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Abstract: Locomotion recognition and prediction is essential for real-time human–machine interactive
control. The integration of electromyography (EMG) with mechanical sensors could improve the
performance of locomotion recognition. However, the potential of EMG in motion prediction is rarely
discussed. This paper firstly investigated the effect of surface EMG on the prediction of locomotion
while integrated with inertial data. We collected EMG signals of lower limb muscle groups and linear
acceleration data of lower limb segments from ten healthy participants in seven locomotion activities.
Classification models were built based on four machine learning methods—support vector machine
(SVM), k-nearest neighbor (KNN), artificial neural network (ANN), and linear discriminant analysis
(LDA)—where a major vote strategy and a content constraint rule were utilized for improving
the online performance of the classification decision. We compared four classifiers and further
investigated the effect of data fusion on the online locomotion classification. The results showed that
the SVM model with a sliding window size of 80 ms achieved the best recognition performance. The
fusion of EMG signals does not only improve the recognition accuracy of steady-state locomotion
activity from 90% (using acceleration data only) to 98% (using data fusion) but also enables the
prediction of the next steady locomotion (∼370 ms). The study demonstrates that the employment of
EMG in locomotion recognition could enhance online prediction performance.

Keywords: data fusion; multimodal sensing; inertial sensor; surface electromyography; locomotion
recognition; locomotion prediction; machine learning

1. Introduction

Movement disorders often occur as a manifestation of neurological diseases such as
strokes, spinal cord injuries, and Parkinson’s disease [1]. Lower limb exoskeletons can
augment the motor function of patients, enhance their locomotion abilities, and improve
motion rehabilitation outcomes [2,3]. To restore the user’s normal natural gait patterns, an
advanced human–machine interaction is essential to recognize and predict the locomotion
states and dynamically adapt to different locomotion modes.

Various types of sensors have been utilized in the application of locomotion recogni-
tion. Among them, inertial measurement units (IMUs) that consist of accelerometers and
gyroscopes have been widely employed in wearable systems due to their small size, low
cost, and ease of use [4–6]. San-Segundo et al. [6] proposed a human activity recognition
method based on a hidden Markov model that recognized six different daily activities:
walking, walking upstairs, walking downstairs, sitting, standing, and lying. Haoyu Li et al. [4]
developed an adaptive online classification model using a single IMU sensor placed on a
shoe. The algorithm, based on a nonparametric triplet Markov model, obtained an overall
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accuracy above 98% for activity recognition of walking, running, stair ascent, and descent.
Martinez-Hernandez and Dehghani-Sanij [5] introduced an adaptive Bayesian inference
system method in which three sensors were used to recognize walking on different ter-
rains such as level ground walking, a ramping ascent, and a descent. The Bayesian-based
algorithm achieved a response time of 40 ms with an average accuracy of 99.82%. Studies
have shown that the systems using inertial sensors can obtain a high classification accuracy
in the recognition of activities. However, as inertial signals represent the current motion
state of the human body segment, it is still challenging to predict the motion intention of
locomotion activities using only inertial data.

As surface electromyography (sEMG) could directly represent muscle activation pat-
terns reflecting the volitional control of human motion [7], it has been used in multiple
studies to identify locomotion activities [8–12]. Huang et al. [13] developed a gait-phase-
dependent model using sixteen channels of lower limb sEMG signals to identify seven
locomotion modes. Xi et al. [8] investigated a series of sEMG features and recognition
methods for daily activity monitoring using EMG signals of the rectus femoris, semitendi-
nosus, tibialis anterior, and gastrocnemius. However, current EMG-based models cannot
achieve a precise recognition performance compared with methods using inertial data due
to a low signal-to-noise ratio and a high variability in EMG [7].

A few studies have considered fusing inertial data and sEMG for locomotion pre-
diction, which was established by classifying transitions before the critical events of gait
such as a heel strike or toe off. Peng et al. [14] proposed a multilevel classifier model in
which sEMG was used to build a gait transition classification model and the fusion of
sEMG and inertial sensors was used to build a steady-state locomotion recognition model.
Hu et al. [15] proposed a double-model method with the integration of data from IMU
and EMG sensors, which could accurately classify locomotion activities and gait phases.
The transition between the locomotion activities and the steady-state modes were usually
considered as independent tasks in the classification [16], which may result in the expense
of using complicated classifiers and a computational burden for embedded robotic systems.
However, the physiological property of sEMG that activates before an actual kinematic per-
formance and its impact on the prediction of motion intention have been rarely discussed
in current studies. We hypothesized that the employment of EMG enables the model built
based on steady-state locomotion data to predict the next locomotion activity in advance
during the gait transition (before the steady-state locomotion activity began).

