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Abstract: Cardiac auscultation is one of the most popular diagnosis approaches to determine car-
diovascular status based on listening to heart sounds with a stethoscope. However, heart sounds
can be masked by visceral sounds such as organ movement and breathing, and a doctor’s level of
experience can more seriously affect the accuracy of auscultation results. To improve the accuracy of
auscultation, and to allow nonmedical staff to conduct cardiac auscultation anywhere and anytime, a
hybrid-type personal smart stethoscope with an automatic heart sound analysis function is presented
in this paper. The device was designed with a folding finger-ring shape that can be worn on the
finger and placed on the chest to measure photoplethysmogram (PPG) signals and acquire the heart
sound simultaneously. The measured heart sounds are detected as phonocardiogram (PCG) signals,
and the boundaries of the heart sound variation and the peaks of the PPG signal are detected in
preprocessing by an advanced Shannon entropy envelope. According to the relationship between
PCG and PPG signals, an automatic heart sound analysis algorithm based on calculating the time
interval between the first and second heart sounds (S1, S2) and the peak of the PPG was developed
and implemented via the manufactured prototype device. The prototype device underwent accuracy
and usability testing with 20 young adults, and the experimental results showed that the proposed
smart stethoscope could satisfactorily collect the heart sounds and PPG signals. In addition, within
the developed algorithm, the device was as accurate in start-points of heart sound detection as profes-
sional physiological signal-acquisition systems. Furthermore, the experimental results demonstrated
that the device was able to identify S1 and S2 heart sounds automatically with high accuracy.

Keywords: finger-ring shape; heart sounds; phonocardiogram; photoplethysmogram; Shannon
entropy; stethoscope

1. Introduction

According to a World Health Organization (WHO) report, cardiovascular disease
is the leading cause of death worldwide, responsible for 8.9 million deaths in 2019 [1].
However, a portion of these deaths could be prevented through early diagnoses based
on monitoring cardiovascular-related physiological signals such as heart sound, heart
rate, electrocardiogram (ECG) readings, and blood pressure [2–5]. Therefore, a variety of
approaches to detect the early symptoms of cardiovascular disease based on physiological
signal measurement technologies have been developed. A Holter monitor is one of the
most popular professional ECG acquisition devices, featuring a dozen electrodes that attach
to the surface of the user’s chest and record ECG variation over a 24 h period. The recorded
ECG data is expressed in raw data that can only be analyzed by medical staff and is thus
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not suitable for personal use. Health bands and smart watches with PPG sensors are also
one possible solution to provide individual users with readings of their heart rates and
SpO2 measurement via wearable technology. The small size, light weight, and strong
practicality of wearable technology makes it suitable for anyone to use throughout the day.
However, the displayed heart rate and SpO2 are calculated by sample data measured every
10 s, which introduces an error value due to incomplete data and computing processing.
Furthermore, these data are measured from the wrist or fingers, not directly from the heart.

Heart sounds are the most intuitive signal for observing the status of the cardiovascular
system. A normal cardiac cycle comprises four main segments: the first heart sound (S1),
the systole pause interval, the second heart sound (S2), and the diastole pause interval [6].
For heart-sound auscultation, the most common method is to use analog stethoscopes with
a frequency range of 20 to 200 Hz and a “bell” that is placed on the chest [7,8]. The measured
sounds pass through the connecting tube to the doctor’s ears for heart auscultation.

However, ambient noise and the doctor’s level of experience affect the accuracy of the
auscultation and can cause misdiagnoses. S. Mangione and L.Z. Nieman conducted a study
with 453 physicians and 88 medical students to investigate the accuracy of stethoscope use
in detecting heart status abnormalities [9]. All participants listened to 12 cardiac events
recorded directly from patients, followed by a multichoice questionnaire, and only 20% of
the cardiac events were properly recognized. With the development of digital technologies,
3M (USA) and other medical-device companies have presented various smart stethoscopes
utilizing digital acoustic sensors to record the heart sound into a phonocardiogram (PCG)
for signal processing and visualization [10–12]. However, all commercial products focus
solely on signal-processing methods to analyze heart sounds, which still suffer from lower
accuracy and other limitations in the diagnosis of abnormal heart status.

