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Abstract: The idea of SLAM (Simultaneous Localization and Mapping) being a solved problem
revolves around the static world assumption, even though autonomous systems are gaining envi-
ronmental perception capabilities by exploiting the advances in computer vision and data-driven
approaches. The computational demands and time complexities remain the main impediment in the
effective fusion of the paradigms. In this paper, a framework to solve the dynamic SLAM problem
is proposed. The dynamic regions of the scene are handled by making use of Visual-LiDAR based
MODT (Multiple Object Detection and Tracking). Furthermore, minimal computational demands
and real-time performance are ensured. The framework is tested on the KITTI Datasets and evaluated
against the publicly available evaluation tools for a fair comparison with state-of-the-art SLAM
algorithms. The results suggest that the proposed dynamic SLAM framework can perform in real-
time with budgeted computational resources. In addition, the fused MODT provides rich semantic
information that can be readily integrated into SLAM.

Keywords: semantics; 3D multiple object detection; multiple object tracking; dynamic SLAM

1. Introduction

In the realm of robotics, the SLAM paradigm is a well-established research area. Even
though there are several efficient solutions to the problem, most of the approaches rely
on the static world assumption [1]. The use of current algorithms in a real-world setting,
where a dynamic and unstructured environment is a given, is hampered by this assumption.
Although the advances in data driven approaches have enabled near-real-time environ-
mental perception, and have shown promising performances [2,3], real-time requirements
become a hurdle in resource-constrained computing platforms. Incorporating the semantics
information from the environment into a geometric SLAM formulation also necessitates
a 3D-pose of the detected objects, as well as semantic segmentation [4–6], which further
adds to the complexity [4–6]. The learning-based techniques inherently necessitate bulky
computing resources to meet the real-time requirements. The SLAM techniques that utilize
such approaches require a lot of computing power or cannot guarantee real-time operation.

The objective of this work is to effectively merge the two broad paradigms of SLAM
and 3D MODT, such that both complement the individual findings while being capable
of performing independently. The feature based visual SLAM approaches rely on feature
tracking to estimate the camera pose over time. Unless the region of visual feature is highly
dynamic, it is hard to categorize and filter the features pertaining to the dynamic regions.
Thus, if left untreated, the information pertaining to dynamic regions of the scene gets
incorporated in the pose estimation process, which leads to an inaccurate SLAM system.
Traditionally, semantic segmentation masks are provided alongside the image to enable
SLAM for an informed selection of visual features at the early stage. This process is however
computationally demanding and real-time constraint is often compromised. Furthermore,
the semantic segmentation only provides class labels and contour of the detected objects.
Hence, there is a need for an alternate approach that can effectively provide equivalent
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semantic information of the environment without demanding extraordinary computational
demands and that can guarantee real-time operation.

The capability of detecting and avoiding information related to the dynamic objects
in the environment for mapping and localization purposes is the concept underlying the
term dynamic SLAM. The dynamic objects are often considered as outliers, and the outlier
rejection techniques such as RANSAC are employed to filter such data. In the literature,
several attempts are made to deal with the presence of dynamic objects under feature-
based SLAM [7–10] and direct SLAM approaches [11–14]. The further categorization
of dynamic SLAM is based on the type of semantics integration adopted. The loosely
coupled approaches [8,15–18] perform environmental perception and SLAM separately.
On the other hand, tightly coupled approaches solve both problems in an integrated
fashion [19–25]. Both approaches have their pros and cons, but the core issue boils down
to the computational resource requirements of perception and real-time capability of the
entire framework, which is largely left unattended.

The proposed framework operates on a Visual-LiDAR setup that provides calibrated
and time synchronized inputs. The core of the framework is a lightweight neural network
model that takes the image sequence from camera and produces classification and local-
ization of objects in the image frame. LiDAR data, on the other hand, and treated by the
MODT module, which clusters and tracks the potentially trackable objects. The sensor
fusion module utilizes the tracking information to associate visual classifications with
tracked clusters. The classified point pertaining to the tracked dynamic objects is projected
onto the image frame and up sampled to form a dynamic region mask. The mask of the
dynamic region coupled with the image is provided to visual the SLAM module. This
enables the SLAM module to make an informed selection of visual features by avoiding
the features pertaining to the dynamic regions of the scene.

