn classifies steps. At the same time, p1 interprets the o1 observation, which
is associated with the movement and steps instances through SOSA property assertions
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(sosa:hasFeatureOfInterest and sosa:observedProperty, respectively). As such, o1 is
conceptually annotated with DUL- and SOSA-related concepts, enabling its semantic interpre-
tation as a problem, attaching rich information about the concepts, entities and relationships
that underpin the observed property and feature of interest. It is worth noting that such RDF
graphs are generated through symbolic reasoning, as we describe in the next section.

Figure 5. The core DnS pattern in DUL with the domain extensions and adaptations that formulate
the Descriptive Context.

Figure 6. Example instantiation of the Descriptive Context, semantically describing a problematic
situation about lack of movement together with the associated observation.

The alignment and mapping to other conceptual models and datasets is feasible, promot-
ing data exchange, knowledge sharing and reuse. Table 3 presents the conceptual mapping
of the Descriptive Context (Figure 5) to the Web Annotation Vocabulary [64] that defines the
RDF classes, predicates and named entities used in WADM. In WADM an annotation has
0 or more bodies (oa:hasBody), which encapsulate descriptive information, and 1 or more
targets (oa:hasTarget) that the bodies describe. The mappings define problematic situations
as annotations, with views representing the annotation bodies and the interpreted concepts
providing the targets of the annotations, conceptually aligning the two models.

Table 3. Conceptual mapping of the core Descriptive Context model to the Web Annotation Vocabulary.

#DL Axiom

ms:Problem v oa:Annotation

ms:interprets v oa:hasTarget

ms:hasView v oa:hasBody

4.2. Symbolic Reasoning

Given an RDF graph of observations, as these are defined in Section 4.1.1, the goal
of symbolic reasoning is to meaningfully aggregate, correlate and interpret the collected
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information to elicit an understanding of the situation and detect health-related problems,
according to experts domain knowledge.

The symbolic reasoning layer in our solution is defined with SPARQL, executing
iteratively a set of SPARQL CONSTRUCT graph patterns to derive inferred RDF triples and
enrich the Knowledge Graphs with problematic situations, as these have been described
in Section 4.1.2. In order to promote interoperability and further foster the interaction
of OWL Knowledge Graphs with other emerging Semantic Web standards, the SPARQL
graph patterns are wrapped as SHACL Rules [15]. SHACL [31] is a W3C recommendation
recently introduced to define properties of RDF datasets. SHACL allows the definition of
constraints that can be validated against RDF graphs. Inference rules are also supported
(SHACL Rules) to form a light-weight RDF vocabulary for the exchange of rules that can
be used to derive inferred RDF triples from existing asserted triples.

Table 4 presents a subset of the rules that have been encoded as SHACL rules. These
rules were derived after several iterations with the doctors, psychologists and patients in
order to clearly define the monitoring context and the problematic situations, according to
profile information. The rules define the upper and lower limits to filter out observations
that do not match the defined logic. The numerical values of the limits were decided after
consultation of the clinicians and the patients. It should be noted that different rules and
thresholds are used for each monitored individual, according to preferences and clinical
goals. For example, in the first rule, the threshold for detecting insomnia was set at 1800 s,
taking into account the sleep habits of that user. In addition, to conclude that the patient
needs to exercise more, their steps are limited to less than 8000 in one day.

Figure 7 presents an example of a SHACL SPARQL rule for detective inactivity prob-
lems (Table 4). The rule also illustrates the capabilities of the modelling layer, as far as
interoperability is concerned. The rule actually integrates three conceptual models: SOSA,
for matching observations, DUL, for implementing the DnS pattern, and the custom ex-
tensions described in this paper (e.g., em:Inactivity). As such, the generated knowledge
graphs can be queried using well-established vocabularies, while it can be easily linked
with monitoring frameworks that follow similar conceptual models [60,61].

Figure 7. Graphical representation of the SHACL SPARQL rule for inactivity problems. The RDF
graph inside the blue box is generated after the successful checking of the conditions highlighted
in orange.
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Table 4. A priori rule base of the different semantic rules that describe the modelled problems.