For a more objective method of analyzing heart sounds, multiple comparison methods
for cardiovascular-system-related physiological signals have been used. R. J. Lehner et al.
developed an ECG, PPG, PCG three-channel microcontroller unit (MCU) system for seg-
mentation and characterization of the PCG signal [13]. The PCG cycle was computed
along time and frequency domains using ECG and carotid pulse as references, but only
the heart-murmur signal was able to be detected and classified, and the system itself was
complex due to the three-channel signal measurement. Then, Shen Lu et al. demonstrated
that the parameters of PPG variability (PPGV) are highly correlated with the parameters
of heart-rate variability (HRV), and indicate that PPGV could be used as an alternative
measurement of HRV [14]. Following this, K. Ajay Babu et al. presented a signal-processing
method that can identify S1 and S2 heart sounds automatically by simultaneously record-
ing, processing, and fusing the extracted fiducial points of the PCG and PPG signals [15,16].
The method has great potential in improving identification accuracy and robustness in the
presence of both murmurs and environmental noises.

Continuing from the above studies, a collapsible finger-ring-shaped hybrid smart
stethoscope, as shown in Figure 1, is presented in this paper. The device can be worn on
the finger and then placed on the right side of the chest where the second intercostal space
and parasternal line intersect for simultaneous PPG signal measurement and heart-sound
acquisition [17]. The detected PCG signal and the peak of the PPG is detected in prepro-
cessing by an advanced Shannon entropy envelope. According to the relationship between
heart sound and PPG signal, an automatic PCG analysis algorithm based on computing the
time interval between S2 and the peak of PPG was developed, and implemented through a
high-performance Bluetooth Low Energy (BLE) SoC ARM processor for system control,
data processing, and wireless communication. The computed data was transmitted to an
Android-OS-based smartphone application for data display and storage. The prototype
device was manufactured and subjected to accuracy and usability testing by: comparing
its readings with those of a professional physiological signal acquisition device; enlisting
20 young adults to test the performance of PPG measurements and heart-rate acquisition;
and verifying the accuracy of the developed automatic heart-sound-analysis algorithm in
S1 and S2 heart-sound extraction.
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Figure 1. Concept of the proposed finger-ring-shaped smart stethoscope: (a) structure and operating principle of the smart
stethoscope for PPG signal measurement and heart-sound acquisition; (b) collapsing mechanism of the smart stethoscope
for compact portability.

2. Methods
2.1. Development of the Automatic Heart-Sound-Analysis Algorithm

The proposed hybrid smart stethoscope was not only designed for heart-sound aus-
cultation, but also for automatic heart-sound analysis. Because one cycle of the PPG signal
occurs between the first systole and the next systole, the key idea of this device is to mea-
sure heart sounds and the PPG signal simultaneously, and then, using the PPG signals in
the same cycle as a reference, to identify the S1 and S2 heart sounds. Before the identifying
process, there are two preprocessing phases that use the raw data of the heart sounds and
the PPG signals measured by the sensors in the device: one that determines the boundaries
of S1 and S2 heart sounds, and another that detects the peak of PPG signals.

Figure 2 shows the procedure of heart-sound preprocessing from the raw data to
the boundary determinations based on variational mode decomposition (VMD) [9,18,19].
The heart sounds pass through a digital filter that rejects baseline components and high-
frequency noises first, from which the PCG signal, including S1 and S2 sounds, and systolic
murmurs are detected. Due to the likely existence of varying peak envelopes in the heart
sounds, a third-order Shannon entropy was implemented in this study to reduce the peak
variations, following the formula:

SE = − 1
N

N

∑
i=1

∣∣∣x 3
(i)

∣∣∣log
∣∣∣x 3

(i)

