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Abstract: Image inpainting aims to fill in corrupted regions with visually realistic and semantically
plausible contents. In this paper, we propose a progressive image inpainting method, which is
based on a forked-then-fused decoder network. A unit called PC-RN, which is the combination of
partial convolution and region normalization, serves as the basic component to construct inpainting
network. The PC-RN unit can extract useful features from the valid surroundings and can suppress
incompleteness-caused interference at the same time. The forked-then-fused decoder network
consists of a local reception branch, a long-range attention branch, and a squeeze-and-excitation-
based fusing module. Two multi-scale contextual attention modules are deployed into the long-range
attention branch for adaptively borrowing features from distant spatial positions. Progressive
inpainting strategy allows the attention modules to use the previously filled region to reduce the
risk of allocating wrong attention. We conduct extensive experiments on three benchmark databases:
Places2, Paris StreetView, and CelebA. Qualitative and quantitative results show that the proposed
inpainting model is superior to state-of-the-art works. Moreover, we perform ablation studies to
reveal the functionality of each module for the image inpainting task.

Keywords: image inpainting; contextual attention; feature fusion; multi-stage

1. Introduction

Image inpainting, which has been a research hotspot in the computer vision commu-
nity, aims to fill in corrupted regions of an image with visually realistic and semantically
plausible contents [1]. Its applications include photo-editing [2–4], computer-aided relic
restoration [5–8], de-occlusion [9,10], privacy protection [11–13], aesthetic assessment [14],
and virtual try-on systems [15,16]. The ill-posedness of image inpainting can be distilled
into the following: how to seek the most proper hypothesis for the corrupted region
conditioned on the valid surroundings. In the past decade, researchers have devoted
substantial efforts to this field, which can be mainly divided into three categories: diffusion-
based methods [17–20], patch-based methods [21–26], and CNN (Convolutional Neural
Network)-based methods [27–50].

Based on the priori knowledge that image pixels are piece-wise smooth, the diffusion-
based methods [17–20] establish a variety of anisotropic PDEs (Partial Differential Equa-
tions) for modeling the process of information diffusion. Although these methods attempt
to mimic the paradigm of manual inpainting, they are suitable only for the corrupted
region with slender shape and homogeneous texture.

The patch-based methods [21–26], which exploit the non-local self-similarity of images,
typically operate through the following steps: feature extraction, similarity calculation,
candidate screening, and texture synthesis. Unfortunately, these methods focus only on the
low-level features and fail to perceive the overall semantics of a given image. It is virtually
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impossible for the patch-based methods to create semantically meaningful contents, so that
they usually suffer setbacks when dealing with the task of face completion.

Nowadays, we are witnessing all-round breakthroughs in the computer vision com-
munity, mainly caused by the deep CNNs and the powerful large-scale parallel computing
devices (e.g., the graphics processing unit). In general, the CNNs are constructed as a
hierarchical architecture with depth, which is conducive to capturing rich features geared
towards a specific task. More interestingly, some exquisite networks, such as GAN (Gener-
ative Adversarial Network) [51] or VAE (Variational Auto-Encoder) [52], excel at creating
realistic samples. Thus, the CNN-based methods [27–50] have been a recent surge of
interests in the field of image inpainting. Pathak et al. [27] set up a CE (Context Encoder)
network that is of a channel-wise fully connected layer in the middle. Remarkably, an
adversarial mechanism, which is similar in spirit to GAN, is introduced into the learning
procedure for generating visually clear fillings. Using dual discriminators, Iizuka et al. [28]
developed a variant of the CE network [27], which encourages global coherence and local
consistency. Yang et al. [29] proposed a multi-scale neural patch synthesis approach, in
which a tailor-made loss function was designed to guide the procedures of preserving
contextual structures and of generating fine-grained contents. However, although these
methods have the capability to create novel contents, there still exist semantic faults or
visual artifacts such as color discrepancy and texture distortion. To address these problems,
advanced inpainting mechanisms in the following three aspects: specialized convolu-
tion operations [30–33], contextual attention module [34–45], and progressive inpainting
strategies [46–50], have been studied recently.

In the first aspect, Liu et al. [30] proposed a partial CNN, which is specialized to
the task of image inpainting. Therein, each partial convolution kernel acts only on the
valid pixels and thus effectively resist the interference derived from the corrupted regions.
After each partial convolutional layer, a vanilla rule-based operation is triggered to update
the masked region with the goal of shrinking its area layer by layer. In [31], the partial
convolution kernel was used to process structure and texture features, which produces
multiple feature streams with different scales. Yu et al. [32] put forward a learnable
dynamic feature selection mechanism, which can be viewed as a generalized version of
the partial convolution. Specifically, a group of accompanying convolution kernels are
configured at each layer for learning channel-wise soft-gating masks. Using the element-
wise multiplication, the learned masks modulate the feature maps for adaptively filtering
out the interference. Ma et al. [33] devised region-wise convolutions and deployed them
into the decoder network. As its name implies, the region-wise convolution is to separate
the tasks of reconstructing the valid region and inferring the corrupted region.

In the second aspect, Song et al. [34] designed a contextual attention module based on
patch-swap operation. Unlike the traditional patch-based methods, their proposal not only
takes feature maps as surrogates for texture propagation but also embeds the contextual
attention module seamlessly into the entire learnable network. Yan et al. [35] inserted a shift-
connection layer into the decoder network, which explicitly borrows contextual information
from encoder’s feature map. Yu et al. [36] computed attention scores over feature maps
through the convolution operations and normalized these scores by applying the softmax
function. During network training, feature patches in the contextual region are weighted
by the normalized attention scores for texture synthesis. This attention module [36] was
adopted in a multi-task inpainting framework [37] for processing multi-modal features
extracted from image, edge and gradient maps. Sagong et al. [38,39] constructed a shared
encoder network for reducing the number of convolution operations and modified the
means of computing the attention scores. Uddin and Jung [40] designed a global-and-local
attention module and aimed to refine the inpainting-oriented features by integrating global
dependency and local similarity information. In this attention module, an effective mask
pruning mechanism was developed to filter out features with interference. More recently,
Yu’s contextual attention module [36] has been extended to a multi-scale version in [41], to
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a cascaded version in [42], to a pyramid version in [43], to a locally coherent version in [44],
and to a knowledge consistent version in [45].