The key contributions in this work are the semantic mask generation, point cloud
classification, visual-LiDAR based MODT, visual features selection in SLAM, and the
integration of SLAM and MODT. The mask is generated by fusing the information from
the visual detector and LiDAR based tracker. Instead of frame-wise classification of the
LiDAR point cloud, the tracked clusters are temporally classified using visual detection
information. The SLAM module can make effective use of masks by avoiding the features
pertaining to dynamic regions of the scene.

To evaluate and analyze the effect of the proposed dynamic SLAM framework, a com-
parison is made between basic ORB-SLAM2 [26] and the proposed MODT based dynamic
SLAM framework. The Tracking KITTI Datasets [27] are used for fair evaluation against the
provided ground truths over well-established evaluation metrics. The results suggest that
the proposed approach is an effective solution for the dynamic environments. Furthermore,
the framework is evaluated over selected sequences of Raw KITTI datasets [28] are for
comparison with state-of-the-art dynamic SLAM approaches.

The remainder of the paper is structured as follows: in Section 2, related works are
briefly described. In Section 3, an overview of the framework is presented. The proposed
methodology is introduced in Section 4. The evaluation results and comparison with state
of the art are laid down in Section 5, followed by conclusions in Section 6.

2. Related Works

In recent years, several attempts have been made to address the dynamic SLAM
problem by integrating semantics and environmental perception in SLAM. A feature-
based SLAM paradigm [7] projects the map features onto the current frame to classify
the dynamic part of the scene. Three-dimensional object tracking is performed in [8] to
identify dynamic objects in the scene. Similarly, detection and tracking approaches are
proposed in [9] but are restricted to humans being the dynamic objects. The technique
proposed in [10] assigns probabilistic weights to the objects, based on the class. The direct
SLAM approaches for dynamic environments have also been proposed [11–14]. The stereo
camera-based scene flow representation is utilized in [11] to detect moving objects. RGB
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optical flow-based segmentation is performed in [12]. A method is proposed in [13], that
exploits consecutive depth images to differentiate static and dynamic parts of the scene.
Similarly, the work in [14] focuses on the intensity difference of the consecutive RGB images.
The above-mentioned approaches consider the assumption that the dynamic object in the
scene remains dynamic for the entire view time. Consequently, the dynamic object at
rest is still considered static, which eventually becomes a part of the mapping process.
The advances in the deep learning paradigm have enabled prior classification of dynamic
objects based on the classes. References such as [8,9] can detect and classify the dynamic
objects; however, detection of changes produced in the environment by static objects is still
challenging. A fusion of multi-view geometry and deep learning techniques caters to such
shortcomings [29,30].

The MODT integrated SLAM paradigm can broadly be classified into the categories
of Loosely Coupled and Tightly Coupled approaches [25]. The loosely coupled approaches
perform MODT and SLAM separately, whereas tightly coupled approaches operate in an
integrated fashion [19–25].

Conventionally MODT based SLAM approaches are loosely coupled [8,15–18] and
solve MODT and SLAM separately. An implementation in [8] tracks 3D objects and exploits
the information provided by the SLAM, and the tracker allows the features pertaining to
the objects. A derivation of the Bayes formula of SLAM with tracking of moving objects is
devised in [15]. A graph-based approach in [16] makes use of Expectation Maximization,
allowing the landmarks to be dynamic. A dense mapping algorithm is proposed in [17] that
reconstructs the static background and the dynamic objects in the scene using stereo vision.
A dense mesh tracking approach is proposed in [18] that utilizes visual-inertial SLAM in
conjunction. The approach is focused on humans, tested on only a simulated environment,
and largely relies on camera pose estimation. That is, if the camera pose estimation fails,
the MODT also fails. The work in SLAMMOT [31] established a mathematical framework
to integrate filtering-based SLAM with dynamic object tracking. Later, an RGB-D camera
was employed with the same technique for dense reconstruction of an indoor scene,
together with dynamic objects using semantic segmentation [13,14,29,30]. Further, in dense
approaches Mask-Fusion [32] and MID-Fusion [33], z techniques were deployed for more
accurate semantic segmentation of the dynamic objects in the scene.

