
sensors

Article

Multiple Sensor Synchronization with theRealSense
RGB-D Camera

Hyunse Yoon 1,†, Mingyu Jang 1,†, Jungwoo Huh 1, Jiwoo Kang 1,* and Sanghoon Lee 1,2

����������
�������

Citation: Yoon, H.; Jang, M.; Huh, J.;

Kang, J.; Lee, S. Multiple Sensor

Synchronization with the RealSense

RGB-D Camera. Sensors 2021, 21,

6276. https://doi.org/

10.3390/s21186276

Academic Editor: Gregorij Kurillo

Received: 18 August 2021

Accepted: 17 September 2021

Published: 18 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea;
hsyoon97@yonsei.ac.kr (H.Y.); jmg1002@yonsei.ac.kr (M.J.); gjwjddn9@yonsei.ac.kr (J.H.);
slee@yonsei.ac.kr (S.L.)

2 Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea
* Correspondence: jwkang@yonsei.ac.kr; Tel.: +82-2-2123-7734
† These authors contributed equally to this work.

Abstract: When reconstructing a 3D object, it is difficult to obtain accurate 3D geometric information
using a single camera. In order to capture detailed geometric information of a 3D object, it is inevitable
to increase the number of cameras to capture the object. However, cameras need to be synchronized
in order to simultaneously capture frames. If cameras are incorrectly synchronized, many artifacts
are produced in the reconstructed 3D object. The RealSense RGB-D camera, which is commonly used
for obtaining geometric information of a 3D object, provides synchronization modes to mitigate
synchronization errors. However, the synchronization modes provided by theRealSense cameras can
only sync depth cameras and have limitations in the number of cameras that can be synchronized
using a single host due to the hardware issue of stable data transmission. Therefore, in this paper, we
propose a novel synchronization method that synchronizes an arbitrary number of RealSense cameras
by adjusting the number of hosts to support stable data transmission. Our method establishes a
master–slave architecture in order to synchronize the system clocks of the hosts. While synchronizing
the system clocks, delays that resulted from the process of synchronization were estimated so that the
difference between the system clocks could be minimized. Through synchronization of the system
clocks, cameras connected to the different hosts can be synchronized based on the timestamp of the
data received by the hosts. Thus, our method synchronizes theRealSense cameras to simultaneously
capture accurate 3D information of an object at a constant frame rate without dropping it.

Keywords: RGB-D camera; 3D reconstruction; camera synchronization; timestamp; synchronization
delay

1. Introduction

In the fields of computer vision and graphics, many studies have attempted to recon-
struct 3D objects from a single image [1–5]. Techniques of 3D reconstruction from a single
image simplify the process and reduce the total computational cost. However, the quality
of the reconstructed 3D object has been a ubiquitous problem. A single image cannot grasp
the full geometric information of the object due to regions occluded from the camera’s field
of view. With missing geometric information, these methods can only make inaccurate
inferences of the object’s geometry. As a result, the reconstructed unseen surfaces tend to
be either overly smooth or have severe artifacts.

In contrast to the single-image method, the utilization of multiple sensors enables
capturing the full 3D geometry of an object [6–9]. By fusing the surfaces observed by multi-
ple cameras, the 3D object can be accurately reconstructed with fewer artifacts. However,
the performance of 3D reconstruction using multiple sensors is heavily influenced by the
synchronization of these sensors.

For example, Figure 1 shows the case in which sensors in a multiview system are not
correctly synchronized. In a situation in which an object is moving while the incorrectly

Sensors 2021, 21, 6276. https://doi.org/10.3390/s21186276 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7622-0817
https://orcid.org/0000-0001-9895-5347
https://doi.org/10.3390/s21186276
https://doi.org/10.3390/s21186276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21186276
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21186276?type=check_update&version=3


Sensors 2021, 21, 6276 2 of 20

synchronized sensors are temporally capturing an object, the object’s position in the world
coordinates differs between sensors. Hence, the artifacts are generated when fusing these
surface information. However, as shown in Figure 1b, if the sensors are synchronized, less
artifacts are produced.

(a) RealSense synchronization (b) Proposed synchronization

Figure 1. The reconstructions generated by a method in [9] using the data captured by 18 RGB-D
cameras with (a) the Slave/Full Slave synchronization mode and (b) the proposed synchronization
method, respectively.

Intel’s RealSense RGB-D camera, known for its cost-efficiency and mobility, is widely
used in 3D applications [10–15]. The RealSense RGB-D camera is supported by an open-
source multiplatform SDK [16], librealsense, allowing simpler integration of the RealSense
RGB-D camera. Furthermore, the RealSense RGB-D camera provides global shutter mode
to alleviate synchronization issues and achieve better performance when capturing high-
speed movement, avoiding depth image blurring or shooting in low-light situations [17,18].
The RealSense RGB-D camera provides three synchronization modes to mitigate synchro-
nization issue: GenLock, Slave, and Full Slave.

GenLock mode is a function whereby multiple sensors synchronize upon the rising or
falling edge of a signal generated from an external trigger. With this feature, depth frames
can be triggered from an external source to capture at almost arbitrary times or frequencies,
within an allowable time and frequency window. However, GenLock mode provided by
the RealSense drops the frame rate of each sensor by half [19]. The reduction of the frame
rate causes a decrease in the quality of temporal data and an increase in the vulnerability
of data to motion blurs. In addition, RealSense’s mode currently only supports syncing
for depth cameras, and RGB cameras cannot be synced using GenLock mode as they use a
rolling shutter. Even though an RGB-D camera, such as the RealSense D455, consists of both
global shutter RGB and depth cameras, GenLock mode cannot synchronize both cameras,
because the necessary functionality for the synchronization of RGB and depth cameras has
not been supported yet [19]. Due to the omission of RGB camera synchronization, reliable
RGB data cannot be attained from a multiview camera system synchronized with GenLock.



Sensors 2021, 21, 6276 3 of 20

Similar to GenLock mode, Slave mode only syncs the depth camera of RealSense
cameras and syncs to a periodic signal generated from an external trigger. The difference
between GenLock mode and Slave mode is that Slave mode allows cameras to start
capturing frames without a trigger while GenLock only starts capturing frames when
the signal is given. Moreover, unlike GenLock mode, which halves the frame rate, Slave
mode enables the sensors to record at a designated frame rate. However, Slave mode
faces a challenge in synchronizing multiple cameras. Due to the hardware issue of the
limited USB bandwidth, the maximum number of devices that can be connected to a single
host for stable data transmission is three [18]. In order to maintain the stability of data
transmission, the number of hosts needs to increase to support a multiview RGB-D camera
system. Although this constraint is applied to each synchronization mode, GenLock mode
can still synchronize multiple sensors connected to different hosts because GenLock mode
forces the sensors to synchronously capture frames at a designated time. In contrast to
GenLock mode, Slave mode does not synchronize sensors at a designated time and, thus,
synchronizes the sensors based on the host’s system clock in order to correct any delays
affecting the order of the data packet transmission. Since all hosts have different system
clocks, it is difficult for Slave mode to synchronize the sensors connected to different hosts.
While Full Slave mode suffers the same issue as Slave mode, Full Slave mode is able to
synchronize both the RGB camera and depth camera if both are global shutter cameras.