In the third aspect, Xiong et al. [46] explicitly separated the whole inpainting task into
three parts in sequence to perceive image foreground, to complete object contour, and to
fill in corrupted region. Zhang et al. [47] proposed a progressive generative neural network
for semantically inpainting images. Inspired by the concept of curriculum learning, they
added a LSTM (Long Short-Term Memory) component [53] into the middle of U-net [54]
to store and share the inpainting knowledge between multiple stages. Guo et al. [48]
invented a full-resolution residual block, which learns to inpaint a local region covered
by one dilation. Stacking such blocks in series helps to progressively fill in the corrupted
region. Unfortunately, this method can only deal with small holes, i.e., the area up to 96
pixels in diameter. Chen and Hu [49] progressively completed the image inpainting task
from the perspective of pyramid multi-resolution, in which lower-resolution inpainting is
followed by higher-resolution inpainting iteratively. Zeng et al. [50] proposed to evaluate
predications’ confidence during the progressive process of inpainting. The confident
regions, which serve as feedback information, were encouraged to cover as large corruption
as possible.

However, there still exist some problems in these advanced inpainting mechanisms.
First, although the partial convolution can restrict itself to absorb information from the
valid region, the frequently used fully spatial feature normalization may still introduce
interference. Second, feature patches lying inside the corrupted region usually contain
larger deviations. This phenomenon misleads the contextual attention module and incurs
wrong attention allocation. Third, the progressive inpainting strategies, in general, employ
the learnable convolution kernels to perceive the periphery of the corrupted region but
neglect the contextual information outside the receptive field.

To alleviate these problems, in this paper, we propose a novel end-to-end multi-stage
pipeline mainly consisting of a shared encoder network and a forked-then-fused decoder
network. The encoder network aims to capture the useful information from the valid region
and to block out the objectionable interference derived from the corrupted region. To this
end, we design a new network unit, called PC-RN, which equips the partial convolutional
layer [30] with the region-wise feature normalization [55]. The decoder network, at the
beginning, forks into two branches, called local reception branch and long-range attention
branch, respectively. To ensure local consistency, the former is responsible for perceiving
the valid information and for reconstructing the local field around the corrupted region.
To generate fine-grained details, the latter resorts to two cascaded MSCA (Multi-Scale
Contextual Attention) modules, both of which basically follow the attention mechanism
in [41], for flexibly borrowing features from remote spatial positions. Two feature flows are
then adaptively refined through a SE (squeeze-and-excitation)-based [56] fusing module.

Our proposal is to fill in the whole corrupted region progressively. Each inpainting
stage only targets a limited area of the corrupted region, thereby somewhat alleviating
the problem of wrong attention allocation. Furthermore, thanks to the SE-based fusing
module, each inpainting stage can comprehensively utilize the local and long-range features
extracted by the double branches.

We conducted extensive experiments and comparative studies on three benchmark
databases: Places2 [57], Paris StreetView [58], and CelebA [59]. To support the above claims,
we visualize the feature deviations within the corrupted region and exhibit how each
region contributes to the inpainting performance across the multiple stages. Additionally,
qualitative and quantitative results demonstrate the effectiveness and the superiority of
the proposed model compared with state-of-the-art works.

The rest of the paper is organized as follows. Section 2 gives a detailed description
of the proposed model. Section 3 introduces the experimental programs and exhibits the
corresponding results. Section 4 summarizes this paper and draws some conclusions.
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2. Our Model

The overall architecture of the proposed inpainting network is schematically illustrated
in Figure 1. Let Iin

t , Iout
t , and Igt

t denote the input, output, and groundtruth images,
respectively, at the tth inpainting stage. The shared encoder network captures the useful
information from the valid region of Iin

t . Then, the resulting feature map is fed into the
forked-then-fused decoder network for image generation, yielding Iout

t . Comparing Iout
t

with Igt
t , we calculate various losses: reconstruction loss, perceptual loss, style loss, and

adversarial loss, with the aid of a pre-trained VGG (Visual Geometry Group) network [60]
and a patch-based discriminator network [61]. We collectively use these losses to guide
the end-to-end training. The inpainting network at the tth inpainting stage restricts its
attention to a limited area of the corrupted region. Its output image Iout

t acts as the input
image for the next inpainting stage, namely that Iin

t+1 = Iout
t . Without loss of generality,

we elaborate on a single inpainting stage hereafter. The subscript t is dropped for clarity,
unless explicitly needed to distinguish between multiple inpainting stages.

Figure 1. The overall architecture of the proposed inpainting network. Details of the MSCA module and the SE-based
fusing module are illustrated schematically in Figure 2 and Figure 3, respectively.

Figure 2. The schematic illustration of the multi-scale contextual attention (MSCA) module.
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Figure 3. The schematic illustration of the SE-based fusing module, where the number of channels C
is set to 256.

2.1. Shared Encoder Network

Unlike generic computer vision tasks, which process full information, the image in-
painting task is to deal with incomplete information. Hence, how to resist the incompleteness-
caused interference becomes a critical issue for the inpainting network, especially for the
shallow layers. To cope with this issue, in this paper, we combine the partial convolu-
tion [30] and the region normalization [55] and take them as a basic unit, called PC-RN,
to construct the inpainting network. The PC-RN unit provides an elegant way, which is
immune against the interference, to process the incomplete information and paves the way
for generating high-quality results. Hereafter, we give a brief introduction to the PC-RN
unit.

