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Abstract: Human activity recognition is an extensively researched topic in the last decade. Recent
methods employ supervised and unsupervised deep learning techniques in which spatial and tempo-
ral dependency is modeled. This paper proposes a novel approach for human activity recognition
using skeleton data. The method combines supervised and unsupervised learning algorithms in
order to provide qualitative results and performance in real time. The proposed method involves
a two-stage framework: the first stage applies an unsupervised clustering technique to group up
activities based on their similarity, while the second stage classifies data assigned to each group using
graph convolutional networks. Different clustering techniques and data augmentation strategies are
explored for improving the training process. The results were compared against the state of the art
methods and the proposed model achieved 90.22% Top-1 accuracy performance for NTU-RGB+D
dataset (the performance was increased by approximately 9% compared with the baseline graph
convolutional method). Moreover, inference time and total number of parameters stay within the
same magnitude order. Extending the initial set of activities with additional classes is fast and robust,
since there is no required retraining of the entire architecture but only to retrain the cluster to which
the activity is assigned.

Keywords: human activity recognition; skeleton; spatial-temporal graph convolutional network;
clustering; k-means; Gaussian mixture model

1. Introduction

The world’s population is growing rapidly. As a result, the costs of social care and
hospitalization constantly increase. In order to reduce these costs, there is a need to
maintain elderly people living in their homes for a long time. In order to make this possible,
intensive research is conducted in the interest of creating assistive systems that are able to
perform continuous monitoring of health and activity performed by elderly at home and
to detect early stages of abnormal situations.

Based on a study of the World Health Organisation, assistive systems enable peo-
ple to live healthily and independently, reducing the need for formal health and sup-
port services [1]. Different systems were already proposed using robotic platforms:
(i) PHAROS [2,3], a socially assistive robot that monitors and evaluates the daily physical
exercise performed at the user’s home; (ii) HOBBIT [4], a robot that is able to autonomously
navigate around the user’s apartment, collecting objects from the ground, bringing a spe-
cific object that is requested, providing games for entertainment, and reminding the user to
take their medication; (iii) RAMCIP [5], a robot that integrates several functionalities that
promote physical and cognitive activity and fall detection; and (iv) a robot that integrates
human activity recognition and provides assistance when required [6].

Human activity recognition (HAR) represents a challenging task for assistive robots.
A HAR model for mobile robots was proposed in [7,8]. Accurate activity recognition is
challenging because human activity is very complex and diverse as it depends on a series
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of factors not only limited to the subject’s pose or the environment in which the activity
takes place but also to other physical and psychological aspects [9].

For HAR, there is a dire need for large datasets with already annotated and highly
diverse samples so that neural networks can generalize well and provide high performing
inference time. However, the amount of available datasets is limited, and the majority of
the presented annotated data address activities related to sports or daily activities.

The motivation for this work comes from the fact that HAR comes in many forms,
such as directly from RGB (Red Green Blue) videos, from RGB-D (Red Green Blue—Depth)
videos, or sensor-based methods. Although all approaches are feasible and each one of
them has its advantages and disadvantages, for human activity recognition, skeleton joint
representation over space and time is the most remarkable descriptor of actions as it can be
seen as a projection of the entire activity. Moreover, this method of representation denotes
the advantage of being invariant to scene illumination, background, or cast shadow.

However, due to high computation cost, the skeleton representation proved to be
a feasible solution in terms of performance and efficiency trade-off. Starting from these
connections, Graph Convolutional Networks (GCNs) [10] are the most natural and most
used solution for processing skeletal data. GCNs achieved remarkable results for skeleton-
based activity recognition by modeling the data in such a manner that enables information
flow between neighboring nodes of a graph, making it suitable for non-regular domains.

The topology of human skeleton representation is a classic graph structure, where the
joints can be described as the graph nodes and the bones can be defined as the graph edges.
Starting from these connections, GCN is the most natural and used solution for processing
skeletal data.

Most research focuses on determining the label of each independent activity, but the
connection between highly similar activities is not taken into consideration.

The present method focuses on 3D skeleton time sequences. It proposes a method
that uses activity clustering as a first stage. One advantage of the clusterization consists
in adding a new action (that was not previously observed) that will not be conducted to
retrain the model. Then, the method is combined with a supervised method such that the
entire framework is much more robust to changes of activities in the dataset.

Moreover, the proposed method tackles the problem of adding new unseen activities
into a dataset, without having to retrain a heavy model. In this direction a two-stage
approach was proposed: first, a discriminant model that can group activities based on
their degree of similarity was used, and then a trained model is used for each of these
clusters. Having a separate model for each cluster allows it to have smaller models; thus,
the training will benefit from better convergence in terms of speed and accuracy. Current
method defines “the hyper-label” of an action as the cluster to which the action belongs.
As part of the experiments, the initial architecture was updated and a single classifier was
kept instead of multiple ones by adding the hyper-label as an additional feature for the
proposed model.

The paper is organized as follows: Section 2 describes the main related work models.
Section 3 presents the proposed architecture along with all the experiments that were made
in order to improve the performance of the proposed architecture using the evaluation
of the three datasets. Section 4 contains the analysis of the performance of the proposed
method and comparison results with existing methods. Conclusions and future work are
provided in Section 5.

2. Related Work

One of the most used representations of data is provided by the human skeleton.
In this direction, non-graph methods containing features obtained using neural networks
are proposed. Due to the intrinsic graph structure of the skeleton, many researchers have
proposed graph-based methods of representation [10–12]. These graph-based approaches
are used in conjunction with Convolutional Neural Networks (CNN) that result in a
baseline GCN.
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In [13], a novel neural network architecture is proposed, and it is designed on a generic
representation of skeleton sequences. Unlike other state-of-the-art approaches that rely
either on the spatial configuration of the skeleton joints or on the temporal dynamics of the
joints, the authors came up with a method to combine both aspects in order to fully benefit
from the strength of deep neural networks. They achieved this by extending the graph
representation of skeleton joints to a spatial-temporal graph model, called Spatial-Temporal
Graph Convolutional Network (ST-GCN). With this model, information is integrated
over both the spatial and the temporal dimension, and multiple layers of spatial graph
convolutions are designed.

One advantage of the ST-GCN is that it describes convolutional architecture. Previous
work [14] provides a Recurrent Neural Network approach based on a LSTM architecture
which is very sensitive to noise. The authors extend their main model with Trust Gates
in order to rectify the noise in the provided data and the possible occlusion of the subject.
The Recurrent Neural Network manages to capture the time dependency of the activity
but, in the end, achieves less performance than the ST-GCN model.