To tackle the problems faced by all these synchronization modes, we propose a novel
synchronization method, which allows the synchronization of multiple RealSense cameras
each connected to a different host. Because our method is an extension of Full Slave
mode, our method can synchronize both RGB cameras and depth cameras in RealSense
cameras and capture frames without dropping the frame rate. Furthermore, our method
increases the number of synchronizable cameras by increasing the number of hosts in the
multiview system so that more accurate geometric information of the 3D object can be
obtained. Synchronization of multiple hosts was performed via setting all hosts to have the
same system clock using the master–slave architecture by introducing two kinds of delays
between the hosts: time synchronization delay and network latency delay. Having all hosts share
a common system clock allows synchronization of RGB-D cameras connected to different
hosts, allowing the reliable capture of numerous RealSense cameras simultaneously without
a frame rate drop. In our experiments, 18 RealSense RGB-D cameras were used to validate
the proposed method, demonstrating accurate and reliable synchronization of multiple
RealSense cameras.

2. Related Work
2.1. RGB-D Camera

Many affordable RGB-D cameras are widely available today, accelerating research
related to 3D reconstruction [20–23]. The most widely used commercially available cameras
are the Orbbec Astra (Orbbec, Troy, MI, U.S.) series [24], the Microsoft Kinect Azure [25]
(Microsoft, Redmond, WA, U.S.), and the Intel RealSense L515 [26] and Intel RealSense
D400 series [18] (Intel, Santa Clara, CA, U.S.). Table 1 summarizes the specifications of
these cameras.

The Orbbec Astra series uses a structured light technique to estimate depth. In the
structured light technique, patterns whose original shapes are known in advance are
projected to a target object. The depth is estimated using geometric relationships between
the original and deformed pattern shapes. However, when the object is captured using
multiple structured-light-based cameras, the patterns projected to the target object from
different cameras interrupt each other. Thus, the deformed pattern shape from one camera
cannot be distinguished clearly, making it difficult to use multiple structured-light-based
cameras to capture a single scene.

The Microsoft Kinect Azure uses a time-of-flight (ToF) technique that estimates depth
by measuring the round-trip time of light. The Kinect Azure device supports the highest
RGB resolution among other comparison cameras. As a consequence of supporting the



Sensors 2021, 21, 6276 4 of 20

highest resolution, it requires an extra power supply in addition to the USB cable. Further-
more, as the ToF technique measures the depth using the signal reflected from the target
object, the quality of the depth significantly decreases when multiple ToF cameras are used
to capture the object simultaneously. The Intel RealSense L515 uses a light detection and
ranging (LiDAR) technique, which is one of the ToF techniques. Although the depth can be
estimated more accurately using the LiDAR technique compared to other techniques, it is
difficult to apply multiple cameras to capture a single object simultaneously, similar to the
structured light technique, as reported in [27].

Table 1. Specifications of commercial RGB-D cameras.

Features Kinect Azure Astra S+ Astra S

Technology Time-of-flight Structured light Structured light

RGB Res. (30FPS) 3840 × 2160 1920× 1080 1280× 720

Depth Res. (30 FPS) 640× 576 640× 480 640× 480

Depth Res. (90 FPS) Not Supported Not Supported Not Supported

Size (mm) 103 × 39 × 126 149 × 28 × 29 165 × 30 × 40

Power Supply DC + USB 3.0 USB 3.0 Type-C USB 2.0

Multi. Capability 4 × ×
Features RealSense D455 RealSense D435 RealSense L515

Technology Active stereo Active stereo LiDAR

RGB Res. (30 FPS) 1280 × 800 1920 × 1080 1920 × 1080

Depth Res. (30 FPS) 1280× 720 1280× 720 1024 × 768

Depth Res. (90 FPS) 848 × 480 848 × 480 Not Supported

Size (mm) 124 × 26 × 29 90 × 25 × 25 61 × 61 × 26

Power Supply USB 3.0 Type-C USB 3.0 Type-C USB 3.0 Type-C

Multi. Capability © © ×

The Intel RealSense D400 series uses an active stereo technique to estimate depth,
where a projector emits an unstructured pattern to add texture to the surface of the object
while the depth is calculated by matching texture correspondences between images cap-
tured by two infrared (IR) cameras. Among other cameras in Table 1, the Intel RealSense
D400 series has a significant advantage in composing the multicamera system.

Firstly, it has been reported that the depth quality of a single camera can be improved
using multiple active stereo cameras [19] since multiple projectors increase the resolution
of the unstructured pattern projected on the target object and thus enable more accurate
matching between the IR images. Therefore, employing multiple cameras is helpful to ob-
tain better depths in contrast to other techniques, such as structured light, ToF, and LiDAR.

Secondly, the Intel RealSense D400 series provides a 90 FPS capture speed, whereas
other cameras support up to 30 FPS. This enables a moving object to be captured more
reliably and accurately. Finally, the Intel RealSense D400 series provides the highest depth
resolution of 1280 × 720. This is consistent with the report [28] that the RealSense D400
series obtains the highest quality depth from a single view among recent depth cam-
eras. With the notable advantages of the RealSense depth camera, we propose a reliable
synchronization method for multiple RealSense cameras.

2.2. Time Synchronization

To synchronize multiple hosts in a system, it is important to set all hosts to have the
same system clock. To synchronize the system clocks of all hosts, using the Network Time



Sensors 2021, 21, 6276 5 of 20

Protocol (NTP) is a standard procedure in many applications because of its high availability
and its ease of use. The NTP synchronizes system clocks among a set of distributed time
servers and clients over the Internet [29,30]. System clocks are synchronized by exchanging
the timestamps between the time server and clients. While exchanging timestamps, the time
taken for NTP data packets to complete a round-trip causes a delay in synchronization. In
addition, a delay arises from an offset between the arrival and departure of the data packet
from the client to the server. These delays are estimated to reduce the negative effects on
synchronizing system clocks. However, when synchronizing the hosts in the same subnet
of the network, the advantage of computing delays caused by the data packet’s round-trip
is lost. The synchronization mode used for the hosts in the same subnet is called multicast
mode. The NTP server in multicast mode periodically sends data packets to other hosts
in the same subnet. The NTP clients receive the data packets and set their system clocks
to the time stored in the data packets while assuming a few milliseconds of delay instead
of actually computing it [31]. This is because the NTP server declines to accept any data
packets from the clients and, thus, cannot compute the round-trip delays. As a result, when
applying the NTP synchronization method to multiple hosts, the hosts are prone to have
system clocks with a few milliseconds of delay. In order to tackle this challenge, we propose
a reliable synchronization method for the hosts in the same subnet to have the same system
clock.