We define X ∈ RC×H×W as an input feature map of a PC-RN unit, where C, H, and W
represent the number of channels, height, and width, respectively. Let M denote a binary
mask of size H ×W, which takes value 0 inside the corrupted region and 1 elsewhere.
Suppose that a partial convolution kernel of size C× S× S currently encompasses a local
part, denoted by x, of the input feature map X. Correspondingly, we use m to represent the
local binary mask that is covered by the kernel. Let w and b denote the weights and biases
of the kernel, respectively. Mathematically, the current partial convolution, which yields a
response x′, can be expressed as

x′ =

wT(x�m)
S2

sum(m)
+ b, if sum(m) > 0,

0, otherwise,
(1)

where � denotes Hadamard product while sum(m) counts the number of 1s in m. The
scaling factor S2/sum(m) makes an appropriate compensation for the corrupted positions
because they are absent from the calculation course of Equation (1). After each partial
convolution, the local binary mask m is updated as follows:

m′ =

{
1, if sum(m) > 0,
0, otherwise.

(2)

The convolved feature map, denoted by X′, and the updated binary mask, denoted by M′,
are composed of x′ and m′, respectively. We denote the sizes of X′ and M′ by C′ × H′ ×W ′

and H′ ×W ′, respectively.
Feature normalization acts to standardize the mean and variance of the convolved

feature map for stabilizing learning. In our proposal, such normalization is performed
in a region-wise fashion. Specifically, we first properly resize M to the resolution of M′,
namely H′ ×W ′. Then, according to M (the resized version) and M′, the feature map X′
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is partitioned into three regions, namely the valid region RV, the filled region RF, and the
corrupted region RC. Their formal definitions are as follows:

RV =
{
(i, j)

∣∣m(i, j) = 1 and m′(i, j) = 1
}

,

RF =
{
(i, j)

∣∣m(i, j) = 0 and m′(i, j) = 1
}

,

RC =
{
(i, j)

∣∣m(i, j) = 0 and m′(i, j) = 0
}

,

(3)

where (i, j) represents a spatial coordinate with 1 6 i 6 H′ and 1 6 j 6 W ′. Note that RC

may become ∅ after several PC-RN units (and several inpainting stages), meaning that all
of the corrupted positions have been assigned by predictions. For each region, calculate its
mean and standard deviation as follows:

µU
k =

1
|RU| ∑

(i,j)∈RU

x′(k, i, j), (4)

σU
k =

√√√√ 1
|RU| ∑

(i,j)∈RU

(
x′(k, i, j)− µU

k

)2
+ ε, (5)

where U = {V, F, C} and |RU| stands for the cardinality of the set RU. The subscript k, of
which the value lies in the interval [1, C′], is the index of a channel. The notation ε is a
prescribed small constant for numerical stability. The region-wise feature normalization
can be formulated as

x′′(k, i, j) =
1

σU
k

(
x′(k, i, j)− µU

k

)
. (6)

Finally, region-wise affine transformations based on a set of learnable parameters
{γU

k , βU
k }, where U = {V, F, C}, are separately applied to the normalized feature values.

As shown in Figure 1, we set up the shared encoder network by cascading seven
PC-RN units. Throughout our proposal, the partial convolution kernel is of size 3× 3 and
has “same” mode for zero-padding. Downsampled convolution is realized by setting the
stride to 2.

2.2. Forked-Then-Fused Decoder Network

The decoder network, which receives the output feature map of the encoder network,
forks into the local reception branch and the long-range attention branch. Then, a SE-based
fusing module adaptively refines the feature maps from the two branches. In addition to
the main body of the network, extra skip connections, which concatenate two feature maps
as shown in Figure 1, are added to avoid information loss during the forward pass and to
mitigate the vanishing gradient problem during the backward pass.

2.2.1. Local Reception Branch

The local reception branch is expected to infer the corrupted region conditioned on the
valid surroundings. In the early inpainting stages, however, the shared encoder network
may fail to cover the entire corrupted region. In other words, the input to the decoder
network still contains the corrupted region, namely |RC| > 0. To prevent the interference,
the PC-RN unit is reused here for constructing the six-layer local reception branch, as
shown in Figure 1. The upsampled convolution is realized by setting the stride to 1/2.
In the later inpainting stages, |RC| eventually becomes 0. Under this circumstance, the
partial convolution and the region normalization naturally degenerate into the standard
convolution and batch normalization, respectively.
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2.2.2. Long-Range Attention Branch

The long-range attention branch, of which the core component is the MSCA module,
aims to infer the corrupted region by borrowing features from distant spatial positions. In
particular, the standard convolutions, rather than the partial convolutions, are used in this
branch, with the goal of making a rough prediction for the whole corrupted region. The
MSCA module operates on a pair of feature maps, denoted by Xn− and Yn+ . The former
Xn− represents the feature map at the nth-to-end layer of the shared encoder network, while
the latter Yn+ is the one generated by the nth convolutional layer of the long-range attention
branch.

First, we combine Xn− with Yn+ via the following form

Ỹn = Xn− �Mn + Yn+ � (1−Mn), (7)

where Mn, taking value 0 inside the filled region and 1 elsewhere, denotes the binary
mask accompanied with Xn− and Yn+ . Since the standard convolution fills in the whole
corrupted region at a time, the resulting feature map contains only two kinds of regions,
namely the valid region RV and the filled region RF.

