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Abstract: Heart rate (HR) is one of the essential vital signs used to indicate the physiological health
of the human body. While traditional HR monitors usually require contact with skin, remote
photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle light changes
of skin through a video camera. Given the vast potential of this technology in the future of digital
healthcare, remote monitoring of physiological signals has gained significant traction in the research
community. In recent years, the success of deep learning (DL) methods for image and video analysis
has inspired researchers to apply such techniques to various parts of the remote physiological signal
extraction pipeline. In this paper, we discuss several recent advances of DL-based methods specifically
for remote HR measurement, categorizing them based on model architecture and application. We
further detail relevant real-world applications of remote physiological monitoring and summarize
various common resources used to accelerate related research progress. Lastly, we analyze the
implications of research findings and discuss research gaps to guide future explorations.

Keywords: noncontact monitoring; heart rate measurement; remote photoplethysmography; rPPG;
deep learning

1. Introduction

Human vital signs, such as heart rate (HR), body temperature (BT), respiratory rate
(RR), blood oxygen saturation (SpO2), heart rate variability (HRV), and blood pressure
(BP), are common indicators used for monitoring the physiological status of the human
body [1–4]. They can be used to estimate and analyze a person’s physical health, detect
possible diseases, and monitor recovery. In particular, closely monitoring a person’s HR can
enable early detection and prevention of cardiovascular problems, such as atherosclerosis
(heart block) and arrhythmia (irregular heart rate) [5].

Photoplethysmography (PPG) is a common method for measuring HR. It utilizes a
light source and photodetector to measure the volumetric changes of blood vessels under
the skin [6,7]. As the light source illuminates the tissue, small variations in reflected or
transmitted light intensity from blood flow are captured by the photodetector, yielding the
so-called PPG signal [7]. The absorption of light follows the Beer–Lambert law, which states
that the light absorbed by blood is proportional to the penetration of light into the skin and
the concentration of hemoglobin in the blood [8]. During the cardiac cycle, minute varia-
tions in hemoglobin concentration cause fluctuations in the amount of light absorbed by the
blood vessels, resulting in changes of skin intensity values. Pulse oximeters are commonly
used for non-invasive measurement of these slight variations in the skin through PPG.
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However, as with other wearables and contact-based devices (e.g., smartwatches), they
are unsuitable for monitoring newborns or patients with fragile skin [9,10]. Furthermore,
long-term monitoring may lead to discomfort and even the risk of skin infections [11]. As a
result, remote PPG (rPPG) methods have emerged as an attractive alternative.

During the last decade, rPPG methods have gained significant traction. In rPPG,
a digital camera (e.g., webcam, standard RGB camera, near-infrared camera) functions as a
photodetector that captures subtle color changes of the skin; ambient light typically serves
as the light source [12]. Figure 1 illustrates the principle of rPPG with the dichromatic
reflection model (DRM) [13]. According to the DRM, the signals captured by the digital
camera are a combination of specular reflections (surface reflections) and diffuse reflections
(body reflections). Specular reflections occur at the interface of the incident light and the
skin, which do not contain meaningful physiological signals. Thus, rPPG methods utilize
signal processing techniques to separate the specular reflections and extract the diffuse
reflections associated with the underlying signals of interest. The ability for contactless
measurement can significantly reduce monitoring costs and enable applications where
traditional contact sensors would be suboptimal [14]. However, while rPPG technology
will undoubtedly play a pivotal role in the future of digital healthcare, the extracted signals
are inherently much weaker and require meticulous processing.

Figure 1. Principle of remote photoplethysmography (rPPG) based on the dichromatic reflection
model (DRM). The digital camera captures the specular and diffuse reflection from ambient light.
The specular reflection contains surface information that does not relate to physiological signals,
while the diffuse reflection is modulated by blood flow. The rPPG signal can be obtained from further
signal processing.

Verkruysse et al. [15] was the initial research that used a consumer-level camera with
ambient light for measurement of rPPG signals. In their work, the green channel was
found to contain the most significant PPG signal. Poh et al. [16] applied a blind source
separation (BSS) technique, independent component analysis (ICA), on the recorded RGB
color channels from a webcam to recover HR. Lewandoska et al. [17] applied a similar
method, principal component analysis (PCA), which reduced the computational complexity
while achieving a similar accuracy to ICA. However, these methods are subject to motion
artifacts. To improve the motion robustness of the rPPG model, a chrominance-based
approach (CHROM) was proposed [18]. In this approach, the dichromatic reflection model
was used to describe the light reflected from the skin as specular and diffuse reflection
components [19]. De Haan and van Leest [20] defined a blood-volume pulse vector, which
represents the signature of blood volume change, to identify the subtle color changes due
to the pulse from motion artifacts based on RGB measurement. Later, Wang et al. [21]
proposed a data-driven algorithm, spatial subspace rotation (2SR), to estimate a spatial
subspace of skin pixels and evaluate its temporal rotation to measure HR. Wang et al. [13]
further proposed a plane-orthogonal-to-skin (POS) algorithm that defines a projection plane
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orthogonal to skin tone in the RGB space to extract the pulse signal. Further information
about early conventional rPPG methods can be found in the following surveys [14,22,23].

Most conventional methods for remote HR measurement follow a similar framework
as shown in Figure 2. Firstly, a digital camera captures a video recording of the subject.
Next, a face detection algorithm, such as the Viola and Jones algorithm [24], is applied to
obtain the bounding box coordinates of the subject’s face. This is followed by selecting
regions of interest (ROIs), such as the cheeks, to obtain an area that contains a strong signal.
The pixels within the ROI(s) are used for rPPG signal extraction and HR is estimated by
further post-processing, which typically involves frequency analysis and peak detection.

Figure 2. General framework of conventional methods for remote heart rate (HR) measurement. Face
detection (e.g., Viola and Jones algorithm) is performed on the video frames, resulting in the red
bounding box on the face. Next, regions of interest (ROIs) such as the cheeks marked by the black
boxes are selected within the face box. The rPPG signal is extracted from the pixels within the ROIs.
Lastly, post-processing techniques, such as frequency analysis (e.g., Fourier transform) and peak
detection, are applied on the extracted signal to estimate HR.

As with many computer vision and signal processing applications, DL methods
have shown promise in mapping the complex physiological processes for remote HR
measurement. While many review papers have discussed the conventional techniques
for non-contact physiological monitoring [10,12,14,23], there is limited emphasis on DL
methods, despite their popularity in the research community. The number of research
papers utilizing DL methods for remote HR measurement has increased year after year and
is expected to grow continuously. Our paper aims to provide researchers with an extensive
review of DL approaches for remote HR measurement and an improved understanding of
their benefits and drawbacks.

In the following sections of this paper, we categorize DL approaches for remote HR
measurement as end-to-end and hybrid DL methods. We proceed to classify them based
on model architecture and critically analyze their methods. We then discuss the real-world
applications that benefit from this technology and introduce some common resources,
including toolboxes, datasets, and open challenges for researchers in this field. Finally, we
analyze the current knowledge gaps and suggest future directions for research.

2. End-to-End Deep Learning Methods

In this section, we detail the end-to-end DL approaches for remote HR measurement.
We classify a method as end-to-end if it takes in a series of video frames as input and directly
outputs the HR without any intermediate steps. Since many DL methods are designed
to output the rPPG signal, these are also grouped in the same category for subsequent
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analysis (Figure 3). As shown in Table 1, the methods are further classified based on the
type of DL technique used. While end-to-end DL methods are indisputably great tools due
to their straightforward model optimization process, they require enormous amounts of
training data and are difficult to validate. More work needs to be done on the interpretation
of such models for translation to clinical application [25].