3. Camera Synchronization Method

Because our method aims to accurately synchronize a multihost camera system,
the timestamps measured by each sensor and host play significant roles in synchronizing
the multihost camera system. The four timestamps provided from the camera are the sensor,
frame, backend, and time-of-arrival timestamps. While both the sensor and frame timestamps
are measured by the camera’s device clock, the backend and time-of-arrival timestamps are
measured by the host’s system clock.

Figure 2 illustrates the time intervals between consecutive frames of a sensor with
regard to the four different timestamps. All intervals are the same, indicating that a specific
number of FPS were captured at that point in time. The sensor timestamp is a timestamp
that marks the middle of the camera exposure, and the frame timestamp specifies the time
when the first packet is sent to a host. Figure 2a,b shows that the time interval between
consecutive sensor and frame timestamps is almost consistent and that they are similar
to each other. The back-end timestamp measures the time when the host copies the data
packet from the USB controller to the OS kernel. From Figure 2c, one can observe that time
interval between consecutive back-end timestamps drastically fluctuates. The time-of-arrival
timestamp then measures the time when the RealSense SDK, librealsense, receives the data,
and Figure 2d shows that the time interval between consecutive time-of-arrival timestamps
does not fluctuate as much as in Figure 2c. However, there are some random big jumps in
the middle, which shows that there are delays in data transmission between the RGB-D
camera and the host.

Figure 3 shows both the sensor and time-of-arrival timestamps of the three RealSense
RGB-D cameras connected to the same host.Although the sensor timestamp has consistent
intervals in Figure 3a, they are generated by the cameras’ clocks. This difference between
the cameras’ sensor timestamps makes the synchronization difficult. On the other hand, the
time-of-arrival timestamps of the three cameras, as illustrated in Figure 3b, almost match
each other. This is because the time-of-arrival timestamp is measured by one host, which
receives the data from the three cameras. Since the time-of-arrival timestamps match one
another, it is easier to determine whether synchronization has been correctly performed or
not. However, there are some sudden jumps shown in Figure 2d, causing the time-of-arrival
timestamps of the cameras to not match at certain frames. Thus, the regressed linear model
between the sensor and time-of-arrival timestamps, which is called the global timestamp,
was used to correct big jumps in the delay, as shown in Figure 2d, and synchronize the
RealSense RGB-D cameras.



Sensors 2021, 21, 6276 6 of 20

(a) Sensor timestamp (b) Frame timestamp

(c) Backend timestamp (d) Time-of-arrival timestamp

Figure 2. Intervals according to the frame of each timestamp.

(a) Sensor timestamp (b) Time-of-arrival timestamp

Figure 3. The sensor and time-of-arrival timestamps of each frame.

3.1. Single Host Synchronization

The difference between the sensor or time-of-arrival timestamps of sequential frames
should be consistent as the sensor captures frames at a fixed frame rate. However, in some
cases, the frame can be occasionally captured outside the periodic frame rate. Thus, in or-
der to correct these outliers, the linear regression between the sensor and time-of-arrival
timestamps was modeled. Let ts and th be the sensor and time-of-arrival timestamps. The
regression of the global timestamp tg is defined as:



Sensors 2021, 21, 6276 7 of 20

tg = a∆ts + b + th,

a =
∑n

i=1 ∆ti
h ∑n

i=1(∆ti
s)

2 −∑n
i=1 ∆ti

s ∑n
i=1 ∆ti

s∆ti
h

n ∑n
i=1(∆ti

s)
2 − (∑n

i=1 ∆ti
s)

2 , (1)

b =
n ∑n

i=1 ∆ti
s∆ti

h −∑n
i=1 ∆ti

s ∑n
i=1 ∆ti

h
n ∑n

i=1(∆ti
s)

2 − (∑n
i=1 ∆ti

s)
2 ,

where ∆ is the delta operator to calculate the time interval between the previous and current
timestamps, a and b are the coefficients of the linear regression, and n is the number of the
previous frame for the linear regression, respectively. RealSense cameras connected to the
same host can be synchronized via the regression of the global timestamp. The application
of synchronization can be categorized into two scenarios: online and offline. Hence, we
computed the linear regression in (1) in different ways for each scenario.

In the online scenario, we regressed a linear model between the sensor and time-of-
arrival timestamps while capturing scenes in real time. Coefficients a and b of the linear
regression were estimated using the timestamps from the current frame to the previous
n frame. Using the newly updated coefficients of each frame, a global timestamp tg was
estimated. However, for the first n frames, which have less than n frames for a regres-
sion, frames from the starting point to the current frame were used to regress the global
timestamps.

In the offline scenario, the global timestamps were regressed using full data captured
after a recording was completed. Because regression in (1) was performed on full data,
a single coefficient pair a and b was used to estimate the global timestamp of each frame.

Figure 4 shows the regressed global timestamps computed in the two different scenar-
ios. Figure 4a,b shows the distribution of the global timestamps in the online and offline
scenarios, respectively. In Figure 4a, the global timestamps were regressed based on the
recent last frames (n = 30) using the regression model in (1), and Figure 4b shows the linear
regression on all frames (n = 480) captured by a sensor. We can observe that there were
no significant differences between the online and offline scenarios, as shown in Figure 4.
However, because the method used to model Figure 4a can be applied in real time, using
the online scenario in (1) to regress the global timestamps seemed more suitable when
obtaining temporal RGB-D data in real time.

(a) Online scenario (b) Offline scenario

Figure 4. The global timestamps generated in (a) the online scenario and (b) the offline scenario.

In an ideal condition, an arbitrary number of sensors can be connected to a single
host. Under this ideal condition, all sensors can be synchronized via a global condition,
and thus, a complete multiview sensor system can be established. However, in reality,
the USB bandwidth of a host can only support up to three RealSense cameras for stable
data transmission. With only three sensors, it is difficult to obtain accurate 3D geometric



Sensors 2021, 21, 6276 8 of 20

information for many application. Therefore, to increase the number of cameras, it is
necessary to increase the number of hosts as well.

Figure 5 illustrates the result of the global timestamps attained from a single- and
multiple-host system. Figure 5a illustrates the global timestamps of the three cameras
connected to a single host, and Figure 5b illustrates the global timestamps of six cameras
connected to two hosts in groups of three. Using the global timestamps, the synchronization
of the three cameras in the single-host system seemed successful, as seen in Figure 5a.
However, when using multiple hosts to expand to more devices, the global timestamps
were created with similar values only for the cameras connected to the same host, as
shown in Figure 5b. Thus, the global timestamps depended on the hosts. This difference in
timestamps between hosts shows that the cameras connected to the same host could be
synchronized, but could not be with other cameras connected to different hosts.

(a) Single host (b) Multiple host

Figure 5. The global timestamps of the three cameras connected to (a) a single host and (b) six cameras connected to
two hosts.