#Variables #Rule #Problem

Duration in seconds Time to fall asleep in a day > 1800 Insomnia

Count of sleep interruptions Number of interruptions in a day > 10 Restlessness

Duration in minutes Sleep total duration in a day > 480 Too Much Sleep

Duration in minutes Sleep total duration in a day < 300 Lack of Sleep

Duration of “Nap” state in
minutes

Asleep in Naps > 100 in a day Increased Napping

Occurrence of “Nap” State,
Occurrence of “Night Sleep”
state

Asleep in Naps end time < 2 h from Sleep start time Nap close to bedtime

Time Asleep / Time in bed Sleep Efficiency < 85 Low Sleep Quality
Step count, Heart Rate mea-
sure, Duration in minutes

Steps < 50 & Heart Rate > 90 (Fat Burn Zone) for
duration > 300

Stress or Pain

Heart Rate measure HR < 60 Low Heart Rate

Step count, Heart Rate mea-
sure, Duration in minutes

Steps < 1000 & Heart Rate < 80 for duration > 300 Inactivity

Step count, Heart Rate mea-
sure, Duration in minutes

Steps < 500 & Heart Rate < 100 for duration > 800 Lack of Movement

Step count Steps < 8000 Lack of Exercise

5. Clinician Dashboard and Use Case Applications

This section presents the clinician dashboard, the web app that clinicians use to
observe progress and care and decide on interventions, as well as a use case application on
actual patients.

5.1. The Clinician Dashboard Web Application

The clinician dashboard is an end-user application with Graphical User Interfaces
(GUIs) that aims to provide clinicians with visualisations of both raw data and detected
events to enable informed decisions. Clinicians can select periods of time and view graphs
and events. Thus, they can detect lifestyle trends and patterns in time and suggest tailored
interventions. In turn, they can monitor adherence, behavioural change and positive impact
in various areas. Particularly for MS, the dashboards aim to show a holistic view of both
physical and mental health aspects of wearable data and tailored event detection.

The clinician dashboard is implemented as a web application using open source
frameworks and libraries, mainly the well-established and modern Python Django web
framework. Responsive design ensures adaptation to both mobile phones and tablets and
large computer screens. Communication with analysis subsystems and the knowledge
base is performed via secure APIs.

Clinical experts can browse directly the knowledge graphs, through a user-friendly
rendering service provided by the underlying triple store. Figure 8 depicts the dashboard
that allows user to expand specific nodes of the graph, acquiring associating context. The
figure depicts the graph associated with lack of sleep incidents for a certain user.

The dashboard’s main view for clinicians is “1-User Summary” (Figures 9–12), which
shows steps, sleep, heart rate and problems (detected events) for the selected user, aggre-
gation method (sum or average), resolution (per minute, hour, day, week, month, year)
and date range. Steps and heart rate are shown in bar charts, while sleep charts also
contain segments according to sleep stage for each interval. Detected events are shown
on a timeline. Thus, clinicians can observe trends in time and further zoom in or out by
changing parameters and explore overall patterns and investigate occurrences and context
to suggest interventions.
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Figure 8. Direct browsing of the Knowledge graph of observations and problems. The visualisation
has been generated using the visual graph capabilities of the GraphDB repository. The nodes
represent RDF resources (both classes and instances). The color and size of the nodes depend on
internal statistics of the repository. For example, the size of the nodes reflects the importance of the
node by RDF rank. Intuitively, nodes linked with a subclass relation represent classes, and the end of
type arrows points also to classes. In all the other cases, the nodes refer to instances in the KB.

Figure 9. Clinician Dashboard showing visualizations for clinicians: Number of daily steps for
user TMS6.
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5.2. Use Case Application

In order to demonstrate the usefulness of the Clinician Dashboard and the under-
lying system, we recruited two patients with MS in Thessaloniki, Greece. The bioethics
committee of the Greek Association of Alzheimer’s Disease and Other Dementias has
approved the study with regards to data collection and written informed consent was
provided by all participants. After several months of data collection, the raw sensor data
and events automatically detected by the system are visible on the Clinician Dashboard
application. As their demographic and medical information are not relevant to the use case
scenarios demonstrated here, they are not disclosed. For privacy reasons, the users are
pseudonymized as “TMS6” and “TMS7”.