Figure 3. Schematic diagram of end-to-end deep learning (DL) methods and hybrid DL methods.
End-to-end DL methods directly output the HR or rPPG signal with a single model, while hybrid DL
methods utilize DL techniques at various stages.

Table 1. Summary of end-to-end deep learning (DL) methods for remote HR measurement.

Ref. Year 2D CNN 3D CNN 2D CNN + RNN NAS Attention

[26] 2018 X

[27] 2018 X X

[28] 2020 X X

[29] 2019 X X

[30] 2019 X X

[31] 2020 X X

[32] 2021 X X

[33] 2021 X

[34] 2021 X X

[35] 2019 X X

2.1. 2D Convolutional Neural Network (2D CNN)

Špetlík et al. [26] proposed an end-to-end HR estimation approach, where the output
of the model was a single scalar value of the predicted HR. HR-CNN is a two-step CNN
that contains an extractor and an HR estimator. The 2D CNN extractor was trained to
maximize the signal-to-noise ratio (SNR) in order to extract the rPPG signal from a sequence
of video frames. Then, the extracted rPPG signal was fed into the HR estimator to output
the predicted HR value, where the training process minimized the mean absolute error
(MAE) between the predicted and ground truth HR. Špetlík et al. [26] claimed that their
proposed method better addressed video compression artifacts, where most conventional
rPPG signal extraction methods fail. They validated it on three public datasets, as well as
proposed a new challenging dataset (ECG-Fitness) which contained different motions and
lighting conditions.

DeepPhys [27] is a VGG-style 2D CNN that jointly trained a motion and appearance
model (Figure 4). The motion model took the normalized difference between adjacent
frames as an input motion representation; it is built on top of the dichromatic reflection
model for modeling motions and color changes. The appearance model guided the motion
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model to learn motion representation through an attention mechanism. The network
learned soft-attention masks from the original video frames and allocated higher weights
to skin areas with stronger signals. This attention mechanism also enabled the visualization
of the spatio-temporal distribution of physiological signals. With the motion representation
and attention mechanism, Chen and McDuff [27] claimed that physiological signals under
different lighting conditions can be better captured, being more robust to illumination
changes and subject motion.

Figure 4. Architecture of DeepPhys [27].

MTTS-CAN [28] is an improvement built on top of DeepPhys [27]. MTTS-CAN cap-
tured temporal information through the introduction of a temporal shift module (TSM) [36].
TSM allowed information exchange among neighboring frames and avoided expensive 3D
convolution operations by shifting chunks in the tensor along the temporal axis. In addition,
the input of the appearance model was a frame obtained by performing averaging adjacent
multiple frames rather than the original video frame. Furthermore, it estimated HR and
RR simultaneously by using a multi-task variant. Since this network was completely based
on 2D CNNs, it only took 6 ms per frame for on-device inference, which demonstrated its
potential of being utilized in real time applications.

2.2. Spatio-Temporal Network—3D Convolutional Neural Network (3D CNN)

As 2D CNNs only take spatial information of video frames into account, researchers
have proposed different 3D CNN frameworks to also make use of the temporal information
contained in the videos. These so-called spatio-temporal networks (STNs) can provide
a more comprehensive representation of the spatial and temporal information of the
physiological signals in the video stream.

Three-dimensional CNN PhysNet [29] is an end-to-end STN aimed at locating the peak
of every individual heartbeat (Figure 5). It is able to estimate both HR and HRV accurately,
allowing more complicated applications, such as emotion recognition. It took the original
RGB video frames as input and directly output the final rPPG signal. In addition, it utilized
the negative Pearson correlation as the loss function in order to have higher trend similarity
and fewer peak location errors.
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Figure 5. Architecture of 3D CNN PhysNet [29].

Yu et al. [30] proposed a two-stage end-to-end STN to not only estimate the rPPG
signal but also to overcome the problem of highly compressed facial videos (Figure 6).
Compressed facial videos were fed into a spatio-temporal video enhancement network
(STVEN) to improve the quality of the videos while retaining as much information as
possible. The enhanced videos were further fed into a spatio-temporal 3D CNN (rPPGNet)
to extract the rPPG signal. Inside rPPGNet, an attention mechanism was applied to obtain
dominant rPPG features from skin regions. rPPGNet is able to operate individually for
rPPG signal extraction but can be trained jointly with STVEN to achieve better performance.
Yu et al. [30] claimed that rPPGNet is able to recover better rPPG signals with curves and
peak locations for accurate HR and HRV estimation.

Figure 6. Architecture used in Yu et al. [30].

Yu et al. [31] utilized neural architecture search (NAS) to automatically find the
best-suited backbone 3D CNN for rPPG signal extraction (Figure 7). In their research,
a special 3D convolution operation, namely temporal difference convolution (TDC), was
designed to help track the ROI and improve the robustness in the presence of motion
and poor illumination. Then, NAS was performed based on two gradient-based NAS
methods [37,38] in order to form a backbone network for rPPG signal extraction. Two data
augmentation methods were proposed, as well, in order to prevent data scarcity.

Figure 7. Architecture of AutoHR [31].

Hu et al. [32] designed a novel facial feature extraction method in order to avoid
extracting redundant information from video segments and to enhance long-range video
temporal modeling. A 3D CNN was used to extract facial features of the input video frames.
Next, aggregation functions were applied to incorporate long-range spatio-temporal feature
maps into short segment spatio-temporal feature maps. These feature maps were then fed
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into a signal extractor with several spatio-temporal convolution [39] to extract the rPPG
signal. A spatio-temporal strip pooling method and an attention mechanism were further
applied to the extracted rPPG signal to accommodate head movement and avoid ignoring
important local information.

Zhang et al. [33] proposed an efficient multi-hierarchical convolutional network to
perform estimation quickly, where only 15 s of face video was required for effectively
reconstructing the rPPG signal and estimating HR. A three-layer 3D CNN was used to
extract low-level facial feature maps from RGB face videos. These feature maps were passed
to a spatio-temporal stack convolution module for deeper feature extraction and generation
of a high-level feature map. Channel-wise feature extraction was then performed on the
high-level feature map to produce a channel-wise feature map. A skin map was also
generated based on low-level feature maps for emphasizing skin regions with stronger
signals. Next, a weight mask was constructed by performing feature fusion on the skin
map and the channel-wise feature map. Finally, the high-level feature map was multiplied
by the weight mask by channels and was fed into a rPPG signal extractor.

ETA-rPPGNet [34] is another network aimed at dealing with the problem of extracting
redundant video information (Figure 8). In this network, a time-domain segment sub-
net was designed to model the long-range temporal structure of the video. Split video
segments were passed to different subspace networks of this subnet to extract facial fea-
tures. Then, an attention mechanism was applied to learn important spatial features. Next,
an aggregation function was used to aggregate the temporal context in order to cut down
redundant video information and a feature map was obtained in each individual subspace
network. These individual feature maps were concatenated and fed into the backbone
network for rPPG signal extraction. Inside the backbone network, an attention module was
also added for eliminating different noise (e.g., head movement, illumination variation).
Finally, the extracted rPPG signal was further processed by a 1D convolution operation to
model the correlation held in the local time domain effectively.

Figure 8. Architecture of ETA-rPPGNet [34].

2.3. Spatio-Temporal Network—2D Convolutional Neural Network + Recurrent Neural Network
(2D CNN + RNN)

Researchers have also designed another type of spatio-temporal network, which is the
combination of 2D CNN for spatial information and RNN for temporal context.