3.2. Multiple Host Synchronization

Our method synchronizes the sensors using the global timestamps, which is regressed
from the sensor and time-of-arrival timestamps. The use of the global timestamps allows
the synchronization of the sensors connected to the same host, but the application of the
global timestamps to a multihost sensor system required some modification. This was
accomplished by increasing the number of synchronized hosts, unlimiting the number of
cameras to be captured simultaneously without a frame rate drop. To extend the regression
of the global timestamps from a single host to multiple hosts, the system clock of each
host needed to be synchronized first. Having all hosts share the same system clock was
an important factor because a small difference in the hosts’ system clocks could cause
considerable differences in the global timestamps across cameras. Not only did the difference
between system clocks cause incorrect synchronization, but also, the delays in the process
of system clock synchronization produced a significant error in the estimation of the global
timestamps. Thus, our method estimates the delay in the system clock synchronization and
the time difference to correctly synchronize the hosts’ system clocks and regress accurate
global timestamps for multiple hosts. Since each host had a different system clock, one of
the host was set as the master host, and the other hosts were set as the slave hosts.

After specifying the master host, each slave host’s system clock was set to match the
master host’s system clock sequentially. The configuration of the slave’s system clock was
performed by adding the total delay of the synchronization procedure, defined as:

td = tt + tl (2)

where td is the total delay of the addition of time synchronization delay tt and network
synchronization delay tl . The time synchronization delay is the time taken for the slave host to
receive the master host’s system clock and set it as its own. his was obtained by computing
the average time for the host to call the get-time and set-time operating system functions nc



Sensors 2021, 21, 6276 9 of 20

times. The assumption for the time synchronization delay was that all hosts took the same
amount of delay when calling the get-time and set-time operating system functions.

The network synchronization delay was measured by calculating the average time taken
for the transmission of nd data packets between the master and slave hosts. The master
host sends its system time to a slave host via network communication, and it takes time
for the data to reach a slave host. By the time the slave host receives the data, the master’s
system clock no longer matches that of the slave host. Thus, it is important to estimate
the delay in the network in order to remove any difference between the master’s and
slave’s system clocks. The synchronization procedure between the master and slave hosts
was repeated until the synchronization delay was within the predefined threshold of the
synchronization Tth.

Our method of setting the slave’s system clock allows establishing a multiview sensor
system that is scalable and flexible because the number of hosts can easily be increased
or decreased without affecting the other hosts. After setting the slave’s system clock to
match that of the master’s, multiple hosts can be considered as a single host, as they share
the same clock. Hence, the single-host synchronization method can be applied to multiple-
host systems. The detailed procedures of the master and slave hosts are represented in
Algorithms 1 and 2, respectively.

Algorithm 1: Operation at the master host.
Input: the amount of network synchronization delay to be measured nd, threshold of

the synchronization Tth
1 delay← ∞
2 while Tth < delay do

/* Send “ready” signal for the synchronization */
3 Send(ready)
4

/* Send a time structure to measure the network synchronization delay */
5 for i← 1 to nd do
6 Send(GetSystemTime())

// In practice, a time structure variable is used
7 end
8 Receive() // A signal that td has been calculated

/* Send the master’s system clock to a slave host */
9 Tm ← GetSystemTime()

10 Send(Tm)
11 Ts ← Receive() // Receive the slave’s synchronized time
12 Tr ← GetSystemTime()
13 delay← Max(Tr − Tm, Tr − Ts)
14 end

/* Send “success” signal of the synchronization */
15 Send(ready)



Sensors 2021, 21, 6276 10 of 20

Algorithm 2: Operation at the slave host.
Input: the amount of network and time synchronization delay to be measured, nd and

nc, respectively
/* Synchronization signal is received from the master */

1 while Receive() = ready do
/* Measure network synchronization delay */

2 tl ← 0
3 for i← 1 to nd do
4 Ttic ← GetSteadyClockTime()
5 Receive() // Receive a time structure
6 Ttoc ← GetSteadyClockTime()
7 tl ← tl + (Ttoc − Ttic)
8 end
9 tl ← tl/nd

10

/* Measure time synchronization delay */
11 tt ← 0
12 for i← 1 to nc do
13 Ttic ← GetSteadyClockTime()
14 SetSystemTime(GetSystemTime())
15 Ttoc ← GetSteadyClockTime()
16 tt ← tt + (Ttoc − Ttic)
17 end
18 tt ← tt/2nc
19

20 td = tt + tl
21 Send(measured) // Send a signal that td has been measured
22

/* Receive and set the system clock from a master host */
23 Tm ← Receive()
24 SetSystemTime(Tm + td)
25

/* Send the synchronized time to the master for validation */
26 Send(GetSystemTime())
27 end

4. Experimental Section
4.1. Implementation Detail
4.1.1. Capturing Studio Specification

All the evaluations and experiments in this paper were performed using 18 Intel Re-
alSense D455 RGB-D cameras. All cameras were connected to external triggers (KOTRON
TG-16C and KOTRON TG-4C) for synchronization. In our setup, triggers were hierarchi-
cally installed. One main trigger KOTRON TG-16C generated periodic signals, and three
subtriggers KOTRON TG-4C were set to bypass mode. Each subtrigger covered 6 RealSense
cameras. Six desktops installed with the Microsoft Windows 10 operating system were con-
nected to three cameras each in order to cover the high bandwidth requirements of the
cameras. Among the 6 desktops, 1 of them is selected as the master host. The schematic
diagram of the hardware installation is represented in Figure 6b.

The resolution and frames per second (FPS) of the RGB-D camera were specified in
pairs. We selected the depth and RGB streams according to the experimental situation. The
RGB-D cameras were configured to cover 360◦ of a target object with 60◦ intervals and 3
different heights, as depicted in Figure 6a. The heights of the installed cameras were 50 cm,
100 cm, and 150 cm from the ground, respectively.



Sensors 2021, 21, 6276 11 of 20

(a) Multiview capture studio (b) Schematic diagram of the hardware
installation

Figure 6. Multiview capturing system for 18 RealSense RGB-D cameras.

4.1.2. External Trigger Synchronization

To synchronize multiple RealSense RGB-D cameras, an external trigger was required
to generate the signals at 1.8 V pulses per second (PPS). The RealSense RGB-D cameras
could receive these signals through a 9-pin connector hidden inside a small latch. The sync
signal was connected to pin 5, whereas pin 9 was the ground, shown in Figure 7a.

(a) 9-pin connector for synchronization (b) Global timestamp from the start of
capture

Figure 7. Reception of the trigger signal by the RealSense cameras.

In GenLock mode, cameras do not start capturing a scene without the signal from an
external trigger even though capturing is requested by the SDK. In other words, the cam-
era’s exposure starts only when the signal from an external trigger is received. Due to this
characteristic, all cameras in a multiview system can simultaneously start capturing the
scene using GenLock mode. To properly use GenLock mode, an external trigger should
be turned off first. Then, the start request is sent to all cameras by the SDK, and finally,
the trigger is turned on and sends a signal that matches the frame rate.