∣∣∣ (1)

where x is the PCG signal processed by the adaptive amplitude thresholding rule to reduce
the number of false positives, and N is the length of the moving integration window, which
was set to 20 samples (20 ms) with a sampling frequency of 1 kHz to be compliant with
the duration of S1 and S2 heart sounds [16]. With a smoothing process based on linear
zero-phase filtering with a rectangular impulse response, the multiple peaks and spikes of
the PCG signals were reduced, as shown in Figure 2b. The boundaries of the local heart
sounds were found by the envelope threshold rule as defined below:

GL(i) =

{
1

(
0.01 + SEavg < SE

)
0 (Otherwise)

(2)

where SEavg is the mean value of the Shannon entropy (SE) as calculated by Equation (1),
and GL is the gate signal. The determined boundary of the PCG signals that indicated the
start-point and end-point of the heart sounds by distinguished positive and negative edges,
respectively, are shown in Figure 2c. The final results of the heart-sound preprocessing are



Sensors 2021, 21, 6294 4 of 15

shown in Figure 2d, demonstrating that preprocessing was capable of accurately locating
the start-points of the heart sounds.
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Figure 2. The procedure of heart sound preprocessing to determine boundaries of S1 and S2 heart sounds: (a) detected PCG
signals; (b) smooth Shannon entropy envelope; (c) gate signal after envelope thresholding; (d) start-point detection.

Figure 3 shows the procedure of the PPG signals as processed from pulse waveform
delineation to the systolic peak detection. To reduce background noise, the frequency
threshold range was set between 0.5 and 5 Hz, which accorded with the maximum heart
rate, 220 bpm [20]. A smoothing algorithm was implemented to smooth the PPG signals
as follows:

SDn =
∑n

i=1 Ai

n
(3)

where n is the number of moving averages, A is the noise-reduced PPG signal, and the
number of zero crossings is set to 10. Shannon entropy also was implemented in the PPG
signal preprocessing to determine the systolic peak. The location of the systolic peak was
determined by finding the maximum of the windowed sequence, which is centered at the
detected peak location with a spread of 10 samples.

The S1 heart sound corresponds with the systole, and the time it takes for blood to
flow from the heart to the finger is less than 500 ms. In addition, the S2 heart sound always
occurs around the peak of the PPG signal ± 20 ms [21–25]. Therefore, an identification rule
was developed to distinguish the S1 and S2 heart sounds by calculating the time interval
between the peak of the PPG signal and the start-point of heart sound as follows:

HSsp =

 S1sp

(
Tpeak − 500 ms ≤ Tsp < Tpeak − 20 ms

)
S2sp

(
Tpeak − 20 ms ≤ Tsp ≤ Tpeak + 20 ms

) (4)

where Tpeak is the time of the PPG signal’s peak, and Tsp is the time of the PCG signal’s
start-point in the same cardiac cycle. The start-point of S1 sound (S1sp) was distinguished
in an extracted local sound segment between the Tpeak − 500 ms and Tpeak − 20 ms in the
time-domain waveform. The start-point of S2 sound (S2sp) also was distinguished by the
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same method, with an extracted local sound segment classified around the peak of the PPG
signals between Tpeak − 20 ms and Tpeak + 20 ms.
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2.2. Embedded System Design of the Proposed Finger-Ring-Shaped Hybrid Smart Stethoscope

For heart sounds and PPG signal acquisition, a digital microelectromechanical systems
(MEMS) microphone and a PPG sensor were selected and incorporated in the design
of the proposed finger-ring-shaped hybrid smart stethoscope. The digital microphone
(ICS-43434, TDK, Tokyo, Japan) had a high SNR of 64 dBA and a wideband frequency
response range of 20 to 30 MHz, suitable for recording the heart-sound frequency range
of 20 to 400 Hz. In addition, the sensitivity tolerance of the sensor was ±1 dB, which
enabled high-performance microphone arrays without the need for system calibration. The
microphone was available as a surface-mount package and had an I2S interface that allows
it to be connected to the MCU directly. For PPG signal measurement, an ultra-low-power,
completely integrated optical pulse oximeter and heart rate sensor (MAX86140, Maxim
Integrated, San Jose, CA, USA) was selected for the PPG sensor. The sensor was designed
with optimized architecture for heart-rate measurement and SpO2 monitoring. The sensor
had a low-noise signal-conditioning analog front-end with 19-bit ADC, an industry-leading
ambient-light-cancellation circuit, and a picket-fence detect-and-replace function. With
a standard serial peripheral interface (SPI)-compatible interface, the sensor could also be
connected to the MCU directly.