Tightly Coupled MODT and SLAM approaches aim to merge information from static
and dynamic parts of the scene into a single framework to enhance the estimation accuracy.
The work in [19] presented the idea of a tightly coupled approach, however, with limited
comparable results. Being end-to-end trained approach estimates 3D pose and dimen-
sions of cars jointly with camera poses. Although the approach provides accurate pose
estimations, it suffers with the loss of generality, and thus, huge data would be required
to track generic objects. The CubeSLAM [20] is a monocular SLAM based approach that
generate 3D bounding box proposals based on 2D bounding boxes and vanishing points.
The approach assumes objects to have constant velocity for a fixed time and exploits the
constraints pertaining to road structure, non-holonomic wheel motion, and visibility of
the cuboid view of objects. The approach in ClusterSLAM [24] proposes a SLAM back end
to identify rigid bodies and to estimate the motion. The approach relies on the landmark
tracking and association quality. A technique in ClusterVO [21] models the object points
for the probability of being dynamic. VDO-SLAM [23] capitalizes on dense optical flow to
identify the number of tracked points on the dynamic objects. The bundle adjustment is
implemented with cameras, objects, and points; however, at the cost of high computational
demand. Similarly, DynaSLAMII [25] proposed a tightly coupled approach for MODT
and SLAM that performs the bundle adjustment between camera, points, and objects. The
performance relies on high quality semantic segmentation and thus, high computational
resources are required.

In contrast to the existing techniques, the proposed framework in this work is unique
and hybrid in a way that MODT and SLAM is performed over different sensor modalities.
3D MODT is performed with respect to the vehicle frame of reference and independent of
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SLAM’s estimated pose, whereas SLAM can take full use of semantic MODT information
as and when required for feature tracking, mapping, or loop closures. The advantage of
such integration is manifold. The object tracking continues even if the pose estimation of
SLAM fails. Furthermore, SLAM can make use of masked dynamic regions and provide
pose information to MODT to obtain tracking information in a common frame of reference.

3. System Overview

The system pipeline of the proposed framework assumes that the platform is equipped
with visual and LiDAR sensors. The visual sensor is primarily used for SLAM and object
detection, whereas the LiDAR sensor is used for spatial object tracking. The framework is
built on top of ORB-SLAM2 [26] with an additional stream of input for the masked image of
dynamic objects. In parallel, an Interactive Multiple Model–Unscented Kalman Filter–Joint
Probabilistic Data Association Filter (IMM–UKF–JPDAF) based tracker is operated to track
objects in 3D space. To classify the objects, a lightweight visual detector YOLO-v3 [34] is
deployed that operates on a reduced image resolution. This increases the inference speed of
the visual detector at the cost of frequent missed detections of small and partially occluded
objects. However, this shortcoming is leveraged by the object tracker, which preserves the
classification history of the tracked objects. The LiDAR point cloud clusters pertaining to
the tracked objects are projected onto the image frame and up sampled to generate the
dynamic objects mask. The dynamic object mask is exploited by the visual SLAM to choose
the visual features for odometry and/or mapping. Figure 1 shows the block diagram of the
framework with individual modules.
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4. Proposed Framework

The proposed framework is comprised of several modules that interact to solve the
dynamic SLAM problem. The operations of individual modules are briefly described in the
subsequent subsections and the block diagram is presented in Figure 2. The implementa-
tion and evaluation of the framework is based on sensor setup involving stereo camera and
64 channel LiDAR. A stereo camera is used for visual SLAM and visual object detection,
whereas a LiDAR sensor is utilized for spatial object detection and tracking. Further-
more, the computational environment used for developing and evaluating the proposed
framework is constituted by a desktop computer having an Intel Core i7-7700 CPU with
16 GB of RAM, and Nvidia GTX 1060 GPU. The system runs the Robot Operating System
(ROS) “Melodic Morenia” middleware on top of Ubuntu 18.04.5 LTS. The framework is
implemented and evaluated in a ROS environment to ensure real-time capability.
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Figure 2. Proposed MODT integrated Dynamic SLAM framework.

4.1. 3D MODT

The 3D MODT module preprocesses the LiDAR point cloud and maintains the tracks
of potentially trackable objects. The module has four subcomponents: ground segmen-
tation, clustering, box fitting, and tracking. Each subcomponent is briefly discussed in
the subsequent subsections and information flow is described in Figure 3. The LiDAR
data after getting treated by the submodules of ground segmentation, clustering, and
box fitting are presented to the tracking submodule as measurements for tracking. The
tracking submodule maintains a temporal record of tracked objects’ dimensions and class
associations received from the visual detector. The 3D MODT module provides 3D MODT
information with respect to the vehicle reference frame to the camera-LiDAR fusion and
pose transformer modules, respectively.
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Figure 3. 3D MODT module in the proposed framework.