Conversely, RealSense’s Slave and Full Slave modes start capturing the scene regard-
less of the signal’s existence. With the signal from the trigger, the cameras capture sequences
synchronously. In contrast, without the signal, the cameras are unsynchronized and capture
frames at a designated frame rate. Therefore, in order to synchronize the cameras in Slave
and Full Slave modes, the external trigger is turned on beforehand and periodically sends
the signal at a frequency that matches the frame rate. While signals are periodically sent, we
can obtain the synchronized sequences by requesting cameras to start and stop capturing
of the scene using the SDK.

Despite successful synchronization by GenLock, Slave, and Full Slave modes, the
synchronization of cameras was prone to be unstable for the first 5 s in the RealSense camera
system. Figure 7b shows the time interval of the global timestamps with synchronization
during 10 s of recording. From Figure 7b, we can observe that the synchronization stabilized



Sensors 2021, 21, 6276 12 of 20

after 5 s and was able to obtain the accurate time interval of the frame rate. Hence, in order
to obtain data with stable synchronization, we started recording after 5 s passes from the
start of the capturing.

4.1.3. Data Gathering

Each frame was captured by every camera with timestamps. Although the frames can
be captured synchronously via the signal from an external trigger, the host does not receive
image frames simultaneously from the RealSense cameras. It was even more difficult to
determine if the images were captured simultaneously from multiple hosts. The global
or sensor timestamps were used to find the simultaneously captured frames according
to the proposed synchronization method. Assuming that the system times of the hosts
were accurately synchronized, frames simultaneously arriving from different hosts had
the same global timestamps. Thus, we could obtain the simultaneously captured frames by
gathering each frame from all cameras that had the same global timestamps. The timestamps
among cameras were different in practice. Therefore, we gathered frames whose timestamp
differences were within a predefined threshold Tint. A value of less than a half-frame
interval was sufficient for the threshold, Tint. The simultaneous frame-gathering algorithm
Gathering(T, I) from the timestamp set T and image set I is presented in Algorithm 3. In
Slave and Full Slave modes, the global timestamp set T was used to gather the frames.

Algorithm 3: Simultaneous frame-gathering algorithm

Input: T = (T1, ..., Tm): a set of timestamp queues of the captured cameras,
I = (I1, ..., Im): the set of the corresponding captured image queues, Tint:
the timestamp threshold to check if a set of frames is the synchronized
frames across cameras

Result: Tsyn =
(
Ts

1 , ..., Ts
m
)
: the synchronized set of timestamp queues,

Isyn =
(

Is
1, ..., Is

m
)
: the synchronized set of image queues

1 Function Gathering(T, I, Tint):
/* Initialize the output queues to empty */

2 Initialize(Tsyn)
3 Initialize(Isyn)
4

5 while every queue in T is not empty do
/* Find the minimal and maximal timestamps among the front timestamps

in the camera queues */
6 Tmax ← MaxTimestamp(T)
7 Tmin ← MinTimestamp(T)
8 Tdi f f ← Tmax − Tmin
9

10 if Tdi f f < Tint then
/* Add the synchronized frames */
/* DeQueue and Enqueue are performed for every queue in the set */

11 EnQueue(Tsyn, DeQueue(T))
12 EnQueue(Isyn, DeQueue(I))
13 else

/* Remove the earliest timestamp and the corresponding image */
14 idx← ArgMinTimestamp(T)
15 DeQueue(Tidx)
16 DeQueue(Iidx)
17 end
18 end
19

20 return Tsyn, Isyn



Sensors 2021, 21, 6276 13 of 20

On the other hand, all the cameras are able to start capturing sequences at the same
time in GenLock mode. This enabled us to use the sensor timestamps instead of global
timestamps, allowing highly accurate synchronization of multiple cameras. In other words,
although the devices had different sensor timestamps, the timestamps could be aligned
with each other by subtracting each device’s timestamps by its first timestamp. Therefore,
in GenLock mode, the aligned sensor timestamps of each camera were used to gather the
frames. The aligned frames by GenLock mode were used to quantitatively evaluate if our
method accurately synchronized the cameras.

4.2. Quantitative Evaluation

Figure 8a shows the global timestamps from the 18 RealSense cameras with 6 hosts. It
clearly shows that the cameras connected to the same host could be correctly synchronized
via the global timestamps, but large variations existed among the timestamps captured
in different hosts. Figure 8b depicts the global timestamps by capturing sequences with
the proposed synchronization method. It is shown that the proposed synchronization
method significantly decreased the variations between hosts’ timestamps. The gathering
method in Algorithm 3 matched the closest timestamps within the threshold in sequences
of cameras. The lower variations in Figure 8 made it possible to gather more reliable
synchronized frames.

(a) Before Synchronization (b) After Synchronization

Figure 8. Global timestamps from the 18 RealSense cameras (a) without and (b) with the proposed synchronization method.

However, the lower variations did not confirm that the cameras were synchronized
correctly because the global timestamp was measured using the system clock of each host.
To correctly evaluate the global timestamps of multiple hosts, the timestamps needed to
be aligned with the absolute time, i.e., the ground-truth time, and then compared to each
other. Therefore, in order to quantitatively evaluate the performance of our method, the
ground-truth for synchronization was required. The ground-truth for synchronization was
obtained by performing GenLock mode for each test.

Even though GenLock mode captures a sequence at half of the specified frame rate
and synchronizes only depth cameras, it allows accurate synchronization by specifying
the start time of the capturing sequences. The sensor timestamps of each synchronized
camera could be normalized by subtracting the first sensor timestamp of the sequence,
and with these normalized sensor timestamps, the frames captured by the cameras could
be correctly ordered. Based on the correct ordering of the frames, the accuracy of our
synchronization method could be evaluated.

We defined a metric, the average maximum delay (AMD), to quantitatively evaluate
the synchronization of multiple RealSense cameras as:

AMD =
1
m

m

∑
i=1

(
max(ti

g)−min(ti
g)
)

, (3)



Sensors 2021, 21, 6276 14 of 20

where m is the number of frames and ti
g is the global timestamp of the ith frame, respectively.

The AMD measures the average difference between the maximum and minimum global
timestamp at each frame and, as a result, can observe the accuracy of synchronization at
each frame. Because the AMD measures the biggest difference between the cameras’ global
timestamps at a certain frame, the AMD can be considered as the multiview camera system’s
average maximum error. Therefore, a multiview camera system with the maximum error
less than an interval between frames (i.e., 33 ms for 30 FPS) can be considered synchronized.
Even though the AMD was useful in evaluating the performance of the multiview camera
system as a whole, it was difficult to evaluate the correctness of the synchronization
between the cameras.