The ST-GCN model cemented as a good starting point for further improvements in the
state of the art of Skeleton Based Human Activity Recognition. In paper [15], the ST-GCN
model is extended to Actional-Structural Graph Convolutional Networks (AS-GCN). This
extension describes the addition of an encoder-decoder submodule. In this case, instead
of only capturing the local dependency of the individual joints and their local neighbors
across time, the authors infer a macro dependency between distant joints, such as ‘left-palm’
and ‘left-foot’ over the course of an action. This dependency is inferred during training via
structures called “A-Links” using an encoder-decoder architecture. The encoder directly
models the inference of the “A-Links”, while the decoder structure predicts future poses of
the skeleton.

Although the previous methods are modeled as supervised tasks, it is in our best
interest eliminate supervised approaches, as data annotation can be an exhausting process.

In this direction, there are a few unsupervised systems for skeleton-based action
recognition at this moment, since obtaining relevant feature representation of the skeleton
can be challenging. The method Predict and Cluster [16] proposes a method of clustering
similar activities into the same cluster and different activities into separate clusters in a
fully unsupervised manner. They successfully implemented a method based on an encoder-
decoder recurrent neural network, which can produce a feature space in its hidden states
that can effectively learn distinct actions.

Unsupervised systems for skeleton-based activity recognition are limited [17,18], since
obtaining relevant feature representations from spatial representation of the skeleton is
challenging. The main objective of the approach presented in this paper is to obtain an
intrinsic representation of the activities in such a manner that similar activities are clustered
together, while different activities are placed apart from each other, when inspecting their
hidden representation. The authors proposed two decoder strategies called Fixed Weights
and Fixed States in order to penalize the decoder. Predict and Cluster unsupervised system
achieves high accuracy performance and outperforms the supervised methods. The hidden
representation comes from the hidden states of the last layer of the encoder module, which
is then fed to the Decoder submodule. The important thing is to notice how, during the
training of the encoder-decoder module, the labels of the activities are not used at all, as the
encoder-decoder module does not need any information about the type of activity that is
performed. Keeping this in mind, in order to validate that the encoder-decoder module
works well, the authors proposed encoding each activity and extracting the features from
the latent space, and then they proposed useing a KNN algorithm to assign labels based on
the distances between those features in latent space and the ground-truth labels, resulting
in over 90% accuracy on the NTU-RGB+D dataset. On the large scale NTU-RGB+D [19]
dataset, Predict and Cluster performs extremely well on the cross-view test (see Table 1).
These results prove that the encoder-decoder module is a good method for representing
the activities in a latent space.
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Results of the existing methods are presented in Table 1.

Table 1. Results of the state of the art methods on NTU-RGB+D.

Methods
Top-1 Accuracy

C-View C-Subject

ST-GCN [15] 88.3% 81.55%
Predict and Cluster [16] 74.82% 50.21%

Some of the activities are misclassified due to their similar behavior of the subject
movements. The problem, in this case, is that the skeleton representation is polluted with
noise due to the inaccurate detection of the joints. For example, boundary joints, such
as the joints representing the feet of the subjects, encounter random movements, even
if the subject is standing still. These random movements tend to signal that the activity
involves movement of the lower part of the body, making the model misclassify it with
another activity that actually involves movement. GCN rarely explores the effective hidden
feature representation of an action. Indeed, the key features of actions can result in efficient
clustering such that the categorization will be more intuitive, but the ST-GCN model alone
is not able to correctly capture them.

Combining supervised and unsupervised methods has been proposed in several
works. Paper [20] proposed the enhancement of an unsupervised approach in image
classification. The authors state that by jointly training supervised and unsupervised cost
functions using backpropagation in a neural network, one can reduce the error rate of a
task when compared to individual approaches. In essence, the supervised technique is
depicted as a multi-layer perceptron (MLP) or convolutional neural network (CNN), while
the unsupervised one is established on a decoder submodule. A more general approach
is presented in [21]. It aggregates between supervised and unsupervised techniques via
unconstrained probabilistic embeddings over their ensemble. The proposal consists of
conditioning the outputs of the supervised models on the constraints implied by the
unsupervised ones.

The novelty of the paper consists in a new model for HAR with the following features:

1. Combines unsupervised with supervised methods for performing human activity
recognition using human skeleton data (without RGB information); in fact, GCNs are
combined with unsupervised techniques;

2. Has the ability of generalization for new unseen activities;
3. Has results comparable with state of the art methods (with short training time) using

different augmentation techniques and hyperparameters search;
4. Uses general activities (no certain group of activities were considerred) for evaluations

(activities from public datasets).

3. Proposed Method

The proposed method will quantify the resemblance between different activities
through their co-occurrences in the predictions of a video classification model (using the
human skeleton extracted from the video). It resembles a combination of unsupervised
and supervised learning algorithms, as provided in Figure 1.

Figure 1. General architecture for the proposed method.
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The first part, the Discriminant, employs an unsupervised method of clustering
data where the labels of the dataset are not used. The advantage of using unsupervised
techniques is that it allows the addition of completely new, unseen samples without the
need of retraining from scratch. The choice for the unsupervised algorithm is not fixed,
as one can use any unsupervised clustering approach.

The second part is represented by supervised methods that require annotated datasets
for training. In our case, the paradigm of ST-GCN is applied using the same structure,
but instead of relying on a single model that learns the entire dataset, multiple ones can be
used with extra information from the first step.

Starting from this idea, a model that can discriminate between activities by grouping
them together based on their similarity measures was created. The first part performs
clustering that can be seen as a ‘discriminative model’. After the datum is fed into this
model and a “hyper-label” is assigned to each activity, the input will be analyzed by a
small ST-GCN model, which can classify only activities belonging to its subset. Rather than
having a single model to generalize all the activities from the dataset, the dataset is split
into multiple categories in order to reflect the similarities between them. Figure 2 depicts
the architecture of the proposed method.

Figure 2. General structure of the proposed method.

First, the input datum is fed to the Discriminant model, which learns how to classify
each category outputted from the classification step. This prediction outputs a number
between one and n (n is the number of clusters), which correspondingly picks another
model to follow through with the data. This new model learns to only classify activities
belonging to its category and predicts the final activity.

For the Discriminant model, the Predict and Cluster [16] method was used as an initial
starting point. An encoder-decoder model is proposed in this method. The encoder-decoder
architecture is based on a sequence-to-sequence Recurrent Neural Network, which proved
to be very effective in modelling time dependencies of features having multiple dimensions.