In the same work of Reference [29], a different version of PhysNet, which combined a
2D CNN with different RNNs (LSTM, BiLSTM, ConvLSTM [40]) was proposed to compare
the performance of 3D CNN-based PhysNet and RNN-based PhysNet and evaluate the
performance of different RNNs (Figure 9). The input and output of the network remained
the same as for the 3D CNN PhysNet. The input was firstly fed into a 2D CNN to
extract spatial features of the RGB video frames; then, the RNN was used to propagate
these spatial features in the temporal domain. In their research, 3D CNN-based PhysNet
achieved a better performance than RNN-based PhysNet, and the BiLSTM variant had the
worst performance, indicating the backward information flow of spatial features was not
necessary. Table 2 shows the performance of different versions of PhysNet in terms of root
mean square error (RMSE) and Pearson correlation coefficient (R) [29].
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Figure 9. Architecture of RNN-based PhysNet [29].

Table 2. Performance of different versions of PhysNet [29] on the OBF [41] dataset. Root mean square error (RMSE) in beats
per minute (bpm) and Pearson correlation coefficient (R) were used as the evaluation metrics.

3D CNN-Based LSTM Variant BiLSTM Variant ConvLSTM Variant

RMSE = 2.048, R = 0.989 RMSE = 3.139, R = 0.975 RMSE = 4.595, R = 0.945 RMSE = 2.937, R = 0.977

In Reference [35], another combination of 2D CNN with a ConvLSTM network with
attention mechanism was proposed for rPPG signal extraction. The 2D CNN part had a
similar approach as DeepPhys [27], which consisted of a trunk branch and a mask branch.
The trunk branch was used to extract spatial features from a sequence of face images, while
the mask branch learned and generated attention masks and passed them to the trunk
branch to guide feature extraction. These spatial features were then fed into a ConvLSTM
network in order to make use of the temporal correlation held in video frames for rPPG
signal extraction.

3. Hybrid Deep Learning Methods

In this section, we describe hybrid DL methods for remote HR measurement. For hy-
brid DL methods, DL techniques are only applied in some parts of the pipeline. We further
indicate whether the methods are used for signal optimization, signal extraction, or HR
estimation (Figure 3).

3.1. Deep Learning for Signal Optimization

In most existing remote HR measurement pipelines, the input is the original video
recorded by a digital camera. Therefore, face detection or skin segmentation is needed
to ignore irrelevant background information. Moreover, some specific skin regions, such
as the cheeks, contain stronger signals and are usually selected as the ROI [42]. In this
subsection, we describe these DL-based signal optimization methods to enable more
effective signal extraction.

In Reference [43], a 2D CNN for skin detection was created and trained on a private
video database. Both skin and non-skin region samples were manually segmented and
treated as positive and negative samples, respectively. Conventional rPPG algorithms (ICA
and PCA) were then performed on the detected skin region for evaluation. Tang et al. [43]
suggested that low-cost cameras could capture rPPG signals with their method, which
worked on single-channel input by choosing the RGB channel with the least noise under
different conditions. This method could be combined with traditional rPPG methods in
order to improve their performance. However, it utilized all the skin areas of the face for
rPPG signal extraction, which may include unnecessary noise. Moreover, their method
was only validated on a private dataset with yellow skin tones.

In Reference [44], a single-photon avalanche diode (SPAD) camera was used to record
videos. This camera was able to work well in dark environments. The recorded frame was
a low-resolution grayscale image. A 2D CNN encoder-decoder model took this as input
and produced a single channel image with values between zero and one, representing the
probability that the particular pixel was regarded as skin. In addition, a transfer learning
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approach was adopted in the training process due to the lack of data for this specific skin
detection problem. The model was trained on a large dataset of unlabeled face images for
colorization and then further trained on a skin mask dataset. Finally, a binary skin mask
was obtained by thresholding and passed for signal extraction.

In Deep-HR [45], a receptive field block (RFB) network was utilized to detect the ROI
as an object [46]. This network was trained on a private dataset with videos recorded in
realistic settings to improve overall robustness. Furthermore, a generative adversarial net-
work (GAN)-style module was designed to enhance the detected ROI. A CNN that learned
the distribution of high-quality ROIs acted as a discriminator to supervise another deep
encoder-decoder network that served as a generator to regenerate the detected ROI. This
high-quality detected ROI was passed for subsequent signal extraction. The architecture
used for signal optimization in Deep-HR [45] is illustrated in Figure 10.

Figure 10. Architecture used in Deep-HR [45] for signal optimization.

3.2. Deep Learning for Signal Extraction

Signal extraction is the most important part in the remote HR measurement pipeline,
and it is the leading focus in this research field. Its principal goal is to extract the rPPG
signal from videos for HR estimation. In addition, refining the extracted rPPG signal for
better HR estimation is a method to improve the estimation accuracy. Researchers have
proposed many different DL methods for obtaining a high-quality rPPG signal, and we
are going to categorize and describe them based on the type of neural network being used.
Table 3 shows neural networks used in different DL-based signal extraction methods.

Table 3. Summary of hybrid DL methods for signal extraction in remote HR measurement pipeline.

Ref. Year LSTM 2D CNN 3D CNN 2D CNN + RNN 3D CNN + RNN GAN

[47] 2019 X

[48] 2020 X

[45] 2020 X X

[49] 2021 X

[50] 2019 X

[51] 2020 X

[52] 2020 X

[53] 2020 X

[54] 2020 X

[55] 2019 X

[56] 2020 X

[57] 2020 X

[58] 2021 X

[59] 2021 X
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3.2.1. Long Short-Term Memory (LSTM)

In References [47,48], a LSTM network was applied for signal filtering, improving
the quality of the extracted rPPG signal. As the rPPG signal extracted by conventional
methods may contain several noise, filtering the noise-contaminated rPPG signal is able
to produce a noiseless rPPG signal for more accurate HR estimation. The LSTM network
in Reference [47] was firstly trained on a large amount of synthetic data. Then, it was
further trained on real data for model fine-tuning, enhancing its generalization ability. This
method is able to effectively overcome the problem of data shortage. The architecture used
for signal filtering in Reference [47] is shown in Figure 11.

Figure 11. Architecture used in Bian et al. [47].

3.2.2. 2D Convolutional Neural Network (2D CNN)

In Deep-HR [45], a 2D CNN was learned to extract color information of the ROI
pixels (Figure 12). Noise was further removed from the extracted information by using a
GAN-style module. A discriminator that accesses high-quality rPPG signals was used to
guide a generator to reconstruct a noiseless rPPG signal. This noise removing technique
can be applied in other rPPG methods to improve the performance, as well.

Figure 12. Architecture used in Deep-HR [45] for signal extraction.

MetaPhys [49] utilized a pretrained 2D CNN, namely TS-CAN, which is another
version of MTTS-CAN [28] for signal extraction. The difference between them was the
use of the multi-task variant so that TS-CAN could only estimate HR and RR one at a
time, while MTTS-CAN could estimate HR and RR simultaneously. Furthermore, a meta-
learning approach was proposed for better generalization of the model. Model-Agnostic
Meta-Learning (MAML) [60] was utilized as the personalized parameter update schema
to produce a general initialization so that fast adaptation could be performed when only
a few training samples were available. In addition, both supervised and unsupervised
training methods were evaluated on MetaPhys. Liu et al. [49] claimed that this approach
can reduce bias due to skin tone, improving the robustness of the model.