Thus, we defined another metric, the root mean delay variation (RMDV), to evaluate
the synchronization as:

RMDV =
1
m

m

∑
i=1

√√√√ 1
n

n

∑
j=1

(
ti,j
g − t̂i

g

)
, (4)

where n is the number of sensors and ti,j
g is the global timestamp of the jth sensor on the

ith frame, respectively. t̂i
g is the median value of the ith frame. The RMDV computes the

mean variation of the delay between the cameras at each frame. In order to minimize the
effect of outliers, the median of cameras’ global timestamp at each frame was used as a
reference instead of the mean to compute the RMDV. The RMDV computes differences
between the median global timestamp and the other cameras’ global timestamps and uses
them to accurately measure the correctness of the synchronization.

Tables 2 and 3 show the average quantitative results over the frames of the AMD and
RMDV, and the best results shown in tables are bolded for each measurement. Furthermore,
the quantitative measurements for each frame are represented in Figures 9 and 10. The
results showed no apparent variations in the error over time regardless of the synchroniza-
tion methods. This implies that the synchronization of a single host was efficiently handled
with the external trigger and the global timestamps, and a major cause of the synchroniza-
tion errors came from the synchronization error between the hosts. Our synchronization
method considering time synchronization delay and network synchronization delay showed
the best performance by efficiently tackling the host synchronization error, followed by
applying only network synchronization delay or time synchronization delay or neither of them.
From this result, we can observe that the effect of these two delays was notable.

Table 2. Errors of 15 FPS according to delay (ms).

Added Delay AMD RMDV

Network synchronization 11.1648 5.2394

Time synchronization 15.3963 6.9118

Both delays 5.8539 3.8868

None 547.5033 194.8521

Table 3. Errors of 45 FPS according to delay (ms).

Added Delay AMD RMDV

Network synchronization 3.9161 2.7667

Time synchronization 4.2783 3.3137

Both 2.4380 1.8044

None 538.0590 190.7111



Sensors 2021, 21, 6276 15 of 20

(a) AMD (b) RMDV

Figure 9. Errors of 15 FPS according to the delay for each frame (ms).

(a) AMD (b) RMDV

Figure 10. Errors of 45 FPS according to the delay for each frame (ms).

When testing the synchronization without considering the delays, the master host
was configured as a local time synchronization server, and the hosts’ system clocks were
synchronized through the NTP using the time synchronization service provided by the
operating system. Without the consideration of the two delays, errors in the synchronization
significantly increased. When comparing the result obtained by applying only network
synchronization delay or time synchronization delay, a test that only took into account the time
synchronization caused more delay in the synchronization of the cameras than the opposite
test. This was because sending and receiving data via the network communication took
more time than calling the get-time and set-time operating system functions.

Table 3 shows similar results, but all tests achieved lower synchronization errors than
the corresponding tests in Table 2. Because the time interval between two frames becomes
smaller as the frame rate increases, as a result, delays between the cameras also decreased
relatively.

4.3. Qualitative Evaluation

The qualitative result was obtained by capturing a sequence of a person rotating in
the middle of a multiview camera system with a digital clock in his hand. The digital
clock was displayed on a tablet (SamSung Galaxy Tab S7) with a 120 Hz display. The digital
clock used in this experiment displayed the time in milliseconds in order to capture any
delays between the cameras capturing the frame. Displaying time in milliseconds was
appropriate for the qualitative result because the time interval between frames at 90 FPS is
around 11.11 ms. While capturing a sequence, the digital clock was visible from 6 RealSense
RGB-D cameras. Thus, 6 images from the RGB and depth cameras were presented for the
qualitative result.



Sensors 2021, 21, 6276 16 of 20

The qualitative results obtained from GenLock mode are shown in Figure 11. As
the sequences were captured with GenLock mode, the frame rate was set to half of the
supported frame rate. The result showed that GenLock mode accurately captured infrared
sequences synchronously. However, GenLock mode does not support synchronization
between color and depth (or infrared) cameras. The inconsistent times displayed on the
digital clocks show the incorrect synchronization between the color and infrared cameras.

The qualitative results gained from the RGB-D cameras synchronized with the pro-
posed method and the NTP are shown in Figures 12 and 13. The images using the conven-
tional time synchronization protocol showed different times displayed on the tablet. This
difference in time illustrates that the cameras were not correctly synchronized. However,
the frames captured by the synchronized cameras showed the identical time displayed
by the digital clock. The capturing of the identical time proved that the RealSense RGB-D
cameras were synchronized and were able to simultaneously capture the frames.

Figure 11. Qualitative evaluation of the RealSense GenLock synchronization.

Figure 12. Qualitative evaluation of the proposed method. All digital clocks on the tablet show
identical times.

Figure 13. Qualitative evaluation of the NTP synchronization. The digital clocks on the tablet do not
show identical times.



Sensors 2021, 21, 6276 17 of 20

4.4. Evaluation on 3D Reconstruction

Three-dimensional reconstruction was the ultimate goal of the multiview camera
system. Therefore, we evaluated the improvements of the proposed method on the recon-
struction accuracy when capturing objects using multiple cameras with multiple hosts. The
average L2 reprojection error to depth maps [32] was used to quantitatively evaluate the
reconstructed 3D objects from multiple views.

For the 3D reconstruction from the multiview depths, we first calibrated the depth
sensors with the standard multicamera calibration method using a checkerboard [33]. Then,
using the extrinsic calibrated depth camera, 3D points in the local camera coordinates
could be integrated into the global coordinates. The Poisson reconstruction method [34]
was applied to the integrated point set to construct a 3D mesh of the target object.

The reprojection error was computed by projecting the vertices of the mesh to every
depth map to match the corresponding points of the depth map to the 3D vertices. When
calculating the reprojection error, the 3D vertices invisible to each depth camera were
excluded, which could be determined by the Z-buffer test [35]. Once the correspondences
between the mesh vertices and depth points were matched, the L2 distance errors in the
global coordinates were calculated and averaged.

Table 4 summarizes the reprojection errors without and with the proposed synchro-
nization method when capturing the objects with Slave and Full Slave modes. When captur-
ing the sequence without the proposed synchronization, the standard NTP synchronization
scheme was used. The result demonstrated that the proposed method was significantly
beneficial in obtaining accurate and reliable reconstruction results from the multiview cam-
era system. The qualitative comparison is described in Figure 1. The mesh reconstructed
using the synchronization scheme without the proposed method showed notable artifacts
arising due to the misalignment among the multiview depths. This misalignment was
caused by inaccurate synchronization between hosts. In contrast, the proposed method
enabled robust reconstruction from multiple cameras with multiple hosts by efficiently
addressing the synchronization problem.

Table 4. Reprojection errors (cm).

Added Delay Mean ±Std.

RealSense Sync. 9.7030 12.1391

Proposed Sync. 2.3942 1.7967

4.5. Discussion

The proposed method resolved the problems in the Slave and Full Slave synchro-
nization modes of the RealSense devices by synchronizing multiple hosts’ times. In our
experiments, the RealSense cameras were connected to the motherboard USB 3.0 inter-
faces of the hosts for communication without using an additional PCI-E extension card. It
has been reported that the number of RealSense sensors that a host can support is up to
three [18] without using any extension card. Thus, we used six hosts to support eighteen
cameras for our experiments. However, if utilizing extension cards for the USB interface,
a host can support a wider bandwidth and stably connect to more cameras, as long as
the number of cameras connected to a host does not exceed the hardware limitation. In
this case, the multiview camera system can be accurately synchronized using a single host
without the proposed method.