After applying the rules of Table 4 for all users, a use case is defined as follows: a
clinician wishes to review data for a patient to discover patterns and problems and to
decide on which area to focus for follow-up and intervention. Two scenarios are presented,
one for each patient. Observations based on the sensor data are reviewed at first and then
the additional events are detected by the system. For both scenarios, the parameters chosen
were aggregation by sum and daily resolution.

5.2.1. Scenario 1: User TMS6

• The clinician selects the user “TMS6” from the drop-down box, the sum aggregation
method, resolution per day and a date range from end of February, when the patient
was recruited, to today, end of June. In a few seconds, the dashboard loads the data in
the Knowledge Base (KB).

• First, it shows the total sum of steps per day (Figure 9). From the raw sensor data the
overall behaviour is inconclusive: there seems to be a lot of variance, a high number of
steps on some days and a low on others. The dashboard already adds some value by
showing the average, minimum and maximum values below the chart. The average
for this user is above 8000 steps which means that he is moving adequately (more
than 5000 steps). Still, we do not know how often they hit the threshold and whether
there is a pattern forming here.

• Moving further down the page, we view the sleep data as detected by the sensor
(Figure 10). The user seems to be getting enough sleep most days minus a few outliers.
Furthermore, the dashboard analytics help to ensure that the total duration of awak-
enings is low (pink areas in the chart) and that the averages seem adequate. However,
again, the human eye alone can not distinguish a pattern or a problem emerging.
Furthermore, despite the duration of sleep and awakenings appear sufficient, it is
hard to tell whether the number of awakenings and naps is problematic.

• Finally, the clinician views the Problems detected by the system. A “Lack of Movement”
instances show up sporadically in the first couple of months but intensify in the last
month to almost every day. That flags a potential relapse that can link to physical
or mental hindrances to the patient, so the clinician will need to follow up with the
patient on their status and a potential intervention.

• Regarding the other problems detected by the system, “Lack of Sleep” is only sporadic
and “Restlessness” is very rare, which confirms the adequate sleep duration and the
low duration of awakenings in the raw sensor data observed before.

• The most common problem with the patient seems to be “Increased Napping”, which
means that although the total sleep duration for a day is adequate, they accumulate
over 3 naps per day, which indicates a tendency for lethargy that needs to be addressed
by finding the underlying causes and suggest an intervention. This observation could
not be easily accessible through raw sensor data but the system immediately flags this
as a problem.
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Figure 10. Clinician Dashboard showing visualizations for clinicians: Daily sleep metrics and
detected events for user TMS6.

5.2.2. Scenario 1: User TMS7

• The clinician selects the user “TMS7” from the drop-down box, the sum aggregation
method, resolution per day and a date range from the end of February, when the
patient was recruited, to today, the end of June. In a few seconds, the dashboard loads
the data in the KB.

• Looking at the visualised raw sensor data for steps per day (Figure 11), the overall
behaviour is inconclusive: adequate movement seems to be achieved in very few days,
while for most there is little to no movement. The dashboard analytics help clear the
picture by showing the average number of steps being indeed low (around 4000).

• The lack of sleep data (Figure 12) indicates a lack of adherence in the sense that the
user is probably not wearing the sensor during night sleep in days where there are
recordings for steps. The clinician will follow up on this issue and investigate the
reasons. Other than that, the sleep data quality shows enough sleep in most days and
close to no awakenings.

• Finally, the clinician views the problems detected by the system. Interestingly enough
the “Lack of Movement” problem shows up after an initial period, something that
was barely visible to the bare human eye examining the steps chart previously. The
same applies to “Increased Napping” which seems to appear on the same period and
may be linked to a behaviour of not moving and napping at home. The clinician will
follow up on lack of movement causes and interventions.