Second, as shown in Figure 2, we divide Ỹn into multi-scale patches of size 1× 1 and
3× 3 and compute the inter-patch normalized inner product

a(iV, jV, iF, jF) = 〈 ỹn(iV, jV)
‖ ỹn(iV, jV) ‖ ,

ỹn(iF, jF)
‖ ỹn(iF, jF) ‖ 〉, (8)

where ỹn(iV, jV) and ỹn(iF, jF) represent the patches of Ỹn centered at (iV, jV) in the valid
region and centered at (iF, jF) in the filled region, respectively. It is worth mentioning that
Equation (8) can be effectively implemented using convolution, in which ỹn(iV, jV) serves as
the kernel. We then use the softmax function to exponentiate and normalize the inter-patch
similarity along the iV-jV dimension. The processed result, denoted by a?(iV, jV, iF, jF), is called
the attention score.

Third, we reuse ỹn(iV, jV) as the kernel and apply deconvolution to the attention score
map. Such an inverse operation reconstructs the filled region, in the sense of integrating the
valid patches through a weighted average way.

Finally, the filled region of Ỹn is replaced by the reconstructed counterpart, yielding a new
compound feature map. Inspired by [41], we also consider the multi-scale scenario, where the
patch sizes are 1× 1 and 3× 3, so that the MSCA module produces two compound feature
maps, as shown in Figure 2. We concatenate Yn+ and the two compound feature maps to form
the output of the nth layer of the long-range attention branch.

Alternatively, we can propagate the attention scores over a small neighboring region
along the horizontal and vertical directions. Mathematically, the horizontal version can be
formulated as

â(iV, jV, iF, jF) =
b

∑
p=−b

a?(iV + p, jV, iF + p, jF), (9)

where p denotes a shift lying in the interval [−b, b]. Analogously, the vertical version
imposes the shift p on jV and jF, respectively. This trick is helpful because the neighboring
region usually shares similar attention scores, and its effectiveness has been validated
by [36].

It is worth noting the differences between the MSCA module and the multi-scale
attention module used in [41]. First, a SE block [56] is configured in the original atten-
tion module [41] for refining the compound feature maps. By contrast, we move the SE
block [56] to the fusing module (see the next section) for comprehensively refining the local
and long-range features. Second, the original attention module [41] only processes the
decoding feature map in a single-stage regime. Contrastively, we not only cascade two
MSCA modules together for hierarchically synthesizing the inpainting-oriented features
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but also perform the MSCA modules in multiple inpainting stages. Consequently, for
different stages, the MSCA module has different sources for synthesizing features. See the
results of the ablation study in Section 3.4.4.

2.2.3. SE-Based Fusing Module

Let Z ∈ RC×H×W denote a concatenation of the two feature maps obtained from the
double branches. The SE-based fusing module takes Z as input.

As shown in Figure 3, the SE (Squeeze-and-Excitation) [56] block processes Z through
the following steps. First, the squeeze step applies an average-pooling operation to each
channel of Z, with the goal of extracting a global feature vector with C elements. Second,
the modulation step learns to properly transform the global feature vector into C weighting
coefficients through a two-layer fully connected net. Third, the excitation step multiplies
each channel of Z by the corresponding weighting coefficient.

Furthermore, four dilated convolutional layers with the same kernel size of C× 3× 3,
in parallel, perceive the weighted feature map. Four dilation rates are set to 1, 2, 4, and
8. This ASPP (Atrous Spatial Pyramid Pooling)-like architecture [62] allows us to capture
rich features from multi-scale receptive fields. Finally, a standard convolutional layer with
a kernel size of C × 1× 1 is responsible for compressing a feature map by halving the
number of channels. The SE-based fusing module outputs a feature map with the size
C/2× H ×W.

Note that, driven by data, all of the parameters in the SE-based fusing module are
learnable and are jointly optimized together with other part of the network. Hence, this
module has the capability to comprehensively refine the local and long-range features,
making them more suitable for the image inpainting task.

2.3. Progressive Inpainting Strategy

The proposed network fulfills the image inpainting task in a progressive fashion, and
each inpainting stage is in charge of inferring a limited area of the corrupted region by
using the fused features.

Two binary masks, which share the same resolution as the input image Iin
t , determines

the to-be-filled region at the tth inpainting stage. The first one, denoted by Min
t , is called

input binary mask. It takes value 0s for the corrupted region and 1s for the valid region.
The second one Mout

t , called output binary mask, stems from the last PC-RN unit of the
shared encoder network. Here, proper upsampling is required for Mout

t to ensure the
consistency of resolution. According to the update rule in Equation (2), we know that
Mout

t takes 1s not only for the valid region but also for the filled region. Consequently, the
to-be-filled region at the tth inpainting stage can be represented by Mout

t −Min
t .

Let Iout and Igt denote the output image of the inpainting network and the groundtruth
image, respectively. At the tth inpainting stage, the resulting image Iout

t (or the groundtruth
image Igt

t ) is defined as Iout�Mout
t (or Igt�Mout

t ). Furthermore, the inpainted results at the
tth stage will be inherited by the next stage, in the sense that Iin

t+1 = Iout
t and Min

t+1 = Mout
t .

The total number of inpainting stages T, which is a hyper-parameter, controls the trade-off
between the inpainting quality and the computational cost. We stipulate that the output
binary mask Mout

T is an all one-valued matrix, meaning that the corrupted region must be
filled at the final inpainting stage.

The progressive inpainting strategy manages to fill in the central part of the corrupted
region at the last few stages, with the aid of the inpainted results inherited from the
previous stages. In other words, the progressive inpainting strategy allows the MSCA
module to borrow features not only from the valid region but also from the filled region to
alleviate the problem of wrong attention allocation. These claims are corroborated by the
visualized results in Section 3.4.4.
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2.4. Loss Function

In this paper, reconstruction loss, prediction loss, perceptual loss, style loss, and
adversarial loss are collectively used to guide the network training.