Furthermore, although the GenLock synchronization mode of the RealSense cameras
drops the frame rate by half and cannot synchronize RGB cameras simultaneously with
cameras, GenLock mode can be used for other cameras to accurately synchronize multiple
RGB-D cameras without the frame rate loss, when all cameras start capturing at the same
time. In other words, other depth cameras can be easily synchronized without the proposed
synchronization method if using GenLock mode.



Sensors 2021, 21, 6276 18 of 20

However, in many practical applications, it is difficult to specify the starting point of
capturing for each camera. As a result, the typical GenLock synchronization scheme cannot
be used, but the proposed method can still be used to accurately synchronize multiple
cameras with GenLock mode. In addition, our method does not limit the number of devices
that can be synchronized by linearly increasing the number of hosts, allowing the multiview
camera system to be largely scalable.

5. Conclusions

In this paper, we proposed a novel synchronization method for synchronizing Re-
alSense RGB-D cameras in a multiview camera system. The proposed method tackles the
limitation of RealSense camera synchronization, where multiple camera synchronizations
using multiple hosts are possible with dropping the frame rate and depth cameras only. As
the number of RealSense cameras to be used increases, more hosts are required to support
a multiview camera system. To synchronize the RealSense cameras connected to different
hosts, the hosts’ system clocks were synchronized in order to correctly regress the global
timestamps of all cameras. The system clocks were synchronized by estimating the delay
occurring while synchronization takes place. The estimation of the delay minimized the
offset between the master host’s system clock and the slave hosts’ system clocks. The result
quantitatively and qualitatively showed that our method reduces the synchronization error
between sensors significantly, enabling simultaneous capturing by numerous RealSense
cameras without dropping the frame rate. We expect that our method will be helpful in
various applications of computer vision related to 3D reconstruction [9,32].

Author Contributions: Conceptualization, S.L.; methodology, J.H., J.K., and S.L.; software, J.H. and
J.K.; validation, writing and editing, H.Y. and M.J.; supervision, J.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the Institute for Information and Communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2016-0-00406, SIAT CCTV
Cloud Platform).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Editor and the reviewers for their contribu-
tions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
nor in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

RGB-D Red, green, blue-depth
3D Three-dimensional
SDK Software development kit
USB Universal serial bus
GenLock Generator locking
ToF Time-of-flight
LiDAR Light detection and ranging
IR Infrared
OS Operating system
PPS Pulses per second
AMD Average maximum delay
RMDV Root mean delay variation



Sensors 2021, 21, 6276 19 of 20

FPS Frames per second
NTP Network Time Protocol

References
1. Kang, J.; Lee, S.; Jang, M.; Lee, S. Gradient Flow Evolution for 3D Fusion from a Single Depth Sensor. IEEE Trans. Circuits Syst.

Video Technol. 2021, in press. [CrossRef]
2. Li, Y.; Wang, Z. 3D Reconstruction with Single-Shot Structured Light RGB Line Pattern. Sensors 2021, 21, 4819. [CrossRef]

[PubMed]
3. Onizuka, H.; Hayirci, Z.; Thomas, D.; Sugimoto, A.; Uchiyama, H.; Taniguchi, R.i. TetraTSDF: 3D human reconstruction from a

single image with a tetrahedral outer shell. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 6011–6020.

4. Prasad, M.; Fitzgibbon, A. Single view reconstruction of curved surfaces. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; Volume 2, pp. 1345–1354.

5. Kar, A.; Tulsiani, S.; Carreira, J.; Malik, J. Category-specific object reconstruction from a single image. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1966–1974.

6. Zhang, Z.; Wang, C.; Qin, W. Semantically Synchronizing Multiple-Camera Systems with Human Pose Estimation. Sensors 2021,
21, 2464. [CrossRef] [PubMed]

7. Dou, M.; Khamis, S.; Degtyarev, Y.; Davidson, P.; Fanello, S.R.; Kowdle, A.; Escolano, S.O.; Rhemann, C.; Kim, D.; Taylor, J.; et al.
Fusion4D: Real-time performance capture of challenging scenes. ACM Trans. Graph. 2016, 35, 1–13. [CrossRef]

8. Collet, A.; Chuang, M.; Sweeney, P.; Gillett, D.; Evseev, D.; Calabrese, D.; Hoppe, H.; Kirk, A.; Sullivan, S. High-quality streamable
free-viewpoint video. ACM Trans. Graph. 2015, 34, 1–13. [CrossRef]

9. Kang, J.; Lee, S.; Jang, M.; Yoon, H.; Lee, S. WarpingFusion: Accurate multiview TSDF fusion with local perspective warp.
In Proceedings of the IEEE International Conference on Image Processing, Anchorage, AK, USA, 19–22 September 2021.

10. Zhang, L.; Xia, H.; Qiao, Y. Texture Synthesis Repair of RealSense D435i Depth Images with Object-Oriented RGB Image
Segmentation. Sensors 2020, 20, 6725. [CrossRef] [PubMed]

11. Liu, J.; Yuan, Y.; Zhou, Y.; Zhu, X.; Syed, T.N. Experiments and analysis of close-shot identification of on-branch citrus fruit with
RealSense. Sensors 2018, 18, 1510. [CrossRef] [PubMed]

12. Yang, K.; Wang, K.; Hu, W.; Bai, J. Expanding the detection of traversable area with RealSense for the visually impaired. Sensors
2016, 16, 1954. [CrossRef] [PubMed]

13. Buonamici, F.; Furferi, R.; Governi, L.; Lazzeri, S.; McGreevy, K.S.; Servi, M.; Talanti, E.; Uccheddu, F.; Volpe, Y. A practical
methodology for computer-aided design of custom 3D printable casts for wrist fractures. Vis. Comput. 2020, 36, 375–390. [CrossRef]

14. Yuan, M.; Li, X.; Xu, J.; Jia, C.; Li, X. 3D foot scanning using multiple RealSense cameras. Multimed. Tools Appl. 2021, 80, 22773–22793.
[CrossRef]

15. Curto, E.; Araújo, H. 3D Reconstruction of Deformable Objects from RGB-D Cameras: An Omnidirectional Inward-facing
Pulti-camera System. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Application, Online, 8–10 February 2021; pp. 544–551.

16. Corporation, I. Cross-Platform Library for Intel® RealSense™ Depth Cameras. Available online: https://github.com/
IntelRealSense/librealsense (accessed on 15 September 2021).

17. Grunnet-Jepsen, A.; Sweetser, J.N.; Woodfill, J. Best-Known-Methods for Tuning Intel® RealSense™ D400 Depth Cameras for Best
Performance; Intel Corporation: Satan Clara, CA, USA, 2018; Volume 1.