In this paper, we investigated the impact of EMG-fused inertial data on locomotion
recognition and prediction. Classification models were built based on four machine learn-
ing methods—support vector machine (SVM), k-nearest neighbor (KNN), artificial neural
network (ANN), and linear discriminant analysis (LDA)—where a major vote strategy and
a content constraint rule were utilized for the classification decision. Assuming that the
methods should be able to predict steady locomotion activities during gait transitions, the
effects of window sizes and the used data type for the online recognition performance based
on the four different machine learning models were analyzed. Our results demonstrate
that the classification models trained based on the data during steady-state locomotion can
predict the locomotion modes during the gait transition. SEMG plays an essential role in
enhancing the prediction ability of the classifiers whereas the prediction performance for
different locomotions is varied.

2. Methods
2.1. Experiment Setup

The study was approved by the Ethics Committee of Tianjin University and was
conducted at the Motion Rehabilitation Lab, Tianjin University. Ten healthy young peo-
ple (5 males and 5 females, age 23.00 ± 0.82 years old, weight 60.71 ± 11.25 kg, height
168.00 ± 9.40 cm) were enrolled in the experiment. The participants did not have any
movement disorders and related neurological diseases. All participants provided written
informed consent before the experiment.
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As shown in Figure 1, fourteen major muscles of both legs were selected, namely:
rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF), semitendinosus (Sem), tibialis
anterior (TA), medial gastrocnemius (MG), and lateral gastrocnemius (LG). The linear
acceleration of lower limb segments, including the pelvis, thigh, shank, and foot, were
also measured during the experiment. Wearable motion analysis systems (Ultium EMG
and Research Pro IMU, Noraxon USA, Inc., Scottsdale, AZ, USA) were used to collect
sEMG signals and acceleration data synchronously at a sampling rate of 2000 Hz. A
sixteen-camera optical motion capturing system (Vicon Bonita, Vicon Motion System, Ltd.,
Oxford, UK) was used as a reference system for identifying the locomotion modes. The
participants also wore a retroreflective marker set of Plug-in-Gait (PiG) (Figure 1). The
marker trajectories were recorded at a sampling rate of 100 Hz. Noraxon MyoSync and
Vicon Locker were used to synchronize the instruments and ensure the alignment of the
time frames.
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Figure 1. Experiment setup for data collection. The participant wore a set of sensors and retroreflec-
tive markers. EMG electrodes were placed on 14 muscles—rectus femoris (RF), vastus lateralis (VL),
biceps femoris (BF), semitendinosus (Sem), tibialis anterior (TA), medial gastrocnemius (MG), and
lateral gastrocnemius (LG)—of both legs. Motion sensors were placed on the pelvis, thigh, shank,
and foot. A Plug-in-Gait (PiG) marker set was used as a reference for identifying the locomotion
activities and gait cycles.

2.2. Experimental Protocol

Before the experiment, the participants performed a static calibration trial in which
they stood straight and still. Seven locomotion activities, including sit (S), stand (ST),
level walk (LW), stair ascent (SA), stair descent (SD), ramp ascent (RA) and ramp descent
(RD), were studied in the experiment. Each participant was required to complete the
following tasks based on daily locomotion activities where different locomotion modes
are usually combined (Figure 2): (1) S–ST–LW–ST; (2) ST–LW–SA–LW–ST; (3) ST–LW–SD–
LW–ST; (4) ST–LW–RA–LW–ST; (5) ST–LW–RD–LW–ST. The trials were designed based on
common daily locomotion activities during daily life. The participants completed 30 trials
at comfortable speeds for every task. They ambulated over a 4-step staircase for SA and SD
and walked over a ramp with an angle of 30◦. The participants were required to initiate
and terminate each locomotion activity with the right leg.