4.1.1. Ground Segmentation

The ground segmentation is a part of the LiDAR preprocessing step, where LiDAR
measurements pertaining to the ground are identified and separated from the point cloud
for further processing. Several techniques are proposed in the literature to accomplish
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ground segmentation, with a grid-based approach being the most relevant and effec-
tive [35]. The grid-based approach can accommodate the assumptions of the ground being
non-planner, and the point-cloud being a merger of multiple LiDARs measurements. Fur-
thermore, the grid-based approach is computationally efficient because of compact data
representation. Moreover, the approach can be easily deployed in any arrangement of
the sensor setup without requiring training procedures like data driven approaches. The
implementation of ground segmentation in this work follows a grid-based approach that
considers a non-planar ground.

Initially invalid and out of rage measurements of the LiDAR point cloud are filtered
out and the point cloud is converted into a 2D cylindrical representation. The 2D cylindrical
representation is composed of channels and bins, as expressed in Figure 3 from the top view.
The channels represent the measurements pertaining to the vertical slices of the LiDAR
data, whereas bins are the further divisions of the channels based on the distance from
the origin. To segment the ground, bins of each channel are traversed to estimate the local
ground level, starting from the origin, where the ground level equals the sensor height.
The estimated local ground levels together with vertical distribution of the measurements
in a bin and absolute slope between consecutive bins are used to set the ground threshold
for each bin. The bin-level ground threshold is applied to label the LiDAR measurements
as ground and non-ground measurements. The non-ground labeled point cloud is then fed
forward for clustering.

4.1.2. Clustering

The clustering of LiDAR point cloud is referred to as the process of grouping the
closely existing LiDAR measurements, the approach adopted in this work falls under
the hierarchy-based technique [36]. The 2D cylindrical representation of the non-ground
LiDAR measurements from the ground segmentation module is converted to 3D cylindrical
representation by vertical distribution of measurements. The 2D grid representation is
not effective for clustering in cluttered urban scenarios where elevated structures exist.
The 3D cylindrical representation allows the clustering of objects that exist under elevated
structures, such as streetlights, traffic signals, overhead bridges, and trees. Furthermore,
compact representation of data enables efficient computation of clusters.

In 3D grid representation, each cell of the 2D cylindrical grid is further divided into
levels based on the vertical height of LiDAR measurements, as shown in Figure 3. For
clustering, each cell with measurements is selected as an index and all neighbor cells are
traversed to inspect for a threshold number of measurements. In this fashion, the region
for each cluster grows with a unique ID. To address the time complexity, the region of
interest is selected based on the effective clustering range of LiDAR measurements. The
measurements of LiDARs, for example, with fewer channels get sparse at distances, and the
actual shape of the object cannot be identified; thus, clustering of points beyond a reliable
range only increases the computation and outliers. With these clustering limits imposed,
the clustered point cloud is effectively obtained and is treated with the cluster dimension
filter. The dimension filter identifies the clusters pertaining to the potentially trackable
objects, considering the size, position, and number of enclosed LiDAR measurements. The
clusters that are suitable for tracking are forwarded to the bounding box fitting module.

4.1.3. Box Fitting

The LiDAR measurements experience occlusions, and obtaining the exact 3D shape
object is inherently impossible. To estimate the actual shape of the clustered object, box-
fitting techniques are devised. In this work, considering the computational limitations and
real-time requirements, a feature-based method is deployed [36]. The technique represents
the cluster in a minimum rectangular shape in 2D top view, then performs L-shape point
cloud fitting as shown in Figure 3. Initially, the farthest pair of points is searched for that
exists near a threshold boundary of the minimum rectangle boundary, based on the location
of the cluster in the spatial space. The pair of points is used to form a line and a farthest
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point orthogonal to the line is searched. The three points represent the three corners of the
2D area of the clustered object; the height of the cluster is directly used to define the third
dimension of the bounding box. The three dimensions of the estimated bounding box are
then used to evaluate the centroid and yaw angle of the cluster relative to the LiDAR sensor.
The actual dimensions and centroid of the clustered object at this stage has the effect of
occlusions; therefore, the tracker module maintains the history of estimated dimensions of
the tracked cluster and performs corrections temporally if required.