Due to the proposed device’s requisite small size, long hours of use, and familiar
wireless communication protocol for personal usage as a finger-ring-shaped device, a
BLE-supporting ARM Cortex-M4 microcontroller (EFR32MG, SiliconLabs, San Jose, CA,
USA) was chosen as the main processor for system control, data processing, and wireless
communication. This chip includes a 40 MHz ARM Cortex-M4 MCU with 1024 kB flash
memory, 256 kB RAM, and a rich peripheral set to easily connect the digital microphone
and PPG sensor. With 19 dBm maximum output power and a receiver sensitivity of
−102.7 dBm, the device provides an excellent link budget for greater range and reliable
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Bluetooth communications. The MCU was built with innovative low-energy techniques
and fast wake-up times for extended usage. In addition, the chip was packaged as a ball
grid array (BGA) package, which minimized the size of the printed circuit board (PCB).
The BLE contained in the MCU was intended to provide considerably reduced power
consumption and lower cost while maintaining a similar communication range, using the
same 2.4 GHz radio frequencies as industrial, scientific, and medical (ISM) bands, aimed at
novel applications in the medical field. In addition, mobile operating systems, including
iOS and Android, natively support BLE and allow for easy connection between mobile
devices and the proposed smart stethoscope.

Figure 4 shows the block diagram of the proposed smart stethoscope’s embedded
system. Because the two selected sensors provided digital data output with I2S and
I2C communication protocols, respectively, only heart sound and PPG signal processing
had to be considered in the design of the proposed system’s digital signal processing.
However, because the two physiological signals must be acquired simultaneously, the
data-acquisition procedure was separated into two channels for each heart sound and PPG
signal measurement, operating as parallel processes. Considering that heart sounds are an
audio stream, a ping-pong buffer was designed for this system to process the heart sounds
continuously, from receiving sensor data to extracting the data features. Preprocessed data
of the heart sounds and PPG signals were merged and processed through the developed
automatic heart-sound-analysis algorithm. Finally, the processed data was transmitted by
the BLE to the smartphone application for data display and storage.
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3. Materials and Experiment
3.1. Design and PCG Manufacture

To allow the proposed smart stethoscope to be folded for easy use and portability,
the circuit of the device was designed and separated into two parts: the main part for
de-vice control and power supply, and the sensor part for heart-sound and PPG-signal
measurement. Figure 5a shows the PCB artwork of the main part, with the MCU located
in the center of the board to shorten the distance from supplied electrical elements and
reduce the electrical noise in the circuit. The power supply included a battery-recharge
circuit and a micro-A USB port, and was designed to be on the right side of the MCU to
provide a 3 V DC current to the device and to recharge the battery. A 2.4 GHz chip-shaped
antenna was positioned on the top of the board to avoid electrical interference from the
other components that can reduce signal strength. The sensor part’s PCB artwork design,
including the acoustic sensor and the PPG sensor circuits, is shown in Figure 5b. To acquire
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the heart sound accurately and with maximal efficacy, the microphone was located in the
center of the sensor part. The PPG sensor was fixed on the top of the layout to access the
distal phalanges of the finger, which is the optimal position for measuring PPG signals.
Two sets of corresponding connection pins in each part directly connected the two parts
using a flat cable.
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Following the PCB artwork design, the PCBs for prototype assembly of the proposed
hybrid smart stethoscope were manufactured, as shown in Figure 6. Both PCBs were
constructed as two-layer PCBs, and 1608-size electrical components were used to minimize
the size of the PCBs. In addition, all components of the main board were affixed to the
top of the PCB to obtain an optimized antenna pattern and reduce heat conductivity while
recharging the battery. For the sensor board, because the PPG sensor must face the user’s
finger, the PPG sensor was affixed to the top of the PCB with 2 LEDs for light transmission.
The microphone was also attached to the top of the PCB due to the location of the sound-
acquisition hole on the bottom of the microphone. Therefore, a small hole was drilled
through the PCB under the sensor to connect to the membrane of the stethoscope’s head
for heart-sound transmission.