• No other problems are detected by the system, which confirms that awakenings,
restlessness and sleep quality is high with the exception of napping.

In both instances, the scenarios highlight the added value that the visual dashboard
adds to the raw sensor data view, and most importantly, the value of the problems detected
by the system in terms of efficiently pinpointing patterns, behaviours and potential relapse.
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Figure 11. Clinician Dashboard: Number of daily steps for user TMS7.

Figure 12. Clinician Dashboard: Daily sleep metrics and detected events for user TMS7.

6. Performance and Clinician Perspectives

Given the lack of a golden standard ground truth, to the best of our knowledge,
regarding problem and health-related event detection of such symptoms from wearable
sensor data in MS, we carried out a performance evaluation, to attest the scalability and
applicability of the system, as well as an exploratory research study with clinical experts to
investigate their perspectives on the usefulness of the framework.
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6.1. Performance Evaluation

In order to apply the system in actual use, the analysis tasks are assigned to routines
on a server to be triggered at periodic intervals (chronjobs) or at the presence of new data
(e.g., upon a new sleep session entry). Therefore, the clinician dashboard takes only a few
seconds to load several months of worth of data and analysis outcomes (events) for a given
user. Although this processing load is postponed to certain intervals, it still may scale as
the users and the number of objects, i.e., sensor readings to ingest in the KB, increase. It
may also scale according to the number of new knowledge to ingest in the KB according to
how many rules are fired per a given instance of existing objects.

To evaluate scalability performance, we carried out two tasks using a synthetic dataset
generated out of real data, extended for quantity, when needed:

1. Task 1: Measure the time for ingestion for an increasing number of objects in the KB.
2. Task 2: Measure the time and the number of objects generated for an increasing

number of existing objects in the KB and for three different rules.

In Task 1, the goal was to observe the scalability of the KB itself as the load of objects
to insert increases. Table 5 shows the measured times for the increasing load. As seen on
Figure 13a, the time to add objects grows in a linear relation to the number of objects to be
added, which is optimistic for performance.

Table 5. Time for an increasing number of objects to ingest in the KB.

No of Objects Added Time (ms)

50 1954
100 2619
500 4548
1000 7518
3000 18,072

10,000 58,597
20,000 114,435

In Task 2, the goal was to measure how much this load is actually expected to grow
under the current expectations, i.e., the growing objects to check and new knowledge
to ingest. Given that all rules are similar in terms of adding one new object (problem
event) when their conditions are activated, the varying factor are the different conditions.
Therefore, we chose three representative rules to detect “Lack of Movement”, “Low Sleep
Quality” and “Lack of Sleep” and performed the task for each of them for an increasing
number of objects in the KB to check. Table 6 shows the measurements.

To visualise the outcomes, first we consider execution time in relation to the number
of objects in the KB. Figure 13b shows that time grows linearly as KB grows, with the
exception of early, small sizes (less than 3000 objects in the KB), where not enough instances
activate the rules for two rules. The third rule, “Lack of Movement”, does not activate that
much and converges to a low execution time due to not enough activations in that sample.

That led us to investigate the relation of objects in the KB to the number of objects
generated, which would clearly show rule activation. Figure 13c shows more or less the
same relation of linear growth for two rules which linearly generate more objects and
convergence for the rule that does not.

As an interpretation, time increases due to having to generate more objects by rules
activating over a larger KB. Moreover, the newly generated growing objects have to be
ingested relate to Task 1.

Figure 13d–f show the same linear relation of time and objects generated. Thus, we
can conclude that the major factor for time is the number of objects generated, similarly
to Task 1, while the processing time for the growing KB and the actual rules firing do
not significantly add to the time cost. All in all, the performance for both tasks is quite
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optimistic and shows that the system can scale well with increased loads of KB and rules
of this type of format.