The purpose of the encoder submodule is to project the input data into subsequent
representations with the main property of self-organization in the latent space in order
to show that the data can be clustered in an unsupervised fashion. The authors propose
a bidirectional flow with the purpose of capturing better long-term dependencies of the
input data. To be precise, the encoder is a multi-layered bidirectional Gated Recurrent
Unit (GRU) for which its input is a sequence of joint positions corresponding to an activity.
The output of the encoder submodule, specifically the last hidden state, is fed into the
decoder part of the architecture.

The decoder submodule is also based on Recurrent Neural Networks, and it is imple-
mented with a unidirectional Gated Recurrent Unit. The main purpose of the decoder is to
regenerate the original sequence, starting from the hidden representation extracted by the
encoder. The output of the decoder submodule is a sequence of joint positions similar to
the input of the encoder.
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By having both the input sequence and the output sequence, the model can be trained
in an end-to-end fashion, using a regeneration loss function as an L1 loss. Note that the
encoder-decoder model does not define the Activity Recognition task, as the output is
another sequence of joint positions. To this end, the authors propose a validation measure
in order to prove that their approach is a correct representation of the intrinsic features of
the latent space where the activities are projected.

The validation measure starts with the embeddings extracted from the application of
the encoder on the initial data. The embeddings represent the features of the input data
as observed in the latent space. On these embeddings, the authors propose a k-Nearest-
Neighbours (kNN) algorithm, with k = 1. The k-Nearest-Neighbours is fitted using the
embeddings of the training data by passing the training sequences through the encoder
part. After fitting the kNN, we can use the validation data by passing through the kNN and
predicting the labels according to the latent space. These predicted labels are compared to
the real labels, and an accuracy measure is computed based on them.

The latent space’s main characteristic is that it is able to represent the activities se-
quence and cluster them together based on their similarity. The kNN algorithm that was
used for classification is able to group the data by choosing the closest neighbour and
picking its label. However, for our unsupervised approach, we do not need the labels of
the activities; intead, a more general label that should represent a broader set of activities is
required. This new label becomes the initial ‘hyper-label’ described in the previous sections.

Thus, the Discriminant module is extracted from the Predict and Cluster method,
which is trained independently, as a prerequisite step. After the training, the clustering
algorithm is also fit on training data embeddings by using a number of N clusters.

The next step is to instantiate n classifiers, specifically ST-GCN models: one for each of
the clusters used for the clustering algorithm. The training of the n clusters begins with the
passing of the input data into the discriminant, which outputs the ‘hyper-label’ assigned
to the activity. This ‘hyper-label’ activates the flow of data only for the corresponding
classification and passes the original sequence through it, as in the normal ST-GCN.

ST-GCN is a GCN that is actually a generalization of CNNs. The biggest difference
between GCN and CNN is that CNN is performing convolution on a Euclidean space
(e.g., images), but GCN is performing convolution on non-Euclidean space such as graphs.
Convolutions applied on spatial domains are implied to represent data as graph nodes
and their connections. Then, the convolutions are applied directly on the graph nodes and
their neighbors.

The output of the ST-GCN is a predicted label, which is compared to the original label
using Cross Entropy Loss, which is propagated back into the corresponding ST-GCN in
order to update its weights. We do not have to propagate the loss through the Discriminant,
since the Discriminant model is already trained, and it is set in such a fashion as to not
generate gradients in the flow of the data. The algorithm for training the model is provided
in Algorithm 1.

The ST-GCN model respects the description from [13]. It starts with a Batch Normal-
ization layer to normalize the position of the input skeleton sequence. Then the model
describes nine consecutive layers of ST-GCN blocks. These nine layers are arranged se-
quentially, with the first three layers having an output size equal to 64, the middle three
having an output size equal to 128, and the last three having an output size equal to 256.
Between each layer, a dropout is applied to reduce overfit. The third, sixth and ninth layer
denote a bigger stride of two in order to act as a pooling layer. At the end, a global pooling
layer is used to obtain a vector containing 256 features, which is later fed to a SoftMax
function for classification. Each layer of ST-GCN denotes a residual connection, except for
the first layer. The temporal kernel size is set to nine over the whole network.
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Algorithm 1 Algorithm for training the proposed architecture.

N = number of clusters
E = encoder model
K-means = K-means model
STGCN1, STGCN2, . . . , STGCNN each ST-GCN model corresponds to a single cluster
for Xseq, Ylabel in dataset do

embeddings← E(Xseq)
Ypseodo ← K−means.predict(embeddings)
Ypred = STGCNYpseudo (Xseq)

Error ← CrossEntropy(Ypred, Ylabel)
BackPropagate Error through STGCNYpseudo

end for

Thus, the Discriminant model is able to capture the spatial and temporal dependencies
of joint positions, regardless of the class that the sequence of joints describes, meaning that
the model can successfully assign hyper-labels to new unseen activities that were not part
of the training data, even when their real label is completely different from the original
ones. The overall architecture of this approach is provided in Figure 3.

Figure 3. The architecture of the proposed approach.

In order to render the recognition more robust, a preprocessing step was performed
as in [16]. The action sequences were aligned using a view-invariant transformation. This
transformation projected the body keypoints from the original coordinate system to a
view-invariant coordinate system.

Transformation visualization is described in Figure 4, where v1 is the vector perpen-
dicular to the ground, v2 is the difference vector between left and right hips joints in the
initial frame of each sequence, and v3 describes the projection into the new space.
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Figure 4. Preprocessing of body keypoints sequences according to view-invariant transformation [16].

The new coordinates of skeleton joints is described by Equation (1):

xj
t = R−1(xj

t − dr)∀x, t (1)

where xj
tinR3x1 are the coordinates of the jth joint of the tth frame, dr is the coordinate of

the root joint in the initial frame, and R is the rotation matrix.
The Discriminant model should be able to assign labels in an unsupervised manner;

therefore, two clustering algorithms were proposed: K-Means [22] and Gaussian Mixture
Models (GMM) [23].

K-Means is an iterative expectation-maximization algorithm used for clustering multi-
dimensional data by using a distance measure function that corresponds to the similarity
between two given data points. For the proposed approach, the Euclidean distance was
used to compute the similarity of two embeddings in the latent space. The K-Means
algorithm begins with the initialization of the k clusters’ centroids in the search space,
where k is equal to the number of fixed clusters. This initialization is performed randomly.
The expectation step assigns each data to its nearest centroid. Then, the maximization step
computes the mean of all the data assigned to each cluster and sets the new centroid. Then,
these two steps are repeated until convergence is obtained.