The reconstruction loss measures the average error between Iout
t and Igt

t at the pixel
level. Its definition is

Lrec
t =

1
sum(Mout

t )

∥∥∥Iout
t − Igt

t

∥∥∥
1
, (10)

where ‖ · ‖1 denotes the `1-norm of the enclosed argument.
The prediction loss, which focuses in particular on the filled region, measures the

average error between the predicted pixel values and the groundtruth ones. Its definition
takes the following form

Lpred
t =

∥∥∥(Mout
t −Min

t
)
�
(
Iout

t − Igt
t
)∥∥∥

1
sum(Mout

t −Min
t )

. (11)

The perceptual loss evaluates the inpainting quality at the semantic level. VGG19
network [60] pre-trained on the ImageNet database [63] is employed to extract the semantic
features. Suppose that ΦU

t,l is the lth extracted feature map for a given image IU
t , where

U = {gt, out}. The size of ΦU
t,l is denoted by Cl × Hl ×Wl . With these preparations, the

perceptual loss can be written as

Lpercept
t =

L

∑
l=1

∥∥∥Mout
t,l �

(
Φout

t,l −Φ
gt
t,l
)∥∥∥

1
sum(Mout

t,l ) · Cl
, (12)

where Mout
t,l that is of size 1× Hl ×Wl refers to a downsampled version of Mout

t . In this
paper, we consider L = 3 feature maps selected from the 4th, the 9th, and the 16th VGG19’s
convolutional layers.

Gram matrix, which expresses the correlation between channels, can be viewed as
a style indicator for a given image. We define a style loss, based on the Gram matrix,
to evaluate the matching degree between two images. The Gram matrix is calculated as
follows:

ΨU
t,l =

(
Mout

t,l �ΦU
t,l
)
◦
(
Mout

t,l �ΦU
t,l
)T

sum(Mout
t,l ) · Cl

, (13)

where U = {gt, out}. In Equation (13), the notation ◦ refers to a compound operation. It
first reshapes its operands into matrices of size Cl× (HlWl) and then performs a matrix mul-
tiplication between the reshaped operands, yielding a Cl × Cl Gram matrix. Furthermore,
the style loss is defined by

Lstyle
t =

L

∑
l=1

1
C2

l

∥∥∥Ψout
t,l −Ψ

gt
t,l

∥∥∥
1
. (14)

The adversarial loss quantifies the inpainting verisimilitude, with the aid of a patch-
level discriminator network, as shown in Figure 1. In practice, the adversarial loss can be
equivalent to a summation of two binary cross-entropy losses. That is

Ladv
t = min

D
max

G
Lbce[D(Igt

t ), 1
]
+ Lbce[D(G(Iin

t )), 0
]
, (15)

where D and G stand for the patch-level discriminator network and the inpainting network,
respectively. The bold symbol 1 (and 0) is a patch-level label matrix in which the elements
are one-valued (and zero-valued). Each element in 1 (and 0) means that the corresponding
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feature patch is “real” (and “fake”). The loss function Lbce[a, b] computes the binary
cross-entropy between a and b. Mathematically, its formula takes the following form:

Lbce[a, b] =
P

∑
p=1
−
[
bp · log ap + (1− bp) · log (1− ap)

]
, (16)

where ap (and bp) is the pth element of a (and b). The adversarial loss turns the network
training into a min–max optimization problem, in which G and D collaborate each other
and adapt to evolve together. Spectral normalization technique [64] is used to stabilize the
training of the discriminator network.

In summary, the total loss used to guide the training of the entire network is as follows:

Ltotal =
T

∑
t=1

(
λ1Lrec

t + λ2L
pred
t + λ3L

percept
t + λ4L

style
t + λ5Ladv

t
)
, (17)

where the weight coefficients λ1, λ2, · · · , λ5 are hyperparameters of the proposed inpaint-
ing model. They are set to 1, 3, 0.08, 150, and 0.2, respectively, under the guidance of
validation set.

3. Experiments

In this section, we conduct extensive experiments and comparative studies to demon-
strate the effectiveness and the superiority of the proposed inpainting model.

Source code is available at https://github.com/yabg-shuai666/Inpainting.

3.1. Experimental Setup

Three benchmark databases, namely Places2 [57], Paris StreetView [58], and CelebA [59],
are commonly used in the image inpainting community. The Places2 database [57] contains
more than 10 million images comprising over 400 indoor or outdoor scene categories.
The Paris StreetView database [58] contains about 60 K panoramas scraped from Google
Street View. Two perspective images have been carefully cropped from each panorama.
These images mainly reflect building facades appearing in the modern city. The CelebA
database [59] contains more than 200 K face images with large pose variations and back-
ground clutter. Images in these databases cover a variety of scenes and contents, allowing
us to train an inpainting model more suitable for real-world applications.

We prepare the training set, the validation set, and the test set via the following steps.
First, randomly select 50 K images from each database. Second, normalize their spatial
resolutions to 256 × 256 through appropriate cropping and scaling operations. Third,
artificially fabricate the corrupted images Iin

1 according to the binary masks Min
1 , where

t = 1 means the initial inpainting stage. In our experiments, we adopt the irregular binary
masks prepared in [30]. Fourth, group the images into three sets: 600 images for testing,
another 600 ones for validating, and the remaining ones for training.

Five image inpainting models [30,35,41,47,48], which are the representatives in spe-
cialized convolutions, contextual attention, and progressive strategies, serve as baselines
for performing the comparative studies. Hereafter, these baselines are called PConv [30],
Shift-net [35], MUSICAL [41], LSTM-PGN [47], and FRRN [48] for short. Unless explicitly
stated, the total number of inpainting stages T is set to 4, 8, and 4, respectively, for LSTM-
PGN [47], FRRN [48], and the proposed one. All of the image inpainting networks are
trained by the Adam optimizer with default settings [65].