3.2.3. Spatio-Temporal Network—3D Convolutional Neural Network (3D CNN)

In Reference [50], a 3D CNN was designed to extract features from unprocessed video
streams, followed by a multilayer perceptron to regress HR. In the paper, a data augmenta-
tion method was also proposed for generating realistic videos effectively with synthetic
rPPG signals. The synthetic rPPG signal was transformed to a video by using vector
repetition. Noise was also added to the synthetic videos in order to make them realistic.
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Siamese-rPPG [51] is a framework based on a Siamese 3D CNN (Figure 13). The idea
behind this framework is different facial regions may suffer from different noise and
have their own appearances. However, they should reflect more or less the same rPPG
characteristics. Therefore, the forehead and cheek regions with more rPPG information
were firstly selected as the ROI. Next, pixels in these two ROIs were passed to the forehead
branch and the cheek branch for extraction, respectively; both were 3D CNNs with the same
architecture. Weight sharing mechanism was also applied to these two branches so that,
even if either the cheek or forehead region was contaminated with noise, the framework
could use the other region for signal extraction, improving the overall robustness. After that,
the outputs from these two branches were fused by an addition operation, followed by two
1D convolutional operations and an average pooling, to produce the predicted rPPG signal.

Figure 13. Architecture of Siamese-rPPG [51].

HeartTrack [52] utilized a 3D CNN with attention mechanism for signal extraction.
In this 3D spatio-temporal attention network, a hard attention mechanism was used to help
the network ignore unrelated background information and a soft attention mechanism was
used to help the model filter out covered areas. The extracted signal was further fed into a
1D CNN for time series analysis. Synthetic data was also used in the training process in
order to address the problem of inadequate real data.

In Reference [53], a multi-task framework was proposed for learning a rPPG signal
extraction model and augmenting data simultaneously. There were a total of 3 main
networks in this framework. The first one was a signal extractor that directly extracted the
rPPG signal from the input facial videos. The second one was a reconstruction network
for generating synthetic videos from real images. The third one was also a reconstruction
network for generating synthetic videos from real videos. They were designed to support
each other, and these two reconstruction networks could effectively handle the problem of
insufficient training data and improve the overall robustness.

DeeprPPG [54] is a framework that can use different skin regions as the input for
rPPG signal measurement, allowing customized ROI selection and wider applications. It
took a skin region clip from the original video as the input and a spatio-temporal network
was utilized to extract the rPPG signal. A spatio-temporal aggregation function was
also proposed for easing the side effect of regions contaminated by different noise and
improving the robustness of the model.
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3.2.4. Spatio-Temporal Network—2D Convolutional Neural Network + Recurrent Neural
Network (2D CNN + RNN)

In Reference [55], a two-stream approach was adopted for feature extraction and rPPG
signal extraction. For the feature extraction stream, a 2D CNN with low-rank constraint
loss function was proposed to force the network to learn synchronized spatial features
from spatio-temporal maps, improving the robustness of face detection and ROI alignment
errors. For the rPPG signal extraction stream, a 2D CNN was firstly used to extract the
rPPG signal, and then the rPPG signal was further refined by a two-layer LSTM network.
Lastly, the outputs from these two streams were concatenated for HR estimation.

In Reference [56], a 2D CNN was used to extract spatial features and local temporal
information, and an LSTM network was utilized for extracting global temporal information
held in consecutive frames. One fully connected layer was further applied to the output of
the LSTM to estimate HR. This framework was able to overcome processing latency and
update HR in about 1 s, showing the potential of being adopted in real-time HR monitoring.

Meta-rPPG [57] utilized a transductive meta-learner to take unlabeled data during
deployment for self-supervised weight adjustment, allowing fast adaptation to different
distribution of samples (Figure 14). In this framework, a ResNet-alike convolutional
encoder was firstly used to extract latent features from a stream of face images. Next,
these extracted features were passed to a BiLSTM network to model the temporal context,
followed by a multilayer perceptron (MLP) for rPPG signal estimation. A synthetic gradient
generator was also proposed for transductive learning. It was based on a shallow Hourglass
network [61] and further applied to a few-shot learning framework in order to generate
gradients for unlabeled data [62].

Figure 14. Architecture of Meta-rPPG [57].

3.2.5. 3D Convolutional Neural Network + Recurrent Neural Network (3D CNN + RNN)

PRNet [58] is a one-stage spatio-temporal framework for HR estimation from sta-
tionary videos (Figure 15). Firstly, a 3D CNN extractor was utilized to extract spatial
features and capture local temporal features from the defined ROI. Next, the output fea-
ture map was further fed into an LSTM extractor for extracting global temporal features.
Lastly, a fully connected layer was applied to estimate HR from the extracted feature map.
Huang et al. [58] claimed that this framework is able to predict HR with only 60 frames of
the video (2 s), while other remote HR estimation methods usually need 6–30 s of the video.

Figure 15. Architecture of PRNet [58].
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3.2.6. Generative Adversarial Network (GAN)

PulseGAN [59] is a framework based on GAN to generate realistic rPPG signals
(Figure 16). In the paper, a rough rPPG signal was firstly obtained by applying the CHROM
algorithm on the defined ROI. Then, PulseGAN took this as input and generated a high-
quality, realistic rPPG signal for performing HR estimation accurately. Moreover, the struc-
ture of PulseGAN was based on the conditional GAN approach [63]. The discriminator
accessed the ground truth rPPG signal and guided the generator to map a rough rPPG
signal extracted by CHROM to a final rPPG signal that is similar to the ground truth one.
The rough rPPG signal was also set as a condition in the discriminator. Song et al. [59]
mentioned that this framework can be combined with other conventional rPPG methods
easily in order to improve the quality of the extracted rPPG signal, resulting in more
accurate HR estimation.

Figure 16. Architecture of PulseGAN [59].

3.3. Deep Learning for Heart Rate Estimation

Traditionally, the extracted rPPG signal can be filtered with a bandpass filter followed
by frequency analysis or peak detection to estimate HR. However, HR estimation can
also be classified as a regression problem and solved by DL methods. Moreover, different
representations of the HR signal have been proposed for DL-based HR estimation (Table 4).

In Reference [64], the rPPG signal was extracted by conventional methods (e.g., ICA,
PCA, CHROM), and short-time Fourier transform and bandpass filtering were applied to
the extracted rPPG signal to obtain a frequency domain representation. This representation
was further combined with the time domain signal to form a spectrum image, a kind of
HR signal representation. Lastly, an HR estimator based on ResNet18 [65] pretrained with
the ImageNet dataset was used to estimate HR from spectrum images directly. Based on
this method, HR can be estimated accurately regardless of which conventional methods
were used, since the HR estimator can learn features in spectrum images and directly map
them into HR. The architecture used for HR estimation in Reference [64] is illustrated in
Figure 17.

Figure 17. Architecture used in Yang et al. [64].
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Table 4. Summary of all mentioned end-to-end and hybrid DL methods for remote HR measurement.