3.2. Case Design and Prototype Assembly

Figure 7 shows 3D models of the proposed finger-ring-shaped hybrid personal smart
stethoscope in user and collapsed modes. The device’s design followed the shape of the
letter “Z”, with top, middle, and bottom parts. The top and bottom parts were designed to
contain the main and sensor PCBs, respectively, and the middle part to house the finger
hole so the user could easily keep the device on their finger. In addition, the two lateral
sides of the finger hole were designed with arches to make the device more ergonomic
for the adjacent fingers. Relying on two joint connections, the top and bottom parts were
connected by the middle part, which pushes the top and bottom parts apart from one
another when opened for user mode, and back together for the collapsed and portable
mode, as shown in Figure 7c.

Following the 3D model of the proposed device, its case was manufactured by a 3D
printer with acrylonitrile butadiene styrene (ABS) material, as shown in Figure 8. Because
the PPG sensor operation was based on an optical-measurement method, the cover of the
sensor was made of transparent acrylic material, allowing light to pass between the sensor
and the finger. In addition, the cover followed the contours of the finger so the finger could
reach the sensor more closely. Figure 8c shows the bottom of the prototype device that
was placed on the chest for heart-sound acquisition. A thinner plastic membrane, which
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was sensitive to heart-sound vibration was used to better capture heart sounds. A small
hole with the same diameter as the hole of the microphone was also drilled in the center of
the membrane for sound conduction. Sound passed from membrane to the microphone
through a 3 mm-long pipe that was used to connect the sensor PCB and membrane.
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3.3. Experiment to Test the Performance of the Proposed Smart Stethoscope

To test the performance of the hybrid smart stethoscope prototype, two goals were
set in the experiments: (1) testing the accuracy of heart-sound and PPG-signal measure-
ment; and (2) testing the accuracy of automatic S1 and S2 heart-sound detection using the
developed algorithm. Twenty healthy adult subjects (gender: male; age: 24–27 years old)
with no history of cardiovascular disease were invited to join this study to record the heart
sounds and PPG signals. The subjects were informed of the experiment’s procedure and
this study’s purpose to evaluate the smart stethoscope, and signed informed-consent forms
prior to the experiments.

In this study, to test the performance of heart-sound and PPG-signal measurements,
an MP160 multichannel physiological data-acquisition system (BIOPAC System, Inc., USA)
was used as a reference for comparison with the prototype device’s data acquisition. During
the experiment, the subject was asked to sit comfortably in a chair and relax for about
two minutes. A contact acoustic transducer (SS17LA) and a PPG sensor (TSD200C), also
provided by the MP160 system, were attached to the surface of the subject’s chest and to the
middle finger of the left hand, respectively. At the same time, the subject was required to
wear the prototype device on the middle finger of the right hand and to place it on the chest
near the contact acoustic transducer to measure the heart sounds together. Figure 9 shows
the photo of the experiment’s setup and procedure. The experiment of heart-sound and
PPG-signal-data acquisition was conducted by two devices simultaneously in one minute.
In addition, for data storage, a high-performance PC was used to receive and store the data
from the MP160 and the prototype device by USB cable and Bluetooth, respectively.
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4. Results and Discussion
4.1. Results of PCG and PPG Detection