Our computing device is a workstation with a 3.20 GHz Intel Xeon W-2104 CPU and a
11GB NVIDIA GeForce RTX 2080Ti GPU. Our programming environment is PyTorch v1.2
installed on Ubuntu v18.04 operation system.
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3.2. Qualitative Results

Figure 4 exhibits the qualitative results. The first column of Figure 4 lists the corrupted
images, which serve as the inputs to the inpainting networks. From top to bottom, the
first two images come from the Place2 [57], the middle two from the Paris StreetView [58],
and the last two from the CelebA [59] databases. The irregular gray region indicates the
corrupted part, and the corresponding corruption rates are 30.63%, 25.00%, 31.49%, 41.89%,
39.27%, and 38.98%, respectively. The second to seventh columns of Figure 4 display the
inpainted results, in which zoomed-in details are placed at the top-left corner.

Input PConv [30] Shift-net [35] MUSICAL [41] LSTM-PGN [47] FRRN [48] Ours

Figure 4. Qualitative results for visual comparisons. From top to bottom, the first two images come from Places2 [57], the
middle two from Paris StreetView [58], and the last two from CelebA [59]. All images are free from post-processing.

As we can see, the PConv model [30] fails to suppress the blurring and upsampling
artifacts. This may be partly due to the absence of the adversarial loss and partly due
to the interference introduced by the fully spatial feature normalization. Although the
shift-net [35] and the MUSICAL [41] models are equipped with the contextual attention
modules, they still occasionally generate the distorted structures in the filled region. This
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implies that allocating attention within a single stage may synthesize wrong features to
some extent. The LSTM-PGN [47] and FRRN [48] models tend to fill in the hole according
to surrounding colors. For example, their resulting images in the first row show that most
of the filled regions share the similar hue (red) with their surroundings. This verifies
that these two models [47,48] can only perceive a part of the surroundings throughout all
inpainting stages. By contrast, our model successfully generates semantically reasonable
and visually realistic contents with clear textures and sharper details. These qualitative
comparisons demonstrate the superiority of the proposed model.

3.3. Quantitative Results

Table 1 lists the quantitative results, in which four canonical metrics, i.e., SSIM (Struc-
tural Similarity), PSNR (Peak Signal-to-Noise Ratio), FID (Fréchet Inception Distance) [66],
and `1-norm, are used to objectively evaluate the inpainting quality. In this experiment,
we consider three ranges of the corruption rates: 20–30%, 30–40%, and 40–50%, and corre-
spondingly divide the test set into three groups, each of which comprises 150 test images.
The values recorded in Table 1 are the average evaluation scores over 150 test images.

Table 1. Quantitative results for numerical comparisons. The arrow “↑” (or “↓”) is intended to indicate that a higher (or
lower) value is better. The best and the second best scores are highlighted by bold and underline, respectively.

Database Places2 Paris StreetView CelebA

Corruption Rate 20–30% 30–40% 40–50% 20–30% 30–40% 40–50% 20–30% 30–40% 40–50%

SSIM

(↑)

PConv 0.883 0.790 0.659 0.908 0.860 0.767 0.928 0.892 0.827

Shift-net 0.887 0.790 0.667 0.916 0.870 0.774 0.930 0.910 0.827

MUSICAL 0.899 0.795 0.678 0.913 0.872 0.779 0.939 0.924 0.849

LSTM-PGN 0.895 0.799 0.672 0.909 0.866 0.774 0.935 0.915 0.837

FRRN 0.892 0.800 0.670 0.910 0.867 0.775 0.937 0.920 0.851

Ours 0.901 0.803 0.678 0.915 0.875 0.783 0.941 0.926 0.853

PSNR

(↑)

PConv 25.00 22.33 19.99 27.99 24.40 22.72 30.45 27.10 22.93

Shift-net 25.48 22.79 19.92 28.09 25.15 22.90 30.78 27.32 23.01

MUSICAL 25.01 23.04 21.43 28.15 26.03 24.69 31.06 27.98 24.39

LSTM-PGN 25.32 22.46 19.86 28.07 25.67 23.07 30.89 27.78 23.29

FRRN 25.28 22.98 20.56 28.10 25.90 24.11 31.10 28.00 24.00

Ours 25.53 23.62 21.49 28.17 26.09 24.67 31.10 28.09 24.58

FID

(↓)

PConv 18.31 23.02 25.43 20.11 22.13 27.00 18.06 18.98 25.02

Shift-net 18.76 22.78 24.78 18.66 20.97 26.03 18.01 19.03 24.87

MUSICAL 18.10 21.27 23.69 18.66 20.78 23.56 17.03 18.26 22.22

LSTM-PGN 18.98 22.30 25.12 19.92 22.09 25.84 17.94 18.90 24.95

FRRN 18.34 22.00 24.98 19.27 21.62 24.35 17.26 18.45 23.41

Ours 18.02 21.19 23.76 18.64 20.76 23.36 16.99 18.26 22.10

`1

(↓)