Ref. Year End-to-End/Hybrid Description

[26] 2018 End-to-End End-to-end HR estimation with an extractor and an estimator

[27] 2018 End-to-End Normalized frame difference as motion representation,
attention mechanism was used to guide the motion model,
visualization of spatio-temporal distribution of physiological signals

[43] 2018 Hybrid 2D CNN network for skin detection

[64] 2018 Hybrid Spectrum images were used for HR estimation

[66] 2018 Hybrid Spatio-temporal maps were used for HR estimation,
transfer learning approach to deal with data shortage

[29] 2019 End-to-End Compared 3D CNN-based and RNN-based spatio-temporal network,
can estimate HR and HRV accurately

[30] 2019 End-to-End Enhancing video quality to deal with highly compressed videos,
can estimate HR and HRV accurately

[35] 2019 End-to-End Attention mechanism was used to guide the trunk branch for signal extraction

[47] 2019 Hybrid LSTM network for signal filtering,
transfer learning approach to deal with data shortage

[50] 2019 Hybrid 3D CNN for signal extraction,
data augmentation method for generating videos with synthetic rPPG signals,
multilayer perceptron for HR estimation

[55] 2019 Hybrid 2D CNN-based two-stream approach for signal extraction,
and LSTM network for signal refining

[67] 2019 Hybrid Spatio-temporal maps were used for HR estimation,
attention mechanism was applied to remove noise

[28] 2020 End-to-End Temporal shift module to model temporal information,
attention mechanism was applied to guide the motion model,
able to estimate HR and RR simultaneously by one network

[31] 2020 End-to-End Used NAS to find a well-suited network for HR estimation

[44] 2020 Hybrid 2D CNN encoder-decoder model for skin detection,
transfer learning approach to deal with data shortage

[45] 2020 Hybrid Two GAN-style modules to enhance the detected ROI and remove noise,
2D CNN for signal extraction

[48] 2020 Hybrid LSTM network for signal filtering

[51] 2020 Hybrid Siamese 3D CNN for signal extraction

[52] 2020 Hybrid 3D CNN with attention mechanism for signal extraction,
feedforward neural network for HR estimation

[54] 2020 Hybrid 3D CNN that can take different skin regions for signal extraction

[56] 2020 Hybrid 2D CNN + LSTM spatio-temporal network for signal extraction

[57] 2020 Hybrid 2D CNN + BiLSTM spatio-temporal network for signal extraction,
meta-learning approach for fast adaptation

[68] 2020 Hybrid Spatio-temporal maps were used for HR estimation

[69] 2020 Hybrid Spatio-temporal maps were used for HR estimation

[70] 2020 Hybrid Spatio-temporal maps were used for HR estimation,
transfer learning approach to deal with data shortage

[32] 2021 End-to-End Avoid extracting redundant information from video segments,
attention mechanism was applied to deal with different noise

[33] 2021 End-to-End An efficient framework for performing HR estimation quickly

[34] 2021 End-to-End Dealt with the problem of extracting redundant video information,
attention mechanism was applied to learn important features and eliminate noise

[49] 2021 Hybrid TS-CAN from another paper was utilized for signal extraction,
meta-learning approach for fast adaptation

[53] 2021 Hybrid Multi-task framework for simultaneous signal extraction and data augmentation

[58] 2021 Hybrid 3D CNN + LSTM spatio-temporal network for signal extraction

[59] 2021 Hybrid GAN for generating high-quality rPPG signal from rough rPPG signal

[71] 2021 Hybrid Spatio-temporal maps were used for HR estimation,
NAS was used to find a CNN for mapping spatio-temporal maps into HR
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Another type of HR signal representation is the spatio-temporal map (Figure 18) used
for HR estimation in References [66–71]. Generally, an ROI selection step was involved in
the construction of these spatio-temporal maps. Color information of the RGB channels of
the ROI pixels was utilized and concatenated in temporal sequences, and placed into rows
to form a spatio-temporal map. Finally, a neural network was used to estimate HR from
spatio-temporal maps directly. This kind of HR signal representation can highlight the HR
signal and suppress the information that is unrelated to the HR signal. In References [66,70],
transfer learning was applied to pretrain the HR estimator with the ImageNet dataset to
deal with insufficient data. In Reference [68], a combination of 2D CNN and gated recurrent
unit (GRU) was used for HR estimation (Figure 19). In Reference [71], NAS was also utilized
to find a lightweight and optimum CNN to estimate HR from spatio-temporal maps. In
Reference [67], an attention module was added to mitigate the effect of different noise.

Figure 18. General procedure of constructing a spatio-temporal map. Firstly, the images are aligned
and ROI selection is performed to obtain ROI images. Then, these ROI images are divided into
several ROI blocks. Next, within each block, the average color value is calculated for each color
channel. After that, the average color value of each channel at the same block but different frames
are concatenated into temporal sequences. Finally, the temporal sequences of each block are placed
into rows to form a spatio-temporal map.

Figure 19. Architecture of RhythmNet [68].

HR estimation can be treated as a regression problem by using simple fully-connected
layers or feedforward neural networks. In References [45,55,56,58], HR was regressed
by fully-connected layers from the extracted rPPG signal. The architecture used for HR
estimation in Reference [56] is shown in Figure 20. In References [50,52], feedforward
neural networks were also utilized to estimate HR from the extracted features.

Figure 20. Architecture used in Huang et al. [56].
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4. Applications

With further research and inevitable technological advances, remote health moni-
toring technology will undoubtedly play a vital role in many aspects. The utilization of
contactless HR monitoring introduces benefits that existing contact-based PPG methods
lack. In this section, we describe a few potential applications enabled by remote monitoring
of physiological signals.

4.1. Affective Computing

Since rPPG technology can be integrated with consumer-level cameras, it has great po-
tential for affective computing and human–computer interaction applications. Researchers
have demonstrated the feasibility of rPPG-based methods for interpreting human affects,
such as cognitive stress estimation [72,73], emotion recognition [29,74], engagement detec-
tion [75], and pain recognition [76–78]. These studies illustrate the capability of using rPPG
technology beyond the medical domain.

4.2. Pandemic Control

With the current COVID-19 outbreak, the value of contactless HR monitoring has be-
come very clear, particularly for screening the public. It has been reported that temperature
screening alone is an insufficient indication for coronavirus infection [79,80]. Therefore,
the accuracy of screening based on temperature decreases because asymptomatic infected
patients have a temperature within the normal range [81,82]. Given this inadequacy, using
HR as a criterion for COVID-19 screening was investigated. In References [83,84], it was
shown that tachycardia(high HR) is also a symptom of COVID-19. Moreover, the relation-
ship between atrial fibrillation (AF) and COVID-19 was observed in several studies [85–87],
suggesting rPPG-based AF detection would be useful for discovering potential COVID-19
patients [88]. Meanwhile, during and since the pandemic, the use of wearable smart devices
for measuring vital signs, such as HR, BP, and SpO2, have become widespread [89,90].
Such contact-based methods can be replaced by rPPG technology to provide convenience
to users with precise screening and detection, resulting in more efficient and effective
pandemic control.

4.3. Deepfake Detection

Recently, deepfake, a technology to produce high-synthetic videos with DL implemen-
tations, has attracted researchers’ attention. Unfortunately, if not tragically, this technology
has been used to generate fake news and hoax videos, posing threats to the society. For ex-
ample, a high-quality video of the 44th President of the United States Barack Obama has
been synthesized by using a DL approach [91], which shows him apparently making a
speech that he never actually made. These fake videos are of such high quality such
that they are indistinguishable to humans and even complicated computer vision algo-
rithms [92–94]. As a result, deepfake detection methods need to be developed to encounter
such problems. Currently, there have been few attempts in capturing abnormalities in
biological signals, such as HR, as a means to detect deepfake videos [95,96].

4.4. Telehealth

Within the last few years, telehealth has become more popular all over the world,
with more than half of the health care organizations in the U.S. making use of the ser-
vice [97]. The integration of telehealth with rPPG technology provides various benefits to
the users and society. For instance, users will experience a better daily workflow since the
time required to travel to healthcare institutions for health-checkups and for doctor consul-
tations will be reduced. Furthermore, the application of telehealth software intertwined
with rPPG technology allows the user to measure their physiological signs and detect early
symptoms of different health problems (e.g., atrial fibrillation) from any location by using
a consumer-level device [88,98,99]. Deploying rPPG technology promotes social distancing
and safety for those healthcare workers at the front lines. Furthermore, remote health



Sensors 2021, 21, 6296 17 of 32

monitoring can reduce the workload of hospitals and minimize the chance of spreading
diseases since it encourages less physical contact with patients and fewer human resources
are needed [100], which is especially vital during the midst of a pandemic.