18. Grunnet-Jepsen, A.; Winer, P.; Takagi, A.; Sweetser, J.; Zhao, K.; Khuong, T.; Nie, D.; Woodfill, J. Using the RealSense D4xx Depth
Sensors in Multi-Camera Configurations; Intel Corporation: Santa Monica, CA, USA, 2018.

19. Grunnet-Jepsen, A.; Takagi, A.; Sweetser, J.; Khuong, T.; Tong, D. White Paper: External Synchronization of Intel® RealSense™
Depth Cameras. 2018. Available online: https://dev.intelrealsense.com/docs/external-synchronization-of-intel-realsense-depth-
cameras (accessed on 15 September 2021).

20. Mirsu, R.; Simion, G.; Caleanu, C.D.; Pop-Calimanu, I.M. A pointnet-based solution for 3D hand gesture recognition. Sensors
2020, 20, 3226. [CrossRef] [PubMed]

21. Silva, V.; Soares, F.; Leão, C.P.; Esteves, J.S.; Vercelli, G. Skeleton Driven Action Recognition Using an Image-Based Spatial-
Temporal Representation and Convolution Neural Network. Sensors 2021, 21, 4342. [CrossRef] [PubMed]

22. Rosas-Cervantes, V.A.; Hoang, Q.D.; Lee, S.G.; Choi, J.H. Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo
Algorithm on a Multi-Level Surface. Sensors 2021, 21, 4588. [CrossRef] [PubMed]

23. Teng, X.; Zhou, G.; Wu, Y.; Huang, C.; Dong, W.; Xu, S. Three-Dimensional Reconstruction Method of Rapeseed Plants in the
Whole Growth Period Using RGB-D Camera. Sensors 2021, 21, 4628. [CrossRef] [PubMed]

24. Giancola, S.; Valenti, M.; Sala, R. Metrological qualification of the Orbbec Astra S structured-light camera. In A Survey on 3D
Cameras: Metrological Comparison of Time-of-Flight, Structured-Light and Active Stereoscopy Technologies; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 61–69.

25. Tölgyessy, M.; Dekan, M.; Chovanec, L.; Hubinskỳ, P. Evaluation of the azure Kinect and its comparison to Kinect V1 and Kinect
V2. Sensors 2021, 21, 413. [CrossRef] [PubMed]

http://doi.org/10.1109/TCSVT.2021.3089695
http://dx.doi.org/10.3390/s21144819
http://www.ncbi.nlm.nih.gov/pubmed/34300559
http://dx.doi.org/10.3390/s21072464
http://www.ncbi.nlm.nih.gov/pubmed/33918255
http://dx.doi.org/10.1145/2897824.2925969
http://dx.doi.org/10.1145/2766945
http://dx.doi.org/10.3390/s20236725
http://www.ncbi.nlm.nih.gov/pubmed/33255511
http://dx.doi.org/10.3390/s18051510
http://www.ncbi.nlm.nih.gov/pubmed/29751594
http://dx.doi.org/10.3390/s16111954
http://www.ncbi.nlm.nih.gov/pubmed/27879634
http://dx.doi.org/10.1007/s00371-018-01624-z
http://dx.doi.org/10.1007/s11042-020-09839-w
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://dev.intelrealsense.com/docs/external-synchronization-of-intel-realsense-depth-cameras
https://dev.intelrealsense.com/docs/external-synchronization-of-intel-realsense-depth-cameras
http://dx.doi.org/10.3390/s20113226
http://www.ncbi.nlm.nih.gov/pubmed/32517141
http://dx.doi.org/10.3390/s21134342
http://www.ncbi.nlm.nih.gov/pubmed/34201991
http://dx.doi.org/10.3390/s21134588
http://www.ncbi.nlm.nih.gov/pubmed/34283123
http://dx.doi.org/10.3390/s21144628
http://www.ncbi.nlm.nih.gov/pubmed/34300368
http://dx.doi.org/10.3390/s21020413
http://www.ncbi.nlm.nih.gov/pubmed/33430149


Sensors 2021, 21, 6276 20 of 20

26. Van Nam, D.; Gon-Woo, K. Solid-State LiDAR based-SLAM: A Concise Review and Application. In Proceedings of the IEEE
International Conference on Big Data and Smart Computing, Jeju Island, Korea, 17–20 January 2021; pp. 302–305.

27. Grunnet-Jepsen, A.; Takagi, A.; Sweetser, J.; Khuong, T.; Tong, D. White Paper: Multi-Camera Configurations with the Intel®

RealSense™ LiDAR Camera L515. 2018. Available online: https://dev.intelrealsense.com/docs/lidar-camera-l515-multi-camera-
setup (accessed on 15 September 2021).

28. Vit, A.; Shani, G. Comparing rgb-d sensors for close range outdoor agricultural phenotyping. Sensors 2018, 18, 4413. [CrossRef]
[PubMed]

29. Mills, D.; Martin, J.; Burbank, J.; Kasch, W. Network Time Protocol Version 4: Protocol and Algorithms Specification, RFC 5905,
Internet Engineering Task Force. 2010. Available online: http://www.ietf.org/rfc/rfc5905.txt (accessed on 21 July 2021).

30. Johannessen, S. Time synchronization in a local area network. IEEE Control. Syst. Mag. 2004, 24, 61–69.
31. Mills, D.L. Internet time synchronization: The network time protocol. IEEE Trans. Commun. 1991, 39, 1482–1493. [CrossRef]
32. Jang, M.; Lee, S.; Kang, J.; Lee, S. Active Stereo Matching Benchmark for 3D Reconstruction using Multi-view Depths. In Proceed-

ings of the IEEE International Conference on Signal and Image Processing Applications, Online, 11 September 2021.
33. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
34. Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the Eurographics Symposium on Geometry

Processing, Sardinia, Italy, 26–28 June 2006; Volume 7.
35. Greene, N.; Kass, M.; Miller, G. Hierarchical Z-buffer visibility. In Proceedings of the Conference on Computer Graphics and

Interactive Techniques, Anaheim, CA, USA, 2–6 August 1993; pp. 231–238.

https://dev.intelrealsense.com/docs/lidar-camera-l515-multi-camera-setup
https://dev.intelrealsense.com/docs/lidar-camera-l515-multi-camera-setup
http://dx.doi.org/10.3390/s18124413
http://www.ncbi.nlm.nih.gov/pubmed/30551636
http://www.ietf.org/rfc/rfc5905.txt
http://dx.doi.org/10.1109/26.103043
http://dx.doi.org/10.1109/34.888718

	Introduction
	Related Work
	RGB-D Camera
	Time Synchronization

	Camera Synchronization Method
	Single Host Synchronization
	Multiple Host Synchronization

	Experimental Section
	Implementation Detail
	Capturing Studio Specification
	External Trigger Synchronization
	Data Gathering

	Quantitative Evaluation
	Qualitative Evaluation
	Evaluation on 3D Reconstruction
	Discussion

	Conclusions
	References