Figure 10 shows an example of heart sounds and PPG signals measured by both
the manufactured finger-ring-shaped hybrid personal smart stethoscope prototype and
the MP160 for one subject. Heart sounds measured and detected as a PCG signal by
the prototype device and the MP160 are shown in Figure 10a,b. Because the PCG signal
was processed with digital data directly and preprocessed to suppress environment noise
and S3 and S4 heart sounds in the prototype device, S1 and S2 heart sounds were more
prominent, with large signal variation, and could be distinguished better than the signals
measured by the MP160. Using Pearson’s cross-correlation, similarities between the two
devices’ detected PCG signals were observed to evaluate the performance of the prototype
device in heart-sound measurement. As Figure 10c shows, two signals with a smaller
difference in amplitude and time variation were observed.
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signal detected by the prototype device; (b) PCG signal detected by the MP160; (c) cross-correlation results of the PCG signal
comparison; (d) PPG signal detected by the prototype device; (e) PPG signal detected by the MP160; (f) cross-correlation
results of the PPG signals comparison.

For PPG-signal detection, the sample signals measured by the prototype device and
the MP160 are shown in Figure 10d,e, respectively. Because the baseline noise and residual
noise were suppressed by preprocessing after the data acquisition in the prototype device,
the PPG signals acquired by the prototype device were more distinct and stable than
the signals acquired by the MP160. Therefore, as Figure 10f shows, a smaller difference
between two signals was observed after the two PPG signals were also treated with the
same cross-correlation algorithm to evaluate the performance of the prototype device in
PPG-signal measurement. Table 1 shows the calculated cross-correlation value of the heart
sounds and PPG signals measured by the prototype device and of the BIOPAC system
for 20 subjects, with means of 0.98 ± 0.02 and 0.96 ± 0.03, respectively. Both values were
approximately 1, meaning the heart sound and PPG signal measured by the prototype
device and the MP160 were similar and positively correlated. Therefore, the experimental
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results demonstrated that the PCG signals and PPG signals detected by the prototype
were credible.

Table 1. Cross-correlation values for heart sounds and PPG signals measured by the prototype device
and the MP160.

Signal Group
Heart Sounds PPG Signals

Mean Std. Mean Std.

Original 0.98 0.02 0.96 0.03

4.2. Automatic Identification of S1 and S2 Heart Sounds

To test the performance of the proposed smart stethoscope for automatic identification
of S1 and S2 heart sounds using the developed algorithm based on PPG signal reference,
the measured PCG signals were interpreted by the developed algorithm to compare with
the envelogram-calculation approach commonly used to find the boundaries of S1 and S2
heart sounds.

One cardiac cycle is equal to one set of S1 and S2 heart sounds, as well as to one cycle
of PPG signals. Therefore, the measured PPG signals were designated as the basis from
which to calculate the heart rates of each subject and to predict the number of cardiac cycles
first. As shown in Figure 11, the average heart rates of the 20 subjects measured by the
prototype device and by MP160 were 68.3 ± 3.2 bpm and 69.2 ± 5.2 bpm, respectively. The
Wilcoxon paired-samples test showed that two data points were similar (p = 0.736). Thus,
the predicted total number of S1 and S2 heart sounds was set as 138 for each subject in
this experiment.
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Based on the detected PCG signals, the total number of S1 and S2 heart sounds as
calculated by the envelogram approach is shown in Figure 12. The sum totals of S1 and S2
heart sounds were 132.6 ± 5.27 as PCG signals measured by the prototype device, and
138.4 ± 8.32 as PCG signals measured by the MP160. The PCG signals measured by the
prototype device were also imported as raw data into BIOPAC’s AcqKnowledge software
for signal segmentation under the same conditions as the experiments, and the resulting
sum totals of the prototype device were less than those of the MP160, which was assumed
to be due to the resolution of the proposed device’s microphone sensor being lower
than that of the MP160′s acoustic transducer, causing PCG signals to be detected with
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lower amplitudes. These problems were also reported in several studies for automatic
identification of S1 and S2 heart sounds based on the envelogram approach with no
physiological signal reference [26–28].
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To improve the accuracy of heart-sound detection and distinguish S1 and S2 heart
sounds, we attempted automatic S1 and S2 heart sound identification for one subject using
the developed algorithm based on calculating the time interval between peaks of the PPG
signals and start-points of the heart sounds (Figure 13). First, the detected PCG signal and
PPG signal were combined in the same time domain to observe the relationship between
the heart sounds and PPG signals. Second, the positive peaks of the PPG signals for
each cycle were detected and the start-points of the heart sound variation were calculated
simultaneously. Finally, using the identification rule as developed and mentioned in
Section 2, the start-points of S1 and S2 heart sounds that referred to the time of the PPG
signal’s peak were identified.