4.5. Face Anti-Spoofing

Today, using biometric information of individuals for authentication is very common.
One of the most common forms is facial recognition, which is based on the analysis of
unique features of a person’s face [101]. However, biometric presentation attacks can exist
alongside the face authentication process. For example, attackers can source photos (photo
attacks) or videos (replay attacks) of the person from social networking sites easily and
present them to the authentication system [102]. Remote HR measurement technology
can be incorporated to enhance the authentication system [103]. In References [104–108],
rPPG-based face presentation attack detection approaches were developed, suggesting the
potential of rPPG technology in the security industry.

4.6. Driving Condition Monitoring

In order to reduce the number of traffic accidents, rPPG technology can be adopted to
monitor drivers and track a driver’s physiological status. Most road accidents are caused
by human factors including fatigue, drowsiness, and illness. Factors, such as disparity in
oxygen levels, HR, and RR, may lead to non-specific health problems, which interfere with
or degrade decision-making capabilities. This monitoring allows abnormal vital signs to
be detected early, with alerts shown immediately so that drivers can adjust their behavior
accordingly, avoiding accidents. There have been several attempts for monitoring drivers’
physiological conditions using rPPG methods [109–118]. In References [112,116,118], a near-
infrared camera was used instead of an RGB camera for monitoring. In References [113,115],
neural networks were applied for physiological signal estimation.

4.7. Searching for Survivors during Natural Disasters

During natural disasters, such as earthquakes and fires, searching for survivors be-
comes a vital but extremely challenging task. Rescue teams must operate in extremely
hazardous conditions, such as collapsed buildings. rPPG technology can be a potential
way to reduce risk for search and rescue teams, and improve their efficiency. In Refer-
ences [119–121], an unmanned aerial vehicle (UAV) or a drone was used to capture videos,
representing a more convenient, safe, and effective way to look for survivors. In Refer-
ence [122], research using a drone for multiple subject detection over a long-distance was
conducted. This illustrates the potential of using controllable devices equipped with a
camera combined with rPPG technology for searching for survivors.

4.8. Neonatal Monitoring

As neonates or infants have very sensitive and fragile skin, using contact-based
methods to measure their health conditions is inappropriate. rPPG methods are one
of the suitable candidates for long-term physiological status monitoring of newborns
in neonatal intensive care units (NICU). Several studies have trialed rPPG methods for
such monitoring [9,123–132]. In Reference [131], DL-based segmentation was utilized to
reduce computational time, which brought it one step closer to real-time applications.
In Reference [132], DL-based ROI detection was applied to handle pose variations and
illumination changes, further improving the estimation accuracy. These examples indicate
the promise of using rPPG technology for neonatal monitoring.
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4.9. Fitness Tracking

During fitness training, having health monitors to keep track of the current physi-
ological condition is an excellent way to prevent over-exercising and help to adjust the
fitness process to an individual’s real-time needs and condition. Contact-based methods,
such as smartwatches or digital bracelets, for such monitoring can cause discomfort or
pain during heavy exercise. rPPG technology can be utilized to provide simple remote
fitness tracking. In References [20,133–136], rPPG methods in fitness training settings were
studied. In References [20,133,136], motion artifact during exercise was the major focus. In
References [134,135], a feedback control system was implemented, as well, for adjusting
the speed of the treadmill automatically.

5. Resources

As remote physiological monitoring is an emerging field in computer vision and
biomedical engineering, there are resources available for researchers to accelerate progress
and ease the transition of newcomers. In this section, we detail some of the open-source
toolboxes to help to implement related algorithms and most of the datasets that are com-
monly used for model training and benchmarking. Furthermore, open challenges in rPPG
are also described to encourage various researchers to contribute to the field.

5.1. Toolboxes

iPhys [137] is an open-source toolbox written in MATLAB. It contains commonly used
implementations in rPPG pipelines, such as face detection, ROI definition, and skin segmenta-
tion. It also includes four conventional rPPG methods for baseline comparison. Other plotting
and signal quality calculation functions are provided, as well, for performance evaluation.

In Reference [138], the whole rPPG pipeline based on ICA and some utilities are
written in MATLAB. Beginners can quickly run or even modify the provided script to
evaluate the performance of the particular rPPG method.

The Python tool for Virtual Heart Rate (pyVHR) [139] is a recently developed Python
package for heart rate estimation based on rPPG methods. In this package, 8 conventional
rPPG methods are implemented and evaluated based on 5 datasets. Other frequently used
pre-processing and post-processing techniques are provided, as well. Practitioners can
extend the framework to evaluate their own algorithms on these 5 datasets.

5.2. Datasets

Performance evaluation is important for researchers to test whether their proposed
methods are good enough when compared with other methods and able to solve existing
challenges. For supervised methods, datasets are also crucial for proper training and
achieving state-of-the-art performance. In this subsection, we detail most of the datasets
that are commonly used for benchmarking and model training.

AFRL [140] is a dataset proposed by the United States Air Force Research Laboratory.
It was aimed to evaluate the effect of head motion artifacts. During data acquisition,
a multi-imager semicircular array (a total of 9 synchronized, visible spectrum imagers)
centered on the imaged participant in a controlled light environment was used to record
the participant’s head motions during specific tasks. At the same time, electrocardiogram
(ECG) and fingertip reflectance PPG were recorded as ground truth signals. The imaged
participant was told to perform specific tasks, which included staying still, sweeping
around the imagers with a pre-defined angle per second, and randomly re-orienting the
head position to an imager. The background of the environment consisted of either a solid
black fabric or a patterned, colored fabric.
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COHFACE [141] is a publicly available dataset proposed by the Idiap Research In-
stitute. The purpose of proposing this dataset was to allow researchers to evaluate their
developed rPPG algorithms on a publicly available dataset so that comparisons between
different algorithms could be conducted in a standard and principled manner. In this
dataset, a conventional webcam was used to capture the full face of the participant in two
different illumination settings (studio lighting and natural lighting) to evaluate the effect
of illumination variation. Skin reflectance PPG and respiratory signal were recorded as
ground truth signals. The only disadvantage of this dataset was the heavy compression, so
noise artifact was unavoidably added.

MAHNOB-HCI [142] is a multimodal dataset that was originally recorded for emotion
recognition and implicit tagging research. However, as ground truth signals, such as
ECG and respiration amplitude, were recorded, it was also suitable for rPPG algorithm
evaluation. Moreover, six cameras were used to capture different views (frontal view,
profile view, wide angle, close ups) of the participant, which made this dataset useful for
evaluating the algorithm when pose angle varied.

MMSE-HR [143] is another multimodal dataset proposed for facial expression anal-
ysis. Some vital signs, such as BP, RR, and HR, were also recorded, making this dataset
appropriate for testing rPPG algorithms. Furthermore, subjects from different races (Black,
White, Asian, Hispanic/Latino) participated in the data acquisition, so researchers were
able to evaluate their proposed methods against different skin tones.

OBF [41] is a large dataset made by the University of Oulu in Finland specifically
for remote physiological signal measurement. Aside from healthy subjects in this dataset,
patients with atrial fibrillation (AF) also participated in data collection in order to validate
rPPG methods for clinical applications, such as diagnosing cardiac diseases. In addition,
there were two different recording states, one for healthy participants and one for AF
patients. Healthy participants were recorded in a resting state and a post-exercise state
(5-min exercise). AF patients were recorded before and after cardioversion treatment.