A characteristic of K-means is that it is a hard clustering method, which means that
it will associate each point to one and only one cluster. Soft clustering, the GMM [23]
approach, unlike K-Means does not use a distance metric to describe the similarity between
data points. It is a distribution-based model, which starts from the assumption that the
data are distributed in the search space as parts of some Gaussian Distributions; this means
that each Gaussian Distribution defines a corresponding cluster of the data. A Gaussian
Distribution is described by its mean and its covariance. If we assume that the data are
distributed over k clusters, then the GMM should be able to model k Gaussians over the
search space such that each data point becomes assigned to one of these Gaussians. This can
be written mathematically as a probability of a data point to be generated by a Gaussian.

A GMM involves the mixture of multiple Gaussian Distributions. The probability
density function is given by Equation (2):

p(x) =
K

∑
k=1

P(k)N(x|µk, Σk) (2)

where

• P(k) is the mixture proportion of the kth distribution. This factor weighs the contribu-
tion of the kth distribution into the mixture, such that ∑K

k=1 P(k) = 1;
• N(x|µk, Σk) denotes the conditional probability of the instance x for the kth Gaussian

distribution. µk and Σk are the mean and covariance of that Gaussian distribution.
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Similar to how the K-Means model works, the GMM is also optimized using expecta-
tion maximization, which tries to find the Gaussians to maximize the probability of the
data points being a part of them.

The advantage of GMM over K-Means is that GMM does not use a distance similarity
measure; instead, it is a probabilistic model which attempts to maximize the likelihood of
data points to be part of certain Gaussians. Thus, instead of using just the mean of the data,
it also uses the variance of it as well.

To summarize, the main contribution of the proposed method consists in a combi-
nation of supervised and unsupervised methods. The first part, the Discriminant model,
describes an unsupervised manner of grouping up activities based on a similarity measure,
using K-Means or GMM over an embedding space of an autoencoder. The second part,
the Classifier, utilizes the information obtained by a Discriminant to enhance the results
of a baseline supervised classification model (in this case ST-GCN model). Some key
improvements will be presented in the following sections.

4. Results

The implementation was made using the PyTorch [24] deep learning framework.
Both training and evaluation have been executed on a machine equipped with an Nvidia
RTX 2080 Ti with 11GB VRAM. The experiments used Adam as the optimization strategy.
The loss function used in this work is cross entropy in order to backpropagate gradients.
The weight decay is set to 0.0001. All of the training processes ended after 80 epochs.

To train the network, all the skeletal data were preprocessed according to the view-
invariant transformation detailed in Section 3 and downsampled to have at most 50 frames.
The downsampling mechanism truncates the activity sequence if the number of skeleton
frames is greater than 50, and if there are fewer than 50 frames, we padded the sequence
with zeros. The truncation is computed using the following equation:

f ramesdownsampling = f rames[1 + i ∗ di f f ] (3)

where the following is the case.

di f f =
seqlength

target f rames
(4)

seqlength is the total number of frames in each video, target f rames is set to 50 throughout
the experiment, and i = 1. . . target f rames

To train the network, all the skeletal data were preprocessed according to the view-
invariant transformation and downsampled to have at most 50 frames. The downsampling
mechanism truncates the activity sequence if the number of skeleton frames is greater than
50, and if there are fewer than 50 frames, we padded the sequence with zeros.

4.1. Datasets

Evaluation of the proposed method was performed on two public datasets: NTU-
RGB+D [19] and NTU-RGB+D 120 [25].

NTU-RGB+D [19] is one of the largest multimodality indoor-captured action-recognition
dataset. The dataset includes several data modalities, such as RGB videos, IR videos, and
skeleton data. It consists of 56.880 videos, which describe 60 different activities. Each video
is depicted as a sequence of frames, where each frame contains the 3D world positions for
each joint. NTU-RGB+D is a very complex dataset, where the environments in which the
scenes are recorded vary in terms of lighting conditions and background variations. The
dataset contains RGB videos, depth map sequences, 3D skeleton data, and infrared (IR)
samples for each activity sample. The resolution of the videos is 1920 × 1080, while the
depth maps and the IR videos are 512 × 424. The skeleton data contains 3D coordinates of
25 joints at each frame.
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One of the most challenging aspects of this dataset resides in the large amount of
classes that it presents. The authors proposed to divide the activities into three major
groups. ‘Daily Actions’ represents those types of actions performed in usual scenarios:
eat meal, brush teeth, reading, etc. The second group, ‘Medical Conditions’, describes
situations strictly related to the unwellness of the human body, and they provide great
interest in elderly care: falling down, chest pain, etc. The last group surprises mutual
interactions between two people: pushing, giving object, etc. We present some RGB
samples from the dataset in Figure 5.

NTU-RGB+D 120 [25] is an extension of the canonical dataset NTU-RGB+D. Over the
previous 60 actions dataset, they have added another 60 classes with new subjects recording
the videos, with an additional number of 57.600 video clips. This dataset is also divided
into three major categories: daily activities and health-related and mutual actions. A few
examples from each category are shown in Table 2.

Figure 5. Samples from NTU-RGB+D dataset. Top: A17—take off a shoe; Bottom: A48—nausea/
vomiting.

Table 2. Examples of activities from NTU-RGB+D 120 dataset.

Category Classes

Daily Actions Open bottle, fold paper, and make victory sign
Health-related Blow nose, stretch oneself, and yawn

Mutual Actions Exchange things, high-five, and rock-paper-scissors

The NTU-RGB+D 120 dataset is, probably, the most descriptive dataset available for
the task of HAR. Each video is depicted as a sequence of frames, where each frame contains
the 3D world positions for each one of the 25 joints. The subjects in this dataset have
various ages ranging from 10 to 57 years. The dataset is governed by realistic variations
in terms of the quality of the actions captured. On top of all of them, the environments in
which the scenes are recorded vary in terms of lighting conditions and background colors,
which results in much larger variations over the entire dataset. The authors, however,
provide the full skeleton data from each of the recorded videos. The large number of classes
and depicted fine-grained activities renders this dataset appropriate for evaluating the task
of Human Activity Recognition.

The cross-subject benchmark splits the 106 actors into two groups, mainly the training
group and the testing group. Each group consists of 53 actors.
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The cross-view benchmark, on the other hand, splits the dataset based on the setup
used to record the video. In this benchmark, the setups identified as even numbers are
used for training, while the odd-numbered setups are used for testing.