4.1.4. Object Tracker

The urban cluttered environment perceived by a LiDAR sensor is affected by numer-
ous uncertainties. Cluttered clusters of trackable objects make data association challenging,
whereas dynamic objects tend to follow such motion patterns that further increase the
uncertainties. To tackle these uncertainties, an IMM–UKF–JPDAF based tracker is used [36].
The Joint Probabilistic Data Association Filter (JPDAF) based approach is utilized for data
association with an assumption of Gaussian distribution to address the uncertainties due
to clutter. Furthermore, the Interacting Multiple Model (IMM) approach is adopted for the
state estimation of objects to deal with the uncertainties due to motion. The non-linearities
of the motion models are accommodated by an Unscented Kalman Filter (UKF) through
a Gaussian process. The IMM–UKF–JPDAF based approach effectively solves the recur-
sive state estimation and mode probabilities of object clusters, which is described by a
non-linear jump Markov system.

The execution times of the tracker module mainly rely on the number of maintained
tracks. Furthermore, JPDAF based approaches tend to face a combinatorial explosion
problem, which if left untreated, requires exceptional computational resource, as a hy-
pothesis of all possible combinations of tracks and measurements are made. To tackle this
shortcoming, a clustering-based scheme is utilized to limit the association pairs of tracks
and measurements to only the gated measurements instead of all possible combinations.
The tracking block shown in Figure 3 shows a table of tracks T and measurements M in
rows and columns, respectively. The track T2 gets gated measurements of M1 and M4
forming an association cluster of two measurements and a single track. Similarly, tracks
T3 and T4 share the measurement M3 forming an association cluster of two tracks and a
single measurement. Thus, the JPDA problem is reduced to a set of smaller problems that
can be solved efficiently. Moreover, an efficient track management mechanism is set in
place that prunes out the tracks pertaining to the inconsistent measurements, resulting in a
limited number of tracks to maintain. An additional condition of a tracked object being
classified by the visual object detector, reducing the number of tracks further, results in de-
creased computational load. The prime objective of this module is to estimate the tracking
parameters of the potentially trackable objects, such as, pose, velocity, and dimensions.

4.2. Camera-LiDAR Fusion

The fusion approach adopted in this work is regarded as late fusion, where tracked
clusters are temporally classified instead of frame-wise classification [36]. This is carried
out by two components, class association and class management. The class association
component assigns a visually detected object’s class to the tracked object’s clusters, whereas
the class management component assesses the class assignment history to select a class for
the tracked object cluster.

To perform the class association, eight corners of the 3D bounding box of the tracked
object clusters are projected on the 2D image plane using camera-LiDAR extrinsic parame-
ters. The minimum and maximum pairs of x and y coordinates from the set of 2D projected
points forms a 2D bounding box in the image frame representing the 3D tracked object. The
Munkres association strategy is applied on the 2D centroids of the visual object detector
and 2D bounding box representing the tracked object in the 3D space. This association is
maintained by a class association vector that maintains the history of class associations and
provides a certainty of classes assigned to the tracked object over time.
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Let Tk and Dk be the sets representing tracks and visually detected objects, respec-
tively, at time step k. The centroids of tracked clusters ok

i are projected onto the image
frame of the corresponding time step, resulting in a 2D pixel location in an image ok

i .
Similarly, the centroids of visually detected objects are calculated using bounding box di-
mensions, represented by mk

j . The 2D centroids of both sources are utilized to populate the

Euclidean distance cost matrix Ek =
[
ck

ij

]
, where i ={1, 2, . . . , T} and j ={1, 2, . . . , D}.