(a) (b) (c)

(d) (e) (f)

Figure 13. Scalability of the system in different context. (a) Time for an increasing number of objects to ingest in the KB.
(b) Time for an increasing number of objects in KB for each rule. (c) Objects generated for an increasing number of objects in
KB for each rule. (d) Time for an increasing number of objects generated for “Lack of Movement”. (e) Time for an increasing
number of objects generated for the “Low Sleep Quality” rule. (f) Time for an increasing number of objects generated for
the “Lack of Sleep” rule.

Table 6. Number of objects generated and execution time, for an increasing number of objects in the
KB and for each rule.

#Objects in KB Time (ms) #Objects Generated

Lack of Movement

50 20 0
100 77 1
500 97 1

1000 133 2
3000 301 4

10,000 519 9
20,000 1022 17

Low Sleep Quality

50 8 0
100 4 0
500 7 0

1000 6 0
3000 21 0

10,000 1815 27
20,000 3047 51
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Table 6. Cont.

#Objects in KB Time (ms) #Objects Generated

Lack of Movement

Lack of Sleep

50 7 0
100 4 0
500 6 0
1000 61 1
3000 282 4

10,000 2500 36
20,000 4078 68

6.2. Clinician Focus Group Exploratory Study

Exploratory research focuses on collecting, analyzing, and interpreting observations
about known designs, systems, or models, such as the framework presented in this work,
with emphasis on perspective and relative importance [65]. Instead of a structured quanti-
tative analysis, it may provide a qualitative analysis from highly specialized, small focus
groups. As such, an advisory board of experts was involved in interviews to investigate
preferences and advice for future clinical studies, regarding the visualization on the dash-
board application and the pertaining functionality they entail in the rule-based framework.
The board now includes five experts, selected for their high specialty in the field, the
same advanced academic background (PhD in neuropsychology and related fields) and
professional interests (care of MS and other similar neurological disorders). Lacking a
standardised questionnaire for this purpose and given the explorative nature of the study,
we included both closed- and open-ended questions to elicit expert advice and the level
at which the framework fulfils clinician needs. As in similar studies, its results should be
considered directional and descriptive, given the limited sample size [66].

The system was demonstrated to the focus group, showing a presentation of the
concept, background and motivation for the system (10 min) followed by a demonstration
of the two use case scenarios of Section 5.2 (5 min). Then the clinicians were free to
experiment with the dashboard, answer a few questions and provide open positive and
constructive feedback.

Key themes and quotes from user feedback in response to open questions are shown
on Tables 7 and 8, respectively, while the questions, average ratings and standard deviation
are shown on Table 9. Overall, the reception was positive, and the interviews have shown
that the clinicians saw the usefulness and the potential for professional use. Constructive
comments include interesting suggestions, such as the addition of water and drug dose
logging, a diary and brain sensing capabilities.

Table 7. Key themes and quotes from positive user feedback in response to the question: “Which needs
do you think that the system currently covers for the care aspects of MS for clinicians, and how”?

Key Themes User Quotes

Objective Mon-
itoring

“Provides objective metrics related to sleep and physical activity for MS”,
“(Covers the need) to detect physical activity, sleep and sleep quality
patterns in real time.”

Prediction “Useful for prediction”, “The system provides a basis for prediction or
prevention of a possible deterioration”

Motivation “Could help to: Address Fatigue - monitor sleep patterns and address any
issues, Stay active - days with less steps and exercise could be monitored
to increase stamina and strength.”

Personalization “Identifying any contributing factors, could help clinicians to develop a
tailored management plan.”
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Table 8. Key themes and quotes from constructive user feedback in response to the question: “Which
needs of clinicians do you think that the system does not cover currently and what could be done
differently to improve care?”.

Key Themes User Quotes

Add EEG for richer
stress monitoring

“Brain waves (via EEG/sensors could be added) to assess stress
during the day not only based on the heart rate.”

Prescription Diary
Comparison

“Maybe a diary (could be added) with medical prescription (drug
doses per day) in order to compare biomarkers of daily life to
prescription data and predict periods of deterioration.”