PConv 0.0278 0.0483 0.0811 0.0201 0.0344 0.0587 0.0159 0.0249 0.0411

Shift-net 0.0261 0.0430 0.0735 0.0180 0.0332 0.0559 0.0165 0.0250 0.0410

MUSICAL 0.0226 0.0319 0.0666 0.0184 0.0268 0.0478 0.0143 0.0201 0.0345

LSTM-PGN 0.0260 0.0352 0.0765 0.0192 0.0302 0.0578 0.0159 0.0252 0.0419

FRRN 0.0256 0.0340 0.0690 0.0192 0.0289 0.0499 0.0152 0.0221 0.0403

Ours 0.0223 0.0319 0.0669 0.0180 0.0268 0.0473 0.0141 0.0198 0.0342
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As we can see, in most cases, the proposed model achieves better evaluation scores
than the baselines, especially on the CelebA database [59]. For the case of low corruption
rate (20–30%), our SSIM (PSNR) scores reach 0.901 (25.53 dB), 0.915 (28.17 dB), and 0.941
(31.10 dB) on the three databases, and their average equals 0.919 (28.27 dB). For the case of
middle corruption rate (30–40%), our average SSIM (PSNR) score is 0.868 (25.93 dB). These
evaluation scores reflect that the proposed model can fill in the hole with visually pleasing
contents even when 20–40% pixels are unknowns. For the case of the high corruption rate
(40–50%), although the average SSIM (PSNR) score drops down to 0.77 (23.58 dB), the
principal outlines in the filled region can still be recognizable. Additionally, the proposed
model behaves better in terms of FID and `1-norm, which jointly supports the qualitative
comparisons.

Interestingly, we find that the MUSICAL model [41] usually achieves the second best
performance, which just ranks below ours. This suggests that the multi-scale contextual
attention mechanism is helpful for the image inpainting task, and equipping it with the
progressive inpainting strategy (our main proposal) does further boost the performance.

3.4. Ablation Studies

In this section, we study how each part of the proposed model contributes to the
inpainting performance from the following four perspectives: the MSCA module, the
SE-based fusing module, the number of inpainting stages, and the collaborations between
inpainting stages. Unless explicitly stated, the ablation studies are performed on the Places2
database [57] with the corruption rate of 30–40%.

3.4.1. Ablation Study on the MSCA Module

Recall that Xn− and Yn+ are fed into the MSCA module. The former is the feature
map at the nth-to-end layer of the shared encoder network, while the latter is nth feature
map of the long-range attention branch. This ablation study is devoted to examining the
influence of the position n on the inpainted results. As shown in Table 2, we consider six
settings: n = ∅, n = {4}, n = {5}, n = {4, 5}, n = {3, 4}, and n = {5, 6}, where the null
set ∅ indicates that the MSCA module is turned off.

Table 2. Quantitative results for the ablation study on the MSCA module.

Position n ∅ {4} {5} {4, 5} {3, 4} {5, 6}

SSIM (↑) 0.788 0.796 0.800 0.803 0.803 0.800

PSNR (↑) 23.37 23.53 23.58 23.62 23.61 23.59

FID (↓) 21.50 21.27 21.25 21.20 21.19 21.25

`1 (↓) 0.0344 0.0330 0.0322 0.0318 0.0319 0.0323

The scores in the column of n = ∅ are the worst, which demonstrates that the MSCA
module are indeed useful for the image inpainting task. Moreover, we find that cascading
two MSCA modules on the deeper layers usually outperforms the other settings. In this
paper, the MSCA module is configured at the 4th and 5th layers of the long-range attention
branch, as shown in Figure 1.

In Figure 5, we provide the qualitative results under the settings: n = ∅, n = {4, 5},
and n = {3, 4}. Without the MSCA module, the predictions in the zoomed-in box look
rather blurry and suffer from texture distortions. By contrast, the inpainted results in the
third and fourth columns look clearer and sharper. Especially for the second example, the
principal content in the shelf area has been restored successfully. These observations are
consistent with the scores in Table 2.
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(a) (b) (c) (d)

Figure 5. Qualitative results for the ablation study on the MSCA module. (a) Input images. (b) Re-
sulting images for the setting n = ∅. (c) Resulting images for the setting n = {4, 5}. (d) Resulting
images for the setting n = {3, 4}.

3.4.2. Ablation Study on the SE-Based Fusing Module

The SE-based fusing module is to refine the local and long-range features. To verify its
effectiveness, in this ablation study, we consider three reweighting modes: SE, random, and
uniform. The SE mode, as shown in Figure 3, means that the reweighting coefficients are
generated from the learnable fully connected layers. In the random mode, the reweighting
coefficients are sampled from a random distribution. In the uniform mode, the reweighting
coefficients are fixed to 1/256. For convenience, all testing images are corrupted by five
irregular binary masks, in which the corruption rates are 20.3%, 32.9%, 35.9%, 42.2%, and
45.0%.

The average evaluation scores are plotted in Figure 6. As we can see, the SE mode
outperforms the other two modes by clear margins, and the superiority becomes more
significant for larger corruption rates. Figure 7 exhibits the resulting images for the three
modes. For the first example, the SE mode completely reconstructs the pillar area while the
other two modes suffer defeat. These results demonstrate that the SE-based fusing module
plays a key role in comprehensively refining the two feature flows.

3.4.3. Ablation Study on the Number of Inpainting Stages

The total number of inpainting stages T highly affects the final inpainting performance.
In this ablation study, we experimentally investigate what is the appropriate value of T. To
this end, we set T to 1, 4, and 6, respectively, in the course of training. Table 3 records the
evaluation scores. As expected, multiple inpainting stages, i.e., T = 4 or 6, is superior to the
single inpainting stage, i.e., T = 1. Comparing the last two columns of Table 3, we find that
the quality gain is tiny when increasing T from 4 to 6. Based on our measurement, this tiny
quality gain, however, consumes an additional 6.9G FLOPs (Floating Point Operations). In
order to strike the balance between the inpainting quality and the computational cost, we
recommend setting T to 4.
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(a) (b)

(c) (d)

Figure 6. Quantitative results for the ablation study on the SE-based fusing module. red(a) The SSIM scores. (b) The PSNR
scores. (c) The FID scores. (d) The `1 scores.