2.3. Data Processing

Raw sEMG signals were preprocessed using a fourth-order zero-lag Butterworth
band-pass filter (30–300 Hz) and a sixth-order zero-lag Butterworth low-pass filter (25 Hz)
was used for linear acceleration data. The preprocessed sEMG and acceleration data were
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then segmented for the different locomotion modes based on the gait cycles. One gait cycle
was defined as two consecutive heel strikes (HSs) of the ipsilateral limb. The HS event was
detected based on Zeni’s algorithm [17] using trajectory markers of the heel, toe, and pelvis.
We defined that a locomotion mode started with foot heel strikes on the terrain and ended
when the last HS occurred on the same terrain. If the participant switched locomotion
modes during a gait cycle, the gait cycle was regarded as a gait transition, which could be
defined using the hip flexion angular velocity obtained from the PiG model.
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Figure 2. Schematic illustration of the experimental protocol. (a) Sit (S)–stand (ST)–level walk (LW)–
stand (ST); (b) stand (ST)–level walk (LW)–stair ascent (SA)/stair descent (SD)–level walk (LW)–stand
(ST); (c) stand (ST)–level walk (LW)–ramp ascent (RA)/ramp descent (RD)–level walk (LW)–stand
(ST); (d) photos of one participant who performed the locomotion transition with her right leg.

The root mean square (RMS) of the sEMG and linear acceleration data was calculated
with the use of the sliding window analysis method [18]. The RMS features were then
normalized with the minimum and the maximum values in all activities and combined to
form a vector as follows:

Xi = {Ti_e1, . . . , Ti_em, . . . , Ti_e14, Ti_a1, . . . , Ti_an, . . . , Ti_a21} (1)
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where i represents the ith sample instant, m represents the channel number of sEMG, and n
corresponds with the 7 channels of the 3-axis linear acceleration data. The Xi contained 35
feature samples in total.

Four machine learning methods were applied in this study to develop locomotion
recognition models: support vector machine (SVM), k-nearest neighbor (KNN), artificial
neural network (ANN), and linear discriminant analysis (LDA). SVM is defined by a
separating hyperplane that maximizes the interval between each class and enables the
mapping of features to a high-dimensional feature space through the kernel function to
achieve a nonlinear classification. KNN is another common biological signal classifier
based on the traditional machine learning algorithm [13] in which features are classified by
measuring the Euclidean distance between the different feature vectors. LDA is considered
a very simple but effective method and the ANN model enables the description of nonlinear
class boundaries between classes [19]. A five-fold cross-validation was used to train our
models and the model performance was then evaluated with the use of a separate test
dataset. The model parameters used for each machine learning method are shown in Table 1.

Figure 3 illustrated the construction, training, and testing of the locomotion recognition
models. Thirty trial data of each task were randomly divided into six sets. Five sets were
used to train the classifier whereas the other set was used for evaluating the offline and
online classification performance. In the online recognition test, a fixed-length window
slides along the sEMG and linear acceleration data with a step of one sample, the RMS
features are calculated, and online recognition results can be obtained for each sample
instant. A major vote strategy and a content constraint rule were used to improve the
stability and accuracy of the online performance. The classifier output did not update until
at least 100 previous overlapping windows agreed upon a locomotion mode. It needs to
be noted that the features were updated when one new data sample fed into the classifier
so that the classification model had a common 50 ms delay for locomotion recognition.
Moreover, the classification output only updated when the transition of the locomotion
modes fitted the transition logic rules, as shown in Table 2. We stipulated that the S mode
could only be converted to the ST, the ST could only be transited to the LW, the LW could
be converted to any locomotion mode except the S, and the locomotion activities on stairs
and ramps could only be converted to the LW. The recognition result of the classifier would
then be the output if it met the abovementioned major vote strategy and content constraint
rule. The above procedure was carried out using MATLAB software (The Mathworks,
Natick, MA, USA).
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Table 1. The settings of the parameters in the four classifiers.

Classifiers Classifier Parameter Settings

SVM

The Radial Basis Function (RBF) kernel method and C-SVM were used to
build a ‘one-to-one’ multiclassification model; the optimal penalty factor c

and kernel function parameter g were obtained using a five-fold
cross-validation.

KNN The K value was obtained using a five-fold cross-validation.
LDA The Gauss kernel function was used as the kernel function.

ANN A two-layer network was constructed with 30 hidden nodes and a selected
learning rate of 0.01 and optimized with a gradient descent algorithm.

Table 2. A set of logic rules for the locomotion transitions. The 0 and 1 values represent whether the
specific gait transition was allowed.