The cost matrix

ck
ij =

{
d(ok

i , mk
j

)
if IOU

(
tk
i , dk

j

)
> 0.3

1000 otherwise
(1)

is, however, constrained by the criterion that at least 30% of overlap must exist among
the corresponding 2D bounding boxes from the two sources. Following the Munkres
association, the algorithm for optimized minimum cost is performed and a set of index
pairs Y relating to the associated tracks tk

i and visual detections dk
j is acquired. Using the

set Y class association matrix Êk
=
[
ĉk

ij

]
, it can be formulated such that,

ĉk
ij =

{
vj if < i, j > ⊂ Y
0 otherwise

, (2)

where v represents the association of the class of visually detected objects and the dimen-

sion index of class association vector Ai
v = (a i

1, . . . ai
n

)
. The matrix Êk finally updates the

class association vector Ai and increments the associated class dimension,

ĉk
ij =

ai
ĉij

if ĉk
ij = 0

ai
ĉij
+ 1 otherwise

. (3)

The class association vector Ai, along with the age of track tage is exploited to compute
the class certainty Pi

c of tracked objects and the ratio Pi
o of the object, that reasons the

tracked object to be valid.

Pi
c =

max(av)

tage
(4)

Pi
o =

(
tage −∑n

v=1 ai
v
)

tage
(5)

The camera-LiDAR fusion thread operates along the LiDAR based MODT and pro-
vides the class association certainty to the tracker. In Figure 4, visual classification of
tracked clusters is demonstrated. The blue and red dots in the image represent the cen-
troids of visually detected objects and centroids of tracked LiDAR clusters projected on
to the image, respectively. The qualified associations update the class association vector
of a mature track as demonstrated in Figure 4. The class association vector represents the
classes assigned to the tracked cluster, including no associations counting temporally in
terms of frames. Together with the tracking age, class certainty of 60% is evaluated for the
tracked object being a “car”.

4.3. Dynamic Mask Generator

The mask generator module takes the LiDAR point cloud cluster and projects it onto
the image frame. The visual features generally exist on the edges and corners of the
surfaces, and thus, the mask needs to slightly exceed the exact contour of the detected
object. To handle the sparsity of the LiDAR measurements, a 2D Gaussian blur kernel
is formulated,

G(x, y) =
1

2πσ2 e
x2+y2

2σ2 , (6)
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where x and y are the coordinates of the projected LiDAR measurement pertaining to the
cluster of the dynamic object. The standard deviation σ of the blur is set based on LiDAR
and image resolution. For lower ratios of image to LiDAR resolution and larger coverage
of LiDAR measurements on the image, lower values of σ are sufficient. The dynamic mask
generated from the proposed framework in contrast to the mask generated from Mask
R-CNN is presented in Figure 5. In the literature, the reported inference time of Mask
R-CNN using standard GPU fails to meet the real-time requirements, whereas the proposed
framework provides the comparable dynamic masks well within the sensor sampling time,
allowing the entire framework to operate within 100 ms.
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4.4. Object Pose Transformer

The primary function of the object pose transformer is to transform the pose and
tracking information of objects to the SLAM frame of reference. The module receives
the localization information from the SLAM module and tracking information from the
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3D MODT module. The object tracking is performed in the vehicle frame, where static–
dynamic classification of tracked objects cannot be effectively made without the ego-
motion information. For effective utilization of this information, tracking information is
transformed into a SLAM frame of reference, where realistic information of the tracked
objects can be realized.

4.5. Dynamic SLAM

The core of the proposed framework is an ORB-SLAM2 that gets the capability of
making an informed selection of visual features. The module takes images together
with the generated mask image as an input. The extracted visual features are labeled
as static or dynamic based on the provided mask. The features pertaining to the static
part of the scene are validated, whereas features pertaining to dynamic objects in any
state are filtered out, as demonstrated in Figure 6. The focus in this implementation is to
demonstrate an effective alternative solution to the computationally expensive semantic
segmentation algorithms like Mask R CNN [3], widely utilized in the related literature. The
proposed framework generates a comparable dynamic mask in real-time without excessive
computational resource requirement.
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The visual features generally exist on the corners and sharp edges of the scene, thus
extracting a perfect pixel-level annotation and sharp contours of the dynamic objects are
not desired, as features located on the boundary of dynamic objects are dubious. The masks
generated in the proposed framework are based on sparse LiDAR data that is treated by a
2D Gaussian blur that ensures that features on the boundary regions of dynamic objects
are filtered. Consequently, the generated map is free of information pertaining to dynamic
objects, although the tracker module allows identification of the dynamic objects that are
currently static such as parked cars and using this information within the SLAM process
of pose estimation. This implementation is intentionally left out for future work, as the
focus is to demonstrate that a comparable dynamic object’s mask to the conventional mask
generation approaches can be efficiently achieved. In this work, LiDAR data are only
used for spatial object tracking and exploitation of a classified point cloud for dynamic
mask generation.