PURE [144] is a dataset proposed for examining head motion artifacts in rPPG methods
in more detail. During data acquisition, participants were told to perform six different tasks
(holding steady, talking, slow translation, fast translation, small rotation, medium rotation)
in order to introduce different kinds of head motion. Naturally changing illumination
(daylight with clouds through a large window) was used for recording, as well.

UBFC-RPPG [145] is another dataset proposed mainly for rPPG algorithm evaluation.
The data recording was conducted indoors with indoor illumination and slight changes
in sunlight. One special aspect of the recording is that participants were told to play a
time-sensitive mathematical game. Its purpose was to augment the HR of participants and
hence simulate a real-life human-computer interaction scenario for evaluation.

VIPL-HR [146] is a large-scale multimodal dataset created for remote pulse estimation
research. In this dataset, various face variations due to head motion (stable, large motion,
talking), illumination changes (lab, dark, bright), and acquisition diversity (smartphone,
webcam, RGB-D camera) were introduced in order to test the overall robustness of the
proposed algorithm. The dataset was compressed with different codecs (MJPG, FMP4,
DIVX, PIM1, X264) in order to retain the completeness of the signals as much as possible,
while being convenient for public access at the same time.

A summary of the mentioned datasets is provided in Table 5. Moreover, Table 6
illustrates the performance of all mentioned DL methods on these common datasets.
The evaluation metrics in Table 6 include root mean square error (RMSE) in bpm, mean
absolute error (MAE) in bpm, Pearson correlation coefficient (R), and signal-to-noise ratio
(SNR) in decibels (dB).
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Table 5. Summary of common datasets for remote physiological monitoring.

Dataset Subjects Description

AFRL [140] 25
9 RGB cameras with 120 fps,

resolution is 658 × 492,
ECG, PPG, RR are recorded

COHFACE [141] 40
1 RGB webcam with 20 fps,

resolution is 640 × 480,
BVP, RR are recorded

MAHNOB-HCI [142] 27

1 RGB camera with 60 fps,
5 monochrome cameras with 60 fps,

both resolution are 780 × 580,
ECG, RR are recorded

MMSE-HR [143] 140

1 3D stereo imaging sensor with 25 fps,
1 2D video sensor with 25 fps,
1 thermal sensor with 25 fps,

RGB sensor resolution is 1040 × 1392,
thermal sensor resolution is 640 × 480,

HR, RR, BP are recorded

OBF [41] 106 (6 with atrial fibrillation)

1 RGB camera with 60 fps,
1 NIR camera with 30 fps,

RGB camera resolution is 1920 × 1080,
NIR camera resolution is 640 × 480,

ECG, BVP, RR are recorded

PURE [144] 10
1 RGB camera with 30 fps,

resolution is 640 × 480,
HR, SpO2, PPG are recorded

UBFC-RPPG [145] 42
1 RGB webcam with 30 fps,

resolution is 640 × 480,
HR, PPG are recorded

VIPL-HR [146] 107

1 RGB webcam with 25 fps,
1 RGB-D camera with 30 fps,

1 smartphone camera with 30 fps,
RGB webcam resolution is 960 × 720,

RGB-D NIR camera resolution is 640 × 480,
RGB-D RGB camera resolution is 1920 × 1080,
smartphone camera resolution is 1920 × 1080,

HR, SpO2, BVP are recorded
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Table 6. Performance of all mentioned end-to-end and hybrid DL methods for HR measurement on commonly used datasets listed in Table 5. Refs. [43,44,56] are not included here as they
are evaluated on their own private datasets.

Methods AFRL COHFACE MAHNOB-HCI MMSE-HR OBF PURE UBFC-RPPG VIPL-HR

[26] X RMSE = 10.78 RMSE = 9.24 X X RMSE = 2.37 X X
MAE = 8.10 MAE = 7.25 MAE = 1.84
R = 0.29 R = 0.51 R = 0.98

[27] MAE = 2.45 X MAE = 4.57 X X X X X
SNR = 4.65 SNR = −8.98

[64] X X RMSE = 4.26 X X X X X
R = 0.81

[66] X X RMSE = 4.49 RMSE = 6.83 X X X X

[29] X X RMSE = 7.88 X RMSE = 1.812 X X X
MAE = 5.96 R = 0.992
R = 0.76

[30] X X RMSE = 5.93 X RMSE = 1.8 X X X
MAE = 4.03 R = 0.992
R = 0.88

[35] X RMSE = 11.88 X X X RMSE = 1.58 X X
MAE = 7.31 MAE = 0.88 X X
R = 0.36 R = 0.99 X X
SNR = −1.93 SNR = 9.18 X X

[47] X X X RMSE = 3.187 X X X X
MAE = 4.35
R = 0.8254

[50] X X X X X X RMSE = 8.64 X
MAE = 5.45 X

[55] X RMSE = 9.96 X X X X X X
MAE = 8.09
R = 0.40

[67] X X X RMSE = 10.10 X X X RMSE = 7.99
R = 0.64 MAE = 5.40

R = 0.66
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Table 6. Cont.

Methods AFRL COHFACE MAHNOB-HCI MMSE-HR OBF PURE UBFC-RPPG VIPL-HR

[28] RMSE = 3.72 X X RMSE = 5.66 X X X X
MAE = 1.45 MAE = 3.00
R = 0.94 R = 0.92
SNR = 8.64 SNR = 2.37

[31] X X RMSE = 5.10 RMSE = 5.87 X X X RMSE = 8.68
MAE = 3.78 R = 0.89 MAE = 5.68
R = 0.86 R = 0.72

[45] X X RMSE = 3.41 X X X X X
R = 0.92

[48] X X X MAE = 1.31 X X X X
SNR = 9.44 X X X X

[51] X RMSE = 1.29 X X X RMSE = 1.56 RMSE = 0.97 X
MAE = 0.70 MAE = 0.51 MAE = 0.48
R = 0.73 R = 0.83

[52] X X X X X X RMSE = 3.368 X
MAE = 2.412
R = 0.983

[54] X RMSE = 7.06 RMSE = 6.26 X X RMSE = 0.43 X X
MAE = 3.07 MAE = 4.81 MAE = 0.28
R = 0.86 R = 0.79 R = 0.999

[57] X X RMSE = 3.68 X X X RMSE = 7.42 X
MAE = 3.01 MAE = 5.97
R = 0.85 R = 0.53

[68] X X RMSE = 3.99 RMSE = 5.49 X X X RMSE = 8.14
R = 0.87 R = 0.84 MAE = 5.30

R = 0.76

[69] X X X RMSE = 6.04 RMSE = 1.26 X X RMSE = 7.97
R = 0.84 R = 0.996 MAE = 5.02

R = 0.796

[70] X X RMSE = 3.23 X X X X X
MAE = 1.53
R = 0.97
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Table 6. Cont.