(a) (b) (c) (d)

Figure 7. Qualitative results for the ablation study on the SE-based fusing module. The corruption
rates, from top to bottom, are 32.9% and 42.2%, respectively. (a) Input images. (b) Resulting images
for the random mode. (c) Resulting images for the uniform mode. (d) Resulting images for the SE
mode.

The first and third rows of Figure 8 show the resulting images, from which we find
that more inpainting stages help to restore the realistic boundaries between objects. The
second and fourth rows of Figure 8 visualize the feature deviations, which are obtained at
the layer after the fusing module (the pink one in Figure 1) by calculating the difference
between the feature maps of the input and groundtruth images. We focus on the filled
region and highlight larger feature deviations in hot colors. As we can see, the second
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column of Figure 8 (i.e., T = 1) contains more noticeable hot spots than the other columns.
These results suggest that the designed progressive inpainting strategy is useful for the
image inpainting task to reduce the feature deviations and narrow the semantic gap.

Table 3. Quantitative results for the ablation study on the number of inpainting stages.

T 1 4 6

SSIM (↑) 0.798 0.803 0.800

PSNR (↑) 22.99 23.62 23.62

FID (↓) 22.07 21.19 21.18

`1 (↓) 0.0341 0.0318 0.0320

Input T = 1 T = 4 T = 6

Figure 8. Qualitative results for the ablation study on the number of inpainting stages. The corruption
rates, from top to bottom, are 23.1% and 33.7%, respectively.

3.4.4. Ablation Study on the Collaborative Effect between Inpainting Stages

As discussed before, the filled region at the tth stage is regarded as the valid region at
the (t + 1)th stage. In other words, the MSCA module at the (t + 1)th stage treats the filled
region as the new source for synthesizing the inpainting-oriented features. In this ablation
study, we attempt to reveal the collaborative effect between inpainting stages through two
trials.

In the first trial, we visualize attention scores, which reflect how the patches in the
to-be-filled region refer to the valid region. The actual calculation is the complement to
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the one shown in Figure 2 because the to-be-filled patches, rather than the valid patches,
serve as the kernels in this trial. For simplicity, we focus only on the second MSCA module,
namely the one configured at the 5th layer of the long-range attention branch. Figure 9
shows the visualized heat map, which is obtained by summing the attention scores over
the channel dimension. In the heat map, the hot and cool colors represent the high and low
attention scores, respectively.

Figure 9. Heat maps of the attention scores. A schematic illustration is shown at the top-half panel,
in which four inpainting stages are demarcated by closed-loop frames depicted in colors. Three rows
at the bottom-half panel exhibit the heat maps for three practical examples. Four columns, from left
to right, correspond to the 1st, the 2nd, the 3rd, and the 4th inpainting stages, respectively.

For the first inpainting stage, only the valid region is the source for synthesizing
features, and all of the valid patches are likely to contribute to the inpainting task in a
learnable way. For the other inpainting stages, the MSCA module borrows the features not
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only from the valid region but also from the filled ones. As we see in the first example,
more hot colors are accumulated in the filled regions. This demonstrates the existence of
the collaborative effect between inpainting stages.

Figure 10 further shows how different regions contribute to the inpainting task at each
stage. The contribution of a region is defined as the proportion of attention scores received
by that region. From the first row of Figure 10, we see that, except for the first stage, all of
the filled regions contribute to the inpainting task. Especially at the 4th inpainting stage,
the filled regions receive nearly half of the attention scores. Intuitively, the larger the region,
the higher probability to receive the attention scores. For a fair comparison, we count the
area-normalized contribution by using the attention score per unit area. From the second
row of Figure 10, we see that, except for the first stage, each filled region roughly makes
the same contribution the valid region. These statistical results demonstrate the usefulness
of the collaborative effect between inpainting stages.

Figure 10. Region-wise contribution at each inpainting stage. The second row corresponds to the
area-normalized contribution.

In the second trial, we deliberately exclude the filled regions from the MSCA module.
In doing so, only the valid region is available for the MSCA module to synthesize the
features, regardless of the inpainting stage. In Figure 11, we show the resulting images for
qualitative comparisons. As we see, the resulting images in Figure 11b contain observable
upsampling artifacts and content deviations. For the top example, some white spots
improperly appear in the black background. See the zoomed-in box for details. The reason
for this is as follows. In this example, white is the dominant color in the valid region. When
the filled regions are switched off, the MSCA module runs a higher risk of borrowing
wrong features from the white region. By contrast, the resulting images in the last column
have visually realistic and semantically plausible contents. This is because the filled regions
extend the available source for synthesizing features to reduce the risk of allocating wrong
attention. These results demonstrate the effectiveness of the collaborative effect between
inpainting stages.
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(a) (b) (c)

Figure 11. Qualitative results for the ablation study on the collaborative effect between inpainting
stages. The corruption rates, from top to bottom, are 25.0% and 38.4%, respectively. (a) Input images.
(b) Resulting images when the filled regions are switched off. (c) Resulting images when the filled
regions are switched on.

4. Conclusions

In this paper, we propose progressively inpainting the corrupted images based on a
shared encoder network and a forked-then-fused decoder network. We design a PC-RN
unit, which can perceive the valid information whilst suppressing the incompleteness-
caused interference. The proposed decoder network forks into the local reception branch
and the long-range attention branch (with two MSCA modules) at the beginning, and the
two feature flows are adaptively refined through a SE-based fusing module. The progres-
sive inpainting strategy has the collaborative effect in the sense that the filled region at the
previous stage helps the MSCA module find matching features. We evaluate our inpaint-
ing model on three benchmark databases [57–59] and conduct the extensive comparative
studies and ablation studies. Experimental results demonstrate the effectiveness and the su-
periority of the proposed model compared with the state-of-the-art works [30,35,41,47,48].
Four ablation studies reveal the functionality of each module for the inpainting task.
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