5. Evaluation and Comparison

To evaluate and analyze the effect of the proposed Dynamic SLAM framework, a
comparison is made between basic ORB-SLAM2 [26] and the proposed MODT based
dynamic SLAM framework. Conventionally, KITTI Datasets [27] are used for fair evaluation
against the provided ground truths over well-established evaluation metrics. However,
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the datasets provided for evaluating SLAM algorithms lack in the presence of dynamic
objects, mainly because of static world assumption. For this reason, the datasets provided
for object tracking are used with the provided ego-motion data as the ground truth. The
true potential of the framework can be fairly tested in the absence of no loop closures,
allowing the measurement of maximum drift. Since the datasets are targeted to test object
detection and tracking, dynamic objects exist in almost every sequence in abundance.

To perform a detailed and standard analysis, the KITTI Odometry criterion [27]
is followed. The Absolute Trajectory Error (ATE) measures the root-mean-square error
between predicted camera poses [x, y, z] and ground truth. Relative Pose Error (RPE)
measures frame-to-frame relative pose error, since the provided ground truth data are in
the GPS/IMU frame, and the trajectories generated by SLAM are in camara coordinates.
The generated trajectory is aligned using 7DoF optimization to the ground truth associated
poses during evaluation by minimizing the ATE [37]. Table 1. The estimated trajectories
evaluation and comparison on KITTI Tracking Datasets

Table 1. The estimated trajectories evaluation and comparison on KITTI Tracking Datasets.

seq
ORB-SLAM2 [26] Proposed Framework

ATE
(m)

RPE
(m)

RPE
(deg)

ATE
(m)

RPE
(m)

RPE
(deg)

00 0.663 0.63 1.345 0.663 0.63 1.345
01 1.362 1.062 0.472 1.704 1.066 0.474
02 0.127 0.704 0.139 0.148 0.705 0.139
03 0.254 1.699 0.245 0.245 1.703 0.244
04 1.73 1.803 0.589 1.275 1.805 0.583
05 0.58 1.717 0.117 0.557 1.719 0.116
06 0.175 0.263 0.481 0.366 0.254 0.492
07 6.122 0.914 1.107 3.784 0.906 1.042
08 1.346 2.092 0.259 1.369 2.093 0.267
09 8.08 1.289 0.563 1.677 1.26 0.521
10 0.472 2.02 0.269 0.55 2.02 0.267
11 1.324 0.826 0.171 0.95 0.824 0.17
12 0.01 0.003 0.006 0.01 0.002 0.005
13 0.451 0.818 0.383 0.462 0.818 0.384
14 0.423 0.642 1.436 0.505 0.634 1.456
15 0.581 0.282 0.04 0.31 0.274 0.039
16 0.023 0.008 0.006 0.022 0.008 0.006
17 0.037 0.006 0.008 0.037 0.004 0.009
18 0.866 1.088 0.118 1.032 1.096 0.119
19 3.742 0.324 0.26 1.835 0.315 0.24
20 7.891 1.227 0.261 0.634 1.219 0.25

mean 1.812 0.970 0.413 0.906 0.967 0.408
Lower errors are written in bold.

The results of comparison are presented in Table 1. The variation in the scores suggests
the presence of dynamic objects. The better performing metrics are presented in bold
text. The sequences with dynamic objects having less effect on the SLAM produce near
similar metric results. In these sequences the dynamic objects’ presence does not cover
the entire view for consecutive time frames. In some sequences, the dynamic objects are
static, like parked cars, the conventional SLAM takes use of the features belonging to the
corresponding regions to produce better results. However, this information becomes the
part of the generated maps.