Methods AFRL COHFACE MAHNOB-HCI MMSE-HR OBF PURE UBFC-RPPG VIPL-HR

[32] X RMSE = 7.52 X X X RMSE = 1.21 X X
MAE = 5.19 MAE = 0.74
R = 0.68 R = 1.00

[33] X RMSE = 9.50 X X X X RMSE = 3.82 X
MAE = 5.57 MAE = 2.15
R = 0.75 R = 0.97

[34] X RMSE = 6.65 X RMSE = 5.84 X RMSE = 0.77 RMSE = 3.97 X
MAE = 4.67 R = 0.85 MAE = 0.34 MAE = 1.46
R = 0.77 R = 0.99 R = 0.93

[49] X X X RMSE = 3.12 X X RMSE = 3.12 X
MAE = 1.87 MAE = 2.46
R = 0.89 R = 0.96

[53] X RMSE = 1.65 X X X RMSE = 1.07 RMSE = 2.09 X
MAE = 0.68 MAE = 0.40 MAE = 0.47
R = 0.72 R = 0.92

[58] X X RMSE = 6.42 X X X RMSE = 7.24 X
MAE = 5.01 MAE = 5.29

[59] X X RMSE = 6.53 X X RMSE = 4.29 RMSE = 2.10 X
MAE = 4.15 MAE = 2.28 MAE = 1.19
R = 0.71 R = 0.99 R = 0.98

[71] X X X X X RMSE = 2.02 X RMSE = 8.01
MAE = 1.65 MAE = 5.12
R = 0.99 R = 0.79
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5.3. Open Challenge on Remote Physiological Signal Sensing

Creating an open challenge on a specific machine learning task is a common way in the
field of machine learning to encourage people to participate and solve a particular problem
using DL methods. One of the most famous open challenges is the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [147]. This challenge has been running annually
for 8 years (2010–2017), and its focuses are object recognition, object detection, and image
classification. Many DL methods have been proposed for this task, and this competition has
definitely boosted research interest in this field, allowing rapid development in DL-based
computer vision. An open challenge on remote physiological signal sensing was also
organized in 2020, namely Remote Physiological Signal Sensing (RePSS 2020) [148]. In this
challenge, the focus was measuring the average HR from color facial videos. The VIPL-HR-
V2 dataset, which is the second version of VIPL-HR [146], and the OBF dataset [41] were
used for model training and testing. The RePSS 2021 is also currently running, and its focus
was changed to measure inter-beat-interval (IBI) curve and RR. This open challenge can
have the same optimistic effect as ILSVRC, encouraging people to participate and engage
in this research field.

6. Research Gaps

During the last few decades, many methods for ascertaining remote HR measure-
ments have been proposed. This has attracted much attention, and increasing numbers
of researchers are engaged in this exciting area. In this section, we discuss some of the
research gaps in order to suggest some possible future directions in this field.

6.1. Influencing Factors

The performance of remote HR measurement based on rPPG is influenced by many
factors, such as illumination changes, motion artifacts, skin-tone variations, and video
compression [12,14,22,23,149]. There are several methods proposed for handling these
challenges. For example, the utilization of different HR signal representations, such as
spectrum images [64] and spatio-temporal maps [66–71], as well as the use of attention
mechanism [27,28,30,32,34,35,49,52,67], can deal with illumination variations and motion
noise. STVEN [30] was designed to improve the robustness of HR measurement under
video compression. Meta-learning approaches with fast adaptation to uncommon sam-
ples [49,57] are suitable to deal with skin-tone variations. Additional work is needed
to better understand and quantify the effects these influencing factors have on remote
physiological measurement. More importantly, new methods should provide insight into
how these challenges are handled from a technical and biophysical perspective, rather than
just evaluating their performance on a dataset that contains the influencing factors.

6.2. Measuring Other Vital Signs

Undoubtedly, HR is a very important physiological indicator to indicate the current
health condition of a person. Researchers in this field are mainly interested in estimating
HR, followed by RR. However, other vital signs are also important [150,151]. For example,
BP is useful in detecting some cardiovascular diseases, such as hypertension, while SpO2
can reflect the health of the cardiorespiratory system by showing if a person has an adequate
supply of oxygen. At the same time, these vital signs are associated to COVID-19, and they
are useful for COVID-19 diagnosing, as well [152,153].There are relatively fewer studies
that attempt to estimate BP [154–156] and SpO2 [157–159] remotely when compared HR
and RR. There are still many research opportunities in other vital signs.

6.3. Datasets

Datasets are increasingly important for evaluating new proposed methods whether
demonstrating success in addressing specific problems or increasing the effectiveness
of previously proposed methods. For DL methods, datasets are even more important
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as they are used for training in supervised methods, as well. The performance of the
supervised methods are greatly affected by the training datasets. Currently, most of the
existing publicly available datasets focus on two major challenges in rPPG methods only,
that is, motion artifacts and illumination variations [12,23]. Other challenges, such as
skin-tone variations [22,160,161], multiple persons detection [14,122], and long distance es-
timations [14,162], need to be overcome, as well, if the methods are to be, ultimately, robust
and highly applicable in the real-world, replacing all contact-based methods. Moreover,
the subjects in these datasets are mainly adult participants. Datasets with newborns as par-
ticipants are also desirable for evaluating rPPG methods. As a result, more comprehensive,
high diversity and high quality datasets are needed to fully evaluate the robustness of any
new proposed method and allow comprehensive training in supervised methods. Such
datasets are extremely beneficial to the research community.

6.4. Performance on Different Heart Rate Ranges

According to performance results of RePSS 2020 [148], the top 3 teams were able to
achieve a significantly better performance on the middle HR level, where HR ranges from
77 to 90 bpm, followed by the low HR level (less than 70 bpm). Performance at the high
HR level (more than 90 bpm) was the worst. This is a challenge that absolutely needs
to be addressed in order to be accurate enough to be applied in real-world applications
because these significantly lower or higher HRs are showing specific health problems.
Moreover, this result indicates that using common metrics, such as mean absolute error
(MAE), root mean square error (RMSE), signal-to-noise ratio (SNR), and Pearson correlation
coefficient (R), to evaluate rPPG methods may not be effective enough. Evaluation on a
wider range of HR levels is required in order to comprehensively test the robustness of the
proposed method.

6.5. Understanding of Deep Learning-Based Methods

The advantage of using CNN in rPPG technology is that a good result can be obtained
without very deep understanding or analysis of the specific problem; the disadvantage is
that this DL method is a black box, which means we do not have a full understanding of why
such a result is obtained. The lack of understanding of how CNN-based methods work on
rPPG technology may be a barrier to further development of this technology and evaluation
of these DL methods. Reference [25] is a work that focused on the understanding of CNN-
based rPPG methods, rather than proposing a new model with state-of-the-art performance.
Several experiments were performed to explore the CNN-based rPPG signal extraction and
improve the understanding of this approach. In the paper, some important observations
have been made. For example, it showed that the CNN for rPPG signal extraction is
actually learning information related to the PPG signal but not the motion-induced intensity
changes [27]. In addition, the CNN training is affected by the physiological delay between
the video data and the reference finger oximeter. Researchers should direct their attention
to more studies that focus on the understanding of DL-based rPPG methods in order to
gain valuable insights and further improve the performance of these DL approaches.

7. Conclusions

In recent years, many methods for remote HR measurement have been proposed.
Due to rapid development in the area of machine learning, DL methods have shown
significant promise in this field. In this paper, we have provided a comprehensive review
on most of the existing recent DL-based methods for remote HR estimation. We have
further categorized these methods into end-to-end and hybrid DL methods, and grouped
them based on the type of neural network being used. We then described some potential
applications that can be achieved by using rPPG technology. Next, some rPPG resources,
such as toolboxes, datasets, and open challenges, have been detailed in order to help
accelerate research. Lastly, we have discussed some of the current research gaps in this
field to shed some light on future areas and directions in this exciting field.
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As remote physiological measurement establishes itself as an emerging research
field, we suggest more work should focus on addressing different influencing factors and
estimating other vital signs, which will assist in bridging the gap for real-world applications.
Furthermore, high-quality and diverse datasets are crucial for proper benchmarking and
analysis of different methods and the future development of more complex DL models and
architectures. Last but not least, the understanding of different DL-based approaches is
critical, especially when integrating these networks for high-stakes applications, such as
healthcare diagnostics.
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