Figure 13 shows the heart sounds interpreted by the developed algorithm to identify
the start-points of S1 and S2 heart sounds. The number of start-points of heart sounds
detected by the developed algorithm was 138.2 ± 7.8, which was higher than the results
acquired by the envelogram approach with no PPG signal reference. In addition, the
accuracy of heart-sound detection was increased to 98%, which was close to the results
acquired by the MP160 with a small difference error (p = 0.840), as shown in Figure 14a. The
performance of the developed algorithm in automatic S1 and S2 heart-sound identification,
as shown in Figure 14b, with a similarity analysis carried out by the Wilcoxon paired-
samples test, showed that there were no significant differences (p = 0.948) between the
start-points of S1 and S2 heart sounds as distinguished by the developed algorithm.

The experimental results demonstrated that the proposed finger-ring-shaped hybrid
personal smart stethoscope was able to simultaneously measure the heart sounds and
PPG signals with a high accuracy similar to that of professional physiological systems. In
addition, within the developed automatic heart-sound-analysis algorithm based on a PPG
signal reference, the proposed device proved to be highly accurate in automatic S1 and S2
signal identification.
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Figure 14. Results of the automatic identification of S1 and S2 heart sounds by the developed algorithm: (a) results for
comparison of start-points of heart sounds detected by the prototype device using the developed algorithm and the MP160;
(b) boxplot of the similarity analysis with a Wilcoxon paired-samples test for automatic start-points of S1 and S2 heart-sound
identification using the developed algorithm.

For future development, the head structure of the proposed smart stethoscope will be
further improved based on acoustic theory to maximize the resolution of sound measure-
ment. Future iterations of the device will also be considered, such as allowing the smart
stethoscope to be used over clothing, or to be used while walking, running, or sleeping.

5. Conclusions

In this paper, a finger-ring-shaped hybrid personal smart stethoscope with an au-
tomatic heart-sound-analysis function was presented. Different from common single
head stethoscopes, the proposed smart stethoscope was implemented with an automatic
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heart-sound-analysis algorithm based on a PPG signal reference that was simultaneously
measured with the heart sounds to automatically identify S1 and S2 heart sounds. To
achieve this goal, the proposed smart stethoscope was developed with a finger-ring shape
for personal one-hand usage, and was able to simultaneously measure the heart sounds
and PPG signals through its novel design: one side was attached to the surface of the
chest for heart-sound acquisition, and the other side was attached to the finger to measure
PPG signals. The proposed smart stethoscope was manufactured as a prototype device to
evaluate its performance in heart-sound and PPG-signal measurement, and to observe the
accuracy of the developed algorithm in automatic identification of S1 and S2 heart sounds.
Through an in vivo experiment with 20 subjects, the experimental results showed that the
prototype device was highly accurate, with results similar to those of professional physio-
logical acquisition systems. In addition, the experimental results showed the developed
heart-sound-analysis function based on calculating the time interval between the start-
point and PPG signal peaks could automatically identify S1 and S2 heart sounds accurately.
Furthermore, with a 400 mAh rechargeable battery and a low-power, high-performance
BLE SoC ARM processor, the power consumption of the prototype in operation status was
30 mAh, giving it a battery life of more than 10 h per charge. The manufactured proto-
type device demonstrated that the proposed finger-ring-shaped hybrid personal smart
stethoscope can be used for self-monitoring of heart sounds anywhere and anytime.
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