However, most of the state-of-the-art approaches that use this dataset chose another
model for splitting the data. The cross-subject evaluation remains the same, but the cross-
view evaluation is switched for the cross-view evaluation, where instead of splitting the
dataset over the setup identifier, the dataset is split amongst the camera identifiers used
for recording. Mainly, the videos recorded by cameras identified as ‘2’ and ‘3’ are used
for training, while the remaining ones, videos recorded by camera ‘1’, are used for testing.
Figure 6 shows a few samples of this dataset.

Figure 6. Samples from NTU-RGB+D 120 dataset. Top: A115—take a photo; Bottom: A88—take
off bag.

4.2. Evaluation Results on NTU-RGB-D Dataset

For this dataset, three values were considered for the number of clusters, for both
K-Means and GMM methods.

The size of the latent space is equal to 2048, a large value which makes the visualization
of the data distribution impossible. We need a method to visualize the data in a space that
has fewer dimensions. To solve this issue, we have used a machine learning algorithm
called ‘t-distributed stochastic neighbor embedding’ [26] (t-SNE). The t-SNE algorithm
begins by computing a probability distribution that resembles the similarity of points.
Specifically, the similarity between two points xi and xj is equal to the probability P(i|j),
meaning that the point xi would pick xj as its neighbour, if neighbors are picked to fit a
Gaussian centered at xi. t-SNE will compute these probabilities in the high dimensional
space, the original one, and then it will also compute the same probabilities of the projected
points in the 2D space where we want to visualize the data. Then, it will try to minimize
the divergence between the two distributions for each point in the data.

The result of t-SNE is a mapping from the high dimensional space into the 2D space
of each of the points, meaning that we can clearly visualize the distribution of the points.
Indeed, the results are not perfect, but it can provide a method of visualizing the data
distribution in a two-dimensional space.

Therefore, t-SNE was used to create plots using the embeddings of the training data.
For testing, the number of clusters was given three values that were used for both K-Means
and GMM methods. These values are as follows: 5, 9, and 15. The t-SNE plots obtained
after extracting the embeddings from the training data are shown in Figure 7 for the
K-Means algorithm, while the corresponding t-SNE plots are shown in Figure 8 for the
GMM algorithm.
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Figure 7. t-SNE plotting for K-Means applied on NTU-RGB+D dataset using 5, 9, and 15 clusters.

Figure 8. t-SNE plotting for GMM for NTU-RGB+D dataset using 5, 9, and 15 cluster.

The visualization presented previously denotes that the number of clusters is highly
dependent on the number of the original classes. Specifically, the seven-cluster K-Means
and GMM provide an assignment of hyper-labels that describe a high overlap between the
data points, which is natural because there are only 10 original labels. The five-clusters
approach provides better results than the seven-clusters, but the most representative result
comes from the GMM algorithm using three clusters.

The next step is to train the main architecture from one end to the other. The best
configuration of the training parameters is described by the Adam Optimizer with an
initial learning rate of 0.001, β1 = 0.9, and β1 = 0.999. The batch size used is equal to 512,
and the configuration of the ST-GCN is the original one proposed in the original paper,
with subsequent ST-GCN layers that increase in dimensions, in order to obtain a higher
granularity of the features. The temporal kernel size of the ST-GCN is equal to nine, and
the partitioning strategy used for the graph convolution is the spatial one, which groups
up joints based on their centripetal and centrifugal properties.

Table 3 shows the results for both the K-Means approach and the GMM approach.
The results with the GMM clustering are better, which is expected given the fact that the
visualization of the GMM embeddings projects the data in a manner that clearly separates
the data in different clusters, unlike the K-Means approach.

Table 3. Results of the Discriminative Approach.

Clustering
Algorithm

Number of
Clusters

Initial Learning Rate
(Adam Optimizer)

Batch
Size Accuracy (%) Training Time

(min)

K-Means 5 0.005 128 74.05 230
K-Means 9 0.005 128 76.03 235
K-Means 15 0.005 128 74.72 239

GMM 5 0.005 128 78.33 247
GMM 9 0.005 128 79.56 250
GMM 15 0.005 128 76.39 260

The accuracy decreases when the number of clusters increases to 15 based on the
probabilistic nature of the clustering models and the latent space size of the autoencoder.
The embeddings do not vary that much over individual components, and these variations
are incorrectly captured when using a larger number of clusters.
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4.3. Architecture Improvement

One disadvantage of the proposed method consists in using multiple classifiers. Since
the encoder and the clustering algorithm outputs hyper-labels for each activity, it was
proposed to use a different approach than using multiple classifiers and activating each
of them based on the hyper-label. Thus, the hyper-label becomes an additional feature
that is used during the prediction of a single ST-GCN. The idea is to concatenate the
output of the ST-GCN before the fully connected layer with the hyper-label assigned by
the clustering algorithm. The training mechanism for the 1-Classifier approach is depicted
in Algorithm 2.

Algorithm 2 Algorithm for training of the improved architecture.

N = number of clusters
E = encoder model
K-means = K-means model
STGCN = one ST-GCN model
for Xseq, Ylabel in dataset do

embeddings← E(Xseq)
Ypseodo ← K−means.predict(embeddings)
Xseq ← concat(Xseq, Ypseudo)
Ypred = STGCN(Xseq)
Error ← CrossEntropy(Ypred, Ylabel)
BackPropagate Error through STGCN

end for

The advantage of this method consists in using a single classifier instead of multiple
ST-GCN models. The data are extended before the classification part with the ‘hyper-label’
such that activities that are assigned to the same ‘hyper-label’ are weighted together during
error propagation through the ST-GCN.

4.3.1. Evaluation of the Improved Model on the NTU-RGB+D Dataset

The results of the 1-Classifier approach are presented in Table 4, and these results are
the best ones from our experiments. The overall architecture is presented in Figure 9.

Table 4. Results of the 1-Classifier Approach.

Clustering
Algorithm

Number of
Clusters

Initial Learning Rate
(Adam Optimizer) Batch Size Accuracy (%) Training Time

(min)

K-Means 9 0.005 128 85.72 181
GMM 9 0.005 128 87.26 193

Figure 9. Architecture for 1-Classifier Approach.
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An analysis of misclassifications produced by the architecture on the NTU-RGB+D
dataset was performed. We noticed that the hyper-labels produced by the clustering
algorithm are distributed unevenly in the pseudo categories when compared to the ground-
truth labels. For instance, the activities from Labels 15 and 23, in the case of a GMM
clustering using nine clusters, were distributed as displayed in Table 5. This shows that, for
Label 15, 3.52% of the samples would have to be learned by the third classifier, and 7.07%
of the samples would have to be learned by the fifth classifier, while the rest of 89.41% of
the data would have to be learned by the fourth classifier. The same scenario happens
for all the activities, but we picked Labels 15 and Labels 23 as examples, because they are
the most representative. The uneven distribution of data hurts the training regime of the
architecture as the classifiers cannot generalize well on small distributions due to the lack
of information.