Current Mode

ST S LW SA SD RA RD

Previous
Mode

ST 1 0 1 0 0 0 0
S 1 1 0 0 0 0 0

LW 1 0 1 1 1 1 1
SA 0 0 1 1 0 0 0
SD 0 0 1 0 1 0 0
RA 0 0 1 0 0 1 0
RD 0 0 1 0 0 0 1

2.4. Data Analysis

The classification accuracy (CA), specificity (SP), and sensitivity (SE) were used for
the evaluation of the online recognition performance of the steady-state locomotion, shown
in Equation (2):

CA =
Ntrue

Nall
× 100%

SEi =
TP

TP + FN
× 100% SE =

∑K
i=1 SEi

K
(i = 1, · · · , 7)

SPi =
TN

TN + FP
× 100% SP =

∑K
i=1 SPi

K
(i = 1, · · · , 7) (2)

where Ntrue is the number of correctly classified samples, Nall is the total number of
test samples, and i represents the seven locomotion activities. SE and SP are the mean
sensitivity and specificity of the locomotion recognition for all activities, respectively.

The predictive accuracy (PA) and response time (RT) were calculated in the online
performance validation, as shown in Equation (3):

PA =
Npred_tran

Nall_tran
× 100% RT = Tactual − Tpred (3)

where Npred_trans is the number of correctly predicted samples of the next locomotion
activity in the gait transition states and Nall_trans is the total sample number of transitions
in the trials. Tactual is the actual start time of the steady-state locomotion mode and Tpred is
the moment when the mode is correctly predicted by the models. The negative value of RT
illustrates that the model could predict the steady-state locomotion mode ahead of when
the mode actually occurred.

In addition, an analysis of variance (ANOVA) was used to investigate the impact of
the different classification methods on the locomotion recognition performance and then
the difference between the four classifiers was compared by a post-hoc t-test. The t-test
was used to investigate the impact of different data types on the locomotion recognition
and prediction performance. The statistical significance was set as p < 0.05.
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3. Results

As shown in Figure 4, the CA and PA increased and RT decreased with an increasing
sliding window size until a threshold of approximately 140 ms was reached for all four
classifiers. The window size had a greater impact on the prediction performance (varying
from 85% to 96%) compared with the recognition of the locomotion modes (from 91%
to 97%). All four classifiers performed a high variability in the RT in Figure 4; however,
their performance still varied based on the window size. To achieve an optimal online
performance, a sliding window size of 80ms was selected for SVM, KNN, and ANN and
set as 50ms for LDA for the following investigation.

The performance of all four classifiers is detailed in Table 3. The results of the one-
way ANOVA showed that the classification method had a significant effect on the CA
(p = 0.0097) in the steady-state locomotion recognition. All four classification methods
achieved a high recognition accuracy (CA > 96.4%, SE > 93.6%, SP > 99.4%) and SVM
performed the best (CA = 98.78 ± 1.04%, SE = 98.46 ± 0.49%, SP = 99.76 ± 0.04%). It
should be noted that only steady-state data were used for the training model and unused
transition data could be correctly identified as the next locomotion mode. The methods had
a good online locomotion prediction performance during the gait transitions (PA > 93%,
RT < −213 ms). However, the prediction performance was significantly different when
different models were applied (PA: p = 0.0023; RT: p = 0.0046). SVM reached the highest
PA of 97.69 ± 0.85% in the four classifiers and its RT value (−372.63 ms) was significantly
smaller than the other three classifiers (KNN: p = 0.0085, LDA: p < 0.001, ANN: p < 0.001).
Overall, SVM had the best performance in the locomotion recognition and prediction.
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Figure 4. Effects of sliding window sizes and classifiers on: (a) the classification accuracy, (b) the predictive accuracy, and (c)
the response time. The results were averaged over 10 participants. The shadows represent the +/– standard deviation (SD).

Table 3. Performance comparison of the four classifiers.

SVM KNN LDA ANN p-Value

CA (%) 98.78 ± 1.04 97.84 ± 1.24 96.43 ± 1.57 97.74 ± 1.04 0.0097
SE (%) 98.46 ± 0.87 97.61 ± 1.16 93.66 ± 1.43 97.58 ± 1.09 0.0963
SP (%) 99.76 ± 0.04 99.62 ± 0.09 99.43 ± 0.21 99.60 ± 0.17 0.2691
PA (%) 97.69 ± 0.85 95.91 ± 1.27 93.99 ± 1.44 96.49 ± 0.96 0.0023
RT (ms) −372.63 ± 352.91 −232.64 ± 325.60 −213.37 ± 319.81 −218.97 ± 318.13 0.0046

Significant differences (p < 0.05) for the one-way ANOVA are indicated in bold and italics.