Add Water Consump-
tion to regulate Blad-
der/bowel function

“Issues with bladder and bowel function can be a common prob-
lem for people with MS at some stage in their life, so water con-
sumption measurements could be added in the future to monitor
this problem and give the appropriate suggestions.”

Table 9. Questions on a Likert-scale of 1 (Not at All) to 5 (Very Much) and user response Mean and
Standard Deviation (SD).

Question Mean SD

How useful do you feel that the data collected by the wearable sensor
(steps as a measure of physical activity, sleep, heart rate) are for monitor-
ing & care of people with MS?

4.6 0.55

How useful do you feel that the events detected by the system (problems
related to activity and sleep, e.g., lack of movement, lack of sleep, too
much sleep, insomnia, restlessness, bad sleep quality) are for monitoring
& care of people with MS?

4.8 0

In terms of the user interface (clinician dashboard), how easy do you
think it would be for you to use in your practice?

4.4 0.55

In terms of the user interface (clinician dashboard) appearance and data
representation (graphics and graphs), how appealing and easy to under-
stand do you think it is?

4.6 0.55

Overall, how much of a positive impact do you feel that the use of the
system would have in the care of MS?

4.4 0.55

7. Conclusions and Future Work

In this paper, we presented a framework that utilises Semantic Web technologies to
facilitate the collection, representation, aggregation and visualisation of data and informa-
tion collected from wearable devices. Reusing and extending well-known ontologies and
modelling patterns, interlinked KGs are generated that capture monitoring results and the
semantics of the domain in a formal manner, enabling the use of SHACL rules that traverse
and classify data into situations, meaningful for clinical assessment. We demonstrated
the way ontologies can be used to semantically lift the domain semantics in the form of
situations, combining two annotation standards (SOSA and WADM) with a rich conceptual
model (DUL/DnS).

Due to the fact that the implementation is based on well-established Semantic Web
technologies, it promotes interoperability, as well as fostering the use of reasoning mecha-
nisms to identify further inferences and ensure the semantic consistency of the knowledge
graphs. Furthermore, it can be easily reused and adapted to different application domains.
To date, the framework has been used in MS, supporting clinical experts in easily identify-
ing situations that might indicate problematic behaviours. Both the conceptual model and
the rules can be easily configured to support the clinical assessment in other domains as
well, such as dementia or in home-based rehabilitation.

Performance evaluation and an exploratory study on the usefulness perceived by
clinicians have been performed using real-world data, confirming the system’s relevance
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in the medical practice and providing constructive feedback. In terms of performance,
the system showed that it can scale linearly, with a growing number of users and objects
in the KB. Regarding the real-time context, the framework has not been designed with
real-time reaction scenarios in mind but rather long-term monitoring of disease progression.
While sensor data arrive in near-real time (delay in the order of minutes), the inference
mechanisms have to account for large periods of time (e.g., entire day or days) in order to
extract health-related problems.

The achieved results are promising, but several improvements are investigated. First,
the incorporation of additional sensor modalities, such as water intake, brain signals
and drug doses suggested by clinicians, to enrich the collected context requires updating
the underlying ontologies, both in terms of semantics and vocabulary. However, the
existence of more modalities increases the complexity of the infused logic which will have
a negative impact on the performance of the system. In this case, more sophisticated fusion
frameworks will be required to cope with complementary and possible contradictory
information. Second, the synergy with a data-driven solution is investigated, especially in
cases where our knowledge-driven framework has collected and classified a large number
of observations through a long monitoring period. Hybrid approaches, such as the ones
presented in Section 2, have the potential to further support the clinical assessment. Due
to the lack of an annotated data set (golden standard) and the deterministic nature of
the proposed event-detection framework based on inference (i.e., detecting events always
occurs if conditions are met), instead of validating its output, we evaluated its scalability
and usefulness in an exploratory study with clinicians. As a future work, such golden
standards could be obtained either from patient/carer interviews (yet time-consuming and
subjective) to enable more rigorous evaluation. While this paper presents the technological
framework, perspectives gathered from clinicians will be leveraged in a future clinical
study to explore the system’s impact on clinical decision making and, in turn, MS care.
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