Table 5. Uneven distribution of hyper-labels.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

Label 15 0% 0% 3.52% 89.41% 7.07% 0% 0% 0% 0%
Label 23 0% 0% 0% 0% 0% 98.21% 0% 1.79% 0%

In order to fix this problem, a majority mechanism was implemented such that samples
belonging to the same class pass through a single classifier. For this part, we have used
the ground-truth label to gather all samples belonging to each class. Then, we picked
the hyper-label for each sample as the absolute majority of hyper-labels assigned by the
clustering algorithm per class. Moreover, this forces the classifiers to only learn a subset of
the activities, without learning a small number of examples from other activities which just
happened to be clustered by the clustering algorithm in a different cluster.

This technique allowed the architecture to better capture the intrinsic representation of
the skeleton sequence, increasing the Top-1 accuracy by more than 5%, as shown in Table 6.

Table 6. Results of the majority technique.

Clustering
Algorithm

Number of
Clusters

Initial Learning Rate
(Adam Optimizer) Batch Size Accuracy (%) Training Time

(min)

GMM (with Majority) 9 0.005 128 85.24 254

4.3.2. Evaluation of the Improved Architecture on NTU-RGB+D 120 Dataset

The second set of experiments involved the NTU-RGB+D 120 dataset. The extension
added 60 more classes, bringing a total of 120 classes. All the samples are performed by
106 subjects in scenes with various illumination settings and different backgrounds. In total,
NTU-RGB+D 120 contains 114.480 samples.

The purpose of this experiment is to verify if the proposed architecture is able to
generalize on a new set of data. Even though the challenges of the NTU-RGB+D dataset
remain to be overcome in this experiment, the extension brings another set of variations of
the data that further increase the challenging nature of the task.

The first issue that was encountered was the variations of subjects that are undergoing
the activities. The second part of the dataset increased the number of subjects from 40 to 106,
resulting in other variations in the body movements due to the individual characteristics
of each person. Table 7 describes the results of the extended dataset on our approach.



Sensors 2021, 21, 6309 15 of 22

Table 7. Results of the NTU-RGB+D 120 dataset.

Clustering
Algorithm

Number of
Clusters

Initial Learning Rate
(Adam Optimizer)

Batch
Size Accuracy (%) Training Time

(min)

GMM (with Majority) 10 0.005 128 41.33 515
K-Means (with Majority) 10 0.005 128 40.33 509

GMM (with Majority) 30 0.005 128 39.41 561
K-Means (with Majority) 30 0.005 128 36.97 547
GMM with 1-Classifier 10 0.005 128 23.15 413

Based on the results that are shown in Table 7, the retraining of the ‘clustering’ step
hurts the performance of the approach on the NTU-RGB+D 120 dataset. The problem
comes from the specific encoding of the activities, and it can be observed by plotting
the t-SNE features of the hidden space of the encoder. The visualization is available in
Figure 10. Unlike the original encoding of the NTU-RGB+D dataset, the new encoding
shows undefined clusters, with plenty of overlaps between the samples. In this case,
not even the ‘majority’ mechanism can alleviate the problem, because this breaks the
distribution of classes across the clusters. Some of the clusters will have fewer classes than
the others, resulting in the degradation of the training process.

Figure 10. Plotting the t-SNE of encoded features with GMM; 30 clusters (left); 10 clusters (right).

The next evaluation started from the fact that one of the main issues in supervised
methods consists in how the approach can generalize on new data. Moreover, if the new
data contains new labels, classification models must be retrained from scratch so as to
consider the new labels.

In unsupervised methods, however, the architecture should be able to correctly rep-
resent unseen data, making it invariant to additional samples. Keeping this in mind, the
extended NTU-RGB+D 120 dataset was used with the ‘clustering’ step untouched (as it
was obtained for NTU-RGB+D dataset), without retraining it. The obtained results are
given in Table 8.

Table 8. NTU-RGB+D 120 results with 60 classes encoding.

NTU-RGB+D 120 Results with
60 Classes Encoding

Number of
Clusters

Initial Learning Rate
(Adam Optimizer) Batch Size Accuracy (%) Training Time

(min)

GMM (with Majority) 9 0.005 128 67.87 450
K-Means (with Majority) 9 0.005 128 59.29 441

GMM (with Majority) 15 0.005 128 63.21 498
K-Means (with Majority) 15 0.005 128 51.07 449
GMM with 1-Classifier 10 0.005 128 23.15 413
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The analysis undergone for NTU-RGB+D and NTU-RGB+D 120 shows that the 1-
Classifier approach is not able to capture the similarities in the embeddings space when
combined with the features from the ST-GCN model. The main issue here is described
by the nature of the features themselves, as the embeddings are computed in a manner
that allows for regeneration of the input sequence in the encoder-decoder model based
solely on the recurrent aspect of joint positions in time, while the ST-GCN features are
modeled as the main characteristics of the joint positions via the intra-dependency and the
interdependency between them.

4.3.3. Data Augmentations

Data augmentations provide a great benefit to neural networks in terms of perfor-
mance, as various transformations applied on the input data results in a more robust model.
Keeping in mind that the input is truncated to a subset of 50 samples, a relatively small
number when compared to the initial sequence, the augmentations are meant to improve
the quality of the training dataset. However, using too many augmentations might be
detrimental to the training process, resulting in the incapability of the network to learn
the main characteristics. In this section, we will briefly describe the transformations that
have been applied to the skeleton input and the results that we have obtained, along with
a short discussion about different augmentation strategies, all while keeping in mind the
trade-off between the number of augmentations and the accuracy increase.

Usually, augmentations are used in recurrent based methods, as this trick is crucial
when it comes to training accurate models. Papers [27–29] proposed a series of transfor-
mations to compensate for the lack of training data. Moreover, augmentations are also
implemented during the training phase of convolutional neural networks with the objective
of simulating various perturbations of the environment (lighting, noise, crops, and occlu-
sion). We propose following a similar direction and implementing different augmentation
techniques in our architecture.

During the training phase, we define the transformations as a list of consecutive
operations applied on the input data. This list is defined as transf = [t1, t2, . . . ], where ti
is the ith augmentation applied on the input sample. Throughout our experiments, each
individual transformation is randomly utilized for each sample with a probability equal
to 50%.