The confusion matrix for the steady-state locomotion recognition of seven locomotion
modes for the four classification methods is shown in Figure 5. We observed that SVM
had the highest classification accuracy of the seven locomotion modes (95–100%) followed
by KNN (94–100%) and ANN (94–100%). LDA had a large difference in the recognition
performance for different locomotion modes (79–100%). The S mode (sitting) was the
most distinguishable from other modes. The classifiers performed significantly worse
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for identifying the RA and SA compared with the others. Most errors in the RA and SA
recognition were misclassified as the LW mode (Figure 5).
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Figure 5. Confusion matrix for the steady-state locomotion recognition of seven locomotion modes for the four classifiers:
(a) SVM; (b) KNN; (c) LDA; (d) ANN. The results in the confusion matrices were averaged over ten participants. The
ST, S, LW, SA, SD, RA, and RD denote standing, sitting, level walking, stair ascent, stair descent, ramp ascent, and ramp
descent, respectively.

We also compared the online performance of the SVM model with the use of only
sEMG, the acceleration and fusion of sEMG, and linear acceleration data. Figure 6 shows
that the data fusion method significantly enhanced the classification accuracy (p < 0.001)
and sensitivity (p < 0.001) for the steady-state locomotion recognition compared with that
using one type of data alone. SEMG provided essential information for the prediction of
locomotion where the performance using the sEMG signals was significantly better than
with the use of the linear acceleration data alone (p < 0.001), as shown in Figure 7. SVM
had a better prediction performance in the gait transitions from other locomotion modes
(i.e., SA, SD, RA, RD) to the LW compared with that from the LW to other modes. The
combination of sEMG and the acceleration data relatively reduced the response time but
no significant statistical difference in most transition modes was observed, as shown in
Figure 7. However, the data fusion significantly improved the recognition performance.
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4. Discussion

SEMG reflects the physiological properties of neuromuscular control in locomotion. In
this study, we hypothesized that the use of EMG could enhance the steady-state locomotion
prediction during gait transitions and investigated the feasibility of locomotion prediction
based on a fusion of sEMG and inertial data. The results demonstrated that sEMG provided
essential information for the recognition of locomotion mode prior to initiation.

The role of sEMG fused with inertial data for enhanced locomotion recognition and
prediction was firstly investigated in this study. Gao et al. [20] integrated sEMG signals
with a ground reaction force in a locomotion recognition model. The method effectively
improved the recognition accuracy (96.8%) compared with the model based on only me-
chanical data (80.96%). The study from Ai et al. [21] showed that a model based on the data
fusion of sEMG and acceleration achieved over a 5% higher accuracy in the recognition of
five daily activities than that using acceleration data alone. Spanias et al. [22] demonstrated
that the combination of EMG and kinematic information enabled a significant reduction of
the online error rate for the locomotion mode recognition from 14.1% (mechanical sensor
data only) to 7.9% (fusion data). Consistent with previous studies [20–28], the results
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showed that the fusion of EMG signals improved the recognition accuracy of the steady-
state locomotion activities from 90% (using acceleration data only) to 98% (using data
fusion), which effectively supports the important role of sEMG in locomotion recognition.
However, the early activation property of EMG is often overlooked. These studies usually
regarded the locomotion transition as an independent state that could be recognized in
order to detect the wearer’s intention for the next locomotion. We used the data from
the steady-state locomotion to train the models, which could accurately predict the next
locomotion activity in advance during the gait transition. This finding supported that
sEMG could contribute significantly to locomotion prediction as muscle neural activation
occurs prior to the actual movement.

Regarding locomotion recognition based on fused data, SVM performed the best
on the classification and prediction in the four classifiers. Huang et al. [13] fused EMG
and GRF to identify six locomotion activities and the results showed that SVM had a
higher accuracy than LDA. Li et al. [28] developed a locomotion classification system for
lower limb hemiparetic patients. The empirical results demonstrated that SVM (95.2%)
produced a better classification accuracy than KNN (89.2%). The outperformance of SVM
on locomotion recognition was also pointed out by Zhou et al. [29] and SVM had the highest
accuracy (94.29%) compared with KNN and ensemble learning algorithms. The results of
our study were consistent with previous studies. As three traditional machine learning
methods were utilized, SVM and KNN performed significantly better than LDA in steady-
state locomotion recognition and SVM could predict the next steady-state locomotion
mode 140–158 ms earlier than the other two models. We additionally employed a neural
network approach, which has been suggested to greatly improve the nonlinearity, solving
complex problem ability, and accuracy for locomotion recognition [30]. However, ANN had
a similar recognition performance to those of SVM and KNN and did not show advantages
in the locomotion prediction. The results suggested that neural network methods are not
always the most effective for locomotion recognition and prediction based on fused data
with limited samples. Traditional machine learning methods such as SVM can achieve an
optimal recognition performance.

The results showed that the online performance of the models based on four dif-
ferent machine learning methods was varied, corresponding with the selection of the
window size. The trade-off between the PA and RT needs to be considered. A value
of 80 ms was selected for SVM, KNN, and ANN whereas the window size was set to
50 ms for LDA in order to achieve an optimal recognition performance. The window
size was significantly shorter than those used in previous studies where a data length of
150–300 ms was usually selected [21,27,29,31,32]. These studies chose a long sliding win-
dow for achieving a high recognition accuracy but sacrificed the response time. Our study
proposed a major vote strategy and a content constraint rule that significantly increased
the online performance of the locomotion recognition. The classifiers, especially SVM,
obtained a high predictive accuracy (97.69 ± 0.85%) and correct prediction ahead of the
next locomotion (−372.63 ± 352.91 ms) with a significantly shorter window size.

To ensure smooth locomotion transitions of the exoskeleton control model, locomotion
recognition models in most studies need to predict the next locomotion mode before the
‘critical moment’ of the gait transition such as the toe off the ground moment during the
gait transition from level walking to stair descent [13,33]. A model with the use of the
principle of maximum entropy and prior probability based on the fusion of sEMG signals
and ground reaction forces was built for the recognition of five locomotion tasks and it
could predict the locomotion transitions 410–620 ms in advance [33]. Zhang et al. used a
similar approach to predict locomotion transitions 100–300 ms ahead [34]. These studies
mainly focused on locomotion prediction and its applications in prosthetic control for
amputees where the gait transitions were recognized as independent states based on the
next locomotion activity predicted. In our study, we aimed to test the hypothesis that
the recognition method enabled the prediction of the motion intention before steady-state
locomotion activities with a high accuracy when not using the training data from the gait
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transitions. We observed that the prediction of locomotion modes varied corresponding
with different gait transitions by taking advantage of the neural properties of sEMG that
muscles activate before limb movement. The SVM model could predict the LW before the
heel off in the transition of ST to LW and before the toe off when moving from stairs and/or
ramps to level walking and could recognize the next locomotion mode in the middle swing
in the transitions from the LW to the RA or SA. The results verified the effectiveness of
sEMG signals for locomotion prediction.

It should be noted that a few limitations exist in this study. Only the RMS features of
sEMG and acceleration data were used in the classification models. The results from [8]
showed that the Wilson amplitude (WAMP), mean of amplitude (MA), energy of wavelet
coefficient (EWT), and energy of wavelet packet coefficient (EWP) features are distinguished
in locomotion activities. A feature fusion method will be considered in future work to
further improve the prediction of locomotion activities. Secondly, data from the gait
transitions were not used for the model training. The gait transition provided additional
information on the locomotion prediction. Due to high variance in muscle activations
and limb movements during the gait transitions, the recognition accuracy of the gait
transitions was significantly lower than the steady-state locomotion modes [35]. Our
locomotion recognition model enabled the prediction of locomotion with a high accuracy
(97.69 ± 0.85%) whilst not using training data from gait transitions, which proved the role
of sEMG in the locomotion prediction. In following works, we will consider identifying
related research on the motion intention prediction of the gait transition. As we focused
on discussing the role of sEMG in locomotion recognition and prediction in the current
study, the four most commonly used classifiers were selected. The employed classification
methods may ignore temporal dynamics, which could be considered to further enhance
the classification performance and reduce the time delay.

5. Conclusions

In this paper, we investigated the role of sEMG in locomotion recognition and predic-
tion based on data fusion with acceleration data. Four classifiers were developed and SVM,
KNN, ANN, and LDA methods were used. Their performance in steady-state locomotion
recognition was compared and SVM achieved the best recognition accuracy. The effects
of the window size and data type were further investigated. The results showed that
the addition of EMG signals not only improved the online recognition accuracy of the
steady-state locomotion activities but also enabled the model built based on the steady-
state data to predict the next locomotion activity during gait transitions. Therefore, the
neurological properties of EMG should be considered when developing classifiers for
locomotion recognition or prediction, which may help to improve the real-time recognition
performance and reduce the computational burden. This work has the potential to develop
a real-time human–machine interactive control for a smooth gait transition.
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