The first augmentation implemented is shear. Shear’s role is to simulate different
perception angles. Thus, each joint’s position is projected in a predefined direction, making
the entire skeleton sequence displaced under a certain viewpoint. This augmentation helps
the network to capture the small variations of the skeleton movement with respect to the
y axis.

Flip is the operation that is performed along the temporal dimension, where the
skeleton sequence is fed backwards into the neural network, as the model should be capable
of understanding the natural series of joints even when they are reversed. Moreover,
reversing the input sequence allows the network to better discern between activities that
are symmetrical to each other with respect to the temporal axis. We have also applied joint
masking where we mask a random number of joints from a random number of frames
by replacing them with zeros. This should encourage the model to be more robust to
occlusion and able to correctly recognize activities that involve more than one person. We
implemented this augmentation in a heuristic fashion where we go through each timestamp
in a sequence, we randomly pick a joint (80% chance to not pick any joint), and we randomly
set one of the three coordinates to zero (50% chance to not set any coordinate to zero).

The last augmentation technique is represented by Gaussian Noise. Skeleton data are
often imprecise and inaccurate, and most of the time the joints’ positions are approximated.
However, the model should not be affected by these perturbations; thus, Gaussian noise
N(0, 0.05) was added over joints’ position.

Figure 11 shows a set of data augmentations applied on the human skeleton.
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Different experiments were performed with various lengths for the list of augmen-
tations on the NTU-RGB+D and NTU-RGB+D 120 datasets, and the results are given
in Table 9.

Table 9. Top-1 accuracy with different augmentations.

Methods Augmentations Initial l.r.
(Adam) Batch Size Accuracy (%) Dataset

GMM—9 clusters No augmentations 0.005 128 67.87 NTU-RGB+D 120
GMM—9 clusters Flip 0.005 128 72.31 NTU-RGB+D 120
GMM—9 clusters Shear 0.005 128 72.78 NTU-RGB+D 120
GMM—9 clusters Flip + Shear 0.005 128 74.06 NTU-RGB+D 120
GMM—9 clusters Flip + Shear + Gaussian Noise + Joint Masking 0.005 128 56.03 NTU-RGB+D 120
GMM—9 clusters No augmentations 0.005 128 85.24 NTU-RGB+D
GMM—9 clusters Flip 0.005 128 86.40 NTU-RGB+D
GMM—9 clusters Shear 0.005 128 88.04 NTU-RGB+D
GMM—9 clusters Flip + Shear 0.005 128 90.22 NTU-RGB+D
GMM—9 clusters Flip + Shear + Gaussian Noise + Joint Masking 0.005 128 71.58 NTU-RGB+D

Figure 11. Examples of data augmentation applied on skeleton.

Different experiments were made using several combinations of data augmentation.
First, only one type of data augmentation is applied: flip and shear. Next, experiments
were performed by combining flip and shear. Last tests combined flip and shear, and a
large set of augmentations were performed, including Gaussian Noise and Joint Masking.

All these experiments were performed on both NTU-RGB+D and NTU-RGB+D
120 datasets. In both cases, the best performances were obtained using flip and shear
for data augmentation (an increase in approximately 5% was obtained in both cases of
NTU-RGB+D and NTU-RGB+D 120 datasets). In this case, the model can better generalize
the activities that were similar to each other in terms of movements of the body, with respect
to the vertical axis, while also capturing the difference between reversed sequences of
mirrored activities in time. In the case of including Gaussian Noise and the Joint Masking,
both performances were reduced since the overall noise induced by all the augmentations
hurt the skeleton structure, resulting in ineffective training.

Some examples of good and bad activities (from the point of view of the proposed
method) are given in Figure 12.
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Figure 12. Correctly predicted (left) and incorrectly predicted (right) examples recognised by the
proposed network.

4.4. Performance Analysis of the Improved Model

Relevant information about the performance of the proposed architecture is presented.
First, the inference time was analysed. Inference time is the metric that is important in
real-life scenarios, as we expect that an application that leverages deep learning techniques
should work in real time.

Experiments were performed on a machine equipped with an Nvidia RTX 2080 Ti,
having 11 GB of VRAM. We are interested in the execution time between inputting the data
into the model and obtaining the output. We report our findings in Table 10.

Table 10. Performance results of the proposed approach.

Approach Dataset Clustering
Step (ms)

Classification
Step (ms) Total (ms) Number of

Parameters

ST-GCN—baseline NTU-RGB+D N/A 0.71 0.71 4.54 × 105

Clustering (K-Means 9) (Ours) NTU-RGB+D 1.90 0.70 2.60 1.7 × 106

Clustering (GMM 9) (Ours) NTU-RGB+D 2.11 0.71 2.82 1.7 × 106

Clustering (GMM 9) Majority (Ours) NTU-RGB+D 2.03 0.72 2.75 1.7 × 106

Clustering (GMM 10) Majority (Ours) NTU-RGB+D 120 2.18 0.71 2.89 1.7 × 106

Clustering (GMM 9) Enc-60 (Ours) NTU-RGB+D 120 2.13 0.71 2.84 1.7 × 106

Table 10 shows that the performance of the clustering method, when compared to the
ST-GCN baseline, is almost the same, with indistinguishable increase. The testing of the
inference time was performed by using a batch size of 128, both for the ‘clustering’ step
and the ‘classification’ step. The duration of the inference over 100 steps was averaged.
The addition of the clustering step increased the inference time by more than 150%, but it
was expected since the ‘clustering’ step requires passing through the encoder and a predic-
tion using the clustering algorithm, whether it is K-Means or GMM. However, the total
time of the inference is less than 5 ms, making the method easily implementable in real
life scenarios.

In terms of computational efficiency, the additional computations added by the clus-
tering step were analysed. Even though the number of parameters has increased with a
factor of four over the standalone ST-GCN model, the performance is hurt only during
the initial training step. The efficiency comes in two large benefits. Firstly, the embedding
space of the autoencoder allows new categories of activities to be assigned to existing
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clusters without the need of retraining the autoencoder. Secondly, the inference time still
favors real-time applications, as the clustering requires only a prediction.

Along the reported inference time, some of the misclassified activities were analyzed in
order to understand why the architecture is not able to predict the correct label. For example,
Table 11 reported our Top-1 accuracy for GMM 9 clusters with Majority for the NTU-RGB+D
dataset, where activities labeled 11 (headache) and 37 (wipe face) have an accuracy of
44.44%, respectively 55.70%. In this case, these activities describe very fine movements of
the skeleton, with very small variations of the joints’ positions. Due to the large distance
between the camera and the subject and because the skeleton is estimated, these small
movements act more similar to a jitter, and the network considers them as noise, resulting
in misclassification.

On the other hand, the activities ‘put on jacket’ and ‘take off jacket’ are correctly
classified most of the time because the movements of the body show clear displacements
over time, canceling the possible errors carried by the joints’ information.

Table 11. Top-1 Accuracy GMM 9 clusters with majority for few examples from NTU-RGB+D dataset.

Activity Top-1 Accuracy (%)

Label 3—brush teeth 93.04
Label 5—drop 90.19

Label 7—throw 96.20
Label 8—sit down 96.19
Label 9—stand up 99.05

Label 14—put on jacket 99.37
Label 15—take off jacket 98.73

Label 2—eat meal 62.66
Label 11—reading 44.44

Label 37—wipe face 55.70
Label 29—play with phone/tablet 24.37

4.5. Comparison with State of the Art Methods

Tables 12 and 13 presents the best results of the proposed architectures on the NTU-
RGB+D and NTU-RGB+D 120 datasets and also the accuracies of some of the state of the
art methods. It can be observed that the proposed method surpasses the performance of the
unsupervised approach, fulfilling our objective of proposing a combination of unsupervised
and supervised techniques. With respect to Shift-GCN and AngNet [30], the proposed
method is not able to reach their performance, but this is caused by the exploitation of the
structural data that both these methods imply.

For example, the Shift-GCN model introduces the Shift Graph Spatio Temporal Con-
volution, specializing the Graph Convolution operation such that it extends the receptive
field on both the temporal dimensions and the spatial ones. On the spatial domain, all the
nodes share information, unlike the proposed approach where the information is shared
between neighboring nodes. Moreover, the temporal domain shows a similar strategy
by introducing a learnable parameter related to the quantity of information flow across con-
secutive frames. These improve the accuracy of the model considerably, and they seem to
be a natural extension of our approach, as they are also based on the ST-GCN architecture.

The results obtained for the NTU-RGB+D dataset are similar to the ones obtained by
the state-of-the-art methods (as given in Table 12), but for the NTU-RGB+D 120 dataset a
decrease in performance is obtained (as given in Table 13), and we alleviate this decrease
through the introduction of data augmentations. Moreover, the initial results of the un-
supervised method presented in Predict and Cluster were improved, showing that the
combination of unsupervised and supervised methods increases the performance when
compared to individual implementations.
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Table 12. Comparison of the proposed approach with state of the art methods (NTU-RGB+D dataset).

Approach Dataset (X-Sub) Top-1 Accuracy (%)

ST-GCN—baseline NTU-RGB+D 81.5
Clustering (K-Means 9) (Ours) NTU-RGB+D 76.0

Clustering (GMM 9) (Ours) NTU-RGB+D 79.5
Clustering (GMM 9) Majority (Ours) NTU-RGB+D 85.2

Clustering (GMM 9) Majority with augmentations (Ours) NTU-RGB+D 90.2
Shift-GCN [31] NTU-RGB+D 90.7

Predict and Cluster [16] NTU-RGB+D 50.7
AS-GCN [15] NTU-RGB+D 86.8

AngNet + BA + JBA + VJBA [30] NTU-RGB+D 91.7
VPN++ [32] NTU-RGB+D 96.7

Table 13. Comparison of the proposed approach with state of the art methods (NTU-RGB+D 120 dataset).

Approach Dataset (X-Sub) Top-1 Accuracy (%)

Clustering (GMM 10) Majority (Ours) NTU-RGB+D 120 41.3
Clustering (GMM 9) Enc-60 (Ours) NTU-RGB+D 120 67.8

Clustering (GMM 9) enc-60 with augmentations (Ours) NTU-RGB+D 120 74.0
Shift-GCN [31] NTU-RGB+D 120 87.6

AngNet + BA + JBA + VJBA [30] NTU-RGB+D 120 88.2
VPN++ [32] NTU-RGB+D 120 90.7

For the NTU-RGB+D 120 dataset, our results were not optimized entirely, and a better
technique would be to use the SGD optimizer instead of Adam, with a corresponding
learning rate schedule. Moreover, our approach is not able to correctly capture the large
variations between the subjects’ postures and movements as the encoding of the activities
is based on the initial set of subjects and their characteristics.

5. Conclusions and Future Work

This paper presents a method for human activity recognition by using skeleton data
that combines supervised and unsupervised techniques. Several state-of-the-art methods
were analysed showing that similar activities are often misclassified due to their similar
body movements and postures which could also trick the human eye. The proposed
method consists of a two-stage architecture. The first stage groups up activities by using
a clustering method over a hidden representation, which better resembles our samples.
The second stage classifies activities from each cluster with high granularity of the Ground
Truth labels. For the first stage, an encoder-decoder architecture was used to extract the
hidden representation of the inputted data. The hidden latent space of the encoder proved
to be a suitable candidate for defining a space in which activities are situated at different
volumes, with similar activities belonging to the same volume. The distances between
activities that are different from each other are much larger than the distances between
similar activities, allowing us to use a clustering algorithm to group up similar activities.
In the second stage, a classifier was used for each cluster that was created in the first stage.
Thus, a classifier does not need to learn the entire dataset but only a subset of the data,
meaning the activities that were assigned to its corresponding cluster. On the other hand,
adding new activities does not imply a retraining of the entire architecture. The first stage
does not require retraining, as the hidden representation will assign the activity to one
pre-existing cluster, and in the second stage, the only retraining that must be conducted is
the retraining of the corresponding classifier, heavily increasing the retraining time based
on the number of activities assigned to that cluster.

The effectiveness of the final architecture was tested on two public datasets: NTU
RGB+D and NTU-RGB+D 120. Several experiments with various clustering methods,
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augmentation techniques, and hyperparameter settings were conducted. The proposed
model achieved 90.2% Top-1 Accuracy on NTU-RGB+D dataset and 74.06% Top-1 Accuracy
on NTU-RGB+D 120 dataset. These results proved to be more efficient than unsupervised
techniques and even improved the baseline model (ST-GCN).

As future work, the baseline ST-GCN that takes the role of the classifier from the
second stage can be replaced with stronger architecture such as the Shift-GCN, which
better captures the temporal and spatial correlation of the joint positions, all while keeping
the number of parameters in the same magnitude order. On the other hand, since the
number of classes of a dataset increases, an exploration through a larger latent space might
yield improved results as more dimensions in the latent space might result in greater
disentanglement of the intrinsic feature representations.
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