The sequences with dynamic objects are in a motion similar in pattern to the ego-
vehicle, such as in the roadway conditions, influencing SLAM the most. The metric scores
of sequences 9, 19, and 20 support this argument, where ORB-SLAM2 [26] suffers a lot
due to the presence of dynamic objects, and drift creeps into the estimated trajectory. In
contrast, the proposed framework efficiently filters the visual features pertaining to the



Sensors 2021, 21, 6355 12 of 15

dynamic object regions. Thus, the estimated trajectory is more accurate. The plots of
trajectories generated by ORB-SLAM2 [26] and the proposed framework of sequence 20 are
presented in Figure 7. The drift in both plots suggest that the informed selection of features
can estimate better trajectories, specifically in the scenario where dynamic objects tend to
follow a similar motion pattern.
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To view the performance of proposed framework in comparison to the state-of-the-art
dynamic SLAM frameworks, the metric scores against KITT Raw DATASET [28] sequences
are evaluated and presented in Table 2. The evaluation scores of ORB-SLAM2 [26] are
reproduced using the similar evaluation tool and computational platform. However, the
evaluation scores of related dynamic SLAM frameworks on the same dataset sequences
are reported as a reference from the work in [25]. Best mean metric scores suggest that the
proposed dynamic SLAM framework can perform at par to the conventional approaches
that rely on data driven semantic segmentation approaches to identify dynamic objects in
the scene.

Table 2. The estimated trajectories evaluation and comparison on KITTI Raw DATASET.

seq
ORB-SLAM2

[26]
DynaSLAM

[29]
ClusterSLAM

[24]
ClusterVO

[21]
DynaSLAMII

[25]
Proposed

Framework
ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

0009 1.36 1.06 0.47 0.81 1.80 0.57 0.92 2.34 1.72 0.79 2.98 1.72 0.85 1.87 0.57 1.70 1.06 0.47
0013 0.25 1.69 0.24 0.30 0.99 0.57 2.12 5.50 4.01 0.26 1.16 0.57 0.29 0.93 0.00 0.24 1.70 0.24
0014 1.73 1.80 0.58 0.60 1.62 0.57 0.81 2.24 1.72 0.48 1.04 0.57 0.48 1.35 0.57 1.27 1.80 0.58
0004 0.86 1.08 0.12 0.56 1.36 0.57 1.12 2.78 1.15 0.40 1.77 1.15 0.64 1.41 0.57 1.03 1.09 0.12
0047 7.89 1.22 0.26 2.87 5.95 1.15 10.2 8.94 3.44 4.78 6.54 2.86 3.03 6.85 1.15 0.63 1.21 0.25
mean 2.42 1.37 0.33 1.02 2.34 0.68 3.03 4.36 2.40 1.34 2.69 1.37 1.05 2.48 0.57 0.97 1.37 0.33

Better and similar scores are written in bold.

The mean overall scores reflect the promising performance of the proposed algorithm
but the individual sequences of 0009, 0014, and 0004 show slightly poor results. The
similarity in these sequences is the abundance of dynamic objects being static. ORB-SLAM2
making use of the whole visible region can produce better pose estimation, whereas the
dynamic SLAM ignoring the dynamic regions tends to degrade the performance in such
scenarios. However, this can be seen as an advantage in terms of SLAM process, where
the generated map remains free of dynamic entities, enabling better loop closure and re-
localization capabilities. The sequence 0013 is a relatively short time sequence with limited
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dynamic regions and plentiful visual features; thus, dynamic SLAM tends to produce
similar metric scores. Sequence 0047 being a highway scenario with a large trajectory
demonstrates the effectiveness of the proposed dynamic SLAM. An interesting find in the
reported scores is that the tightly coupled approaches perform more poorly than the loosely
coupled approaches. ClusterVO [21], and DynaSLAM II [25] having a tightly coupled
approach tend to have lower accuracies on average. On the other hand, DynaSLAM [29]
which follows a dynamic masking approach like the proposed framework manages to
acquire better metrics in comparison. ClusterSLAM [24] largely relies on the initial camera
pose estimations, which further supports the argument that loosely coupled approaches
with effective use of redundant information can guarantee better accuracies.

6. Conclusions

In this work, a visual-LiDAR based 3D MODT is integrated with SLAM that caters
to the challenges pertaining to the dynamic world. The proposed framework considering
the constrained computational resources and real-time requirements performs a temporal
classification of tracked objects. An efficient IMM–UKF–JPDAF based tracker spatially
tracks the objects while maintaining the class association history, to address the real-time
limitations and shortcomings of object detection. The classified LiDAR point cloud is
effectively utilized to produce a dynamic object mask, capable of replicating the state-of-
the-art semantic segmentation approaches. SLAM exploits the dynamic mask provided
by the MODT for informed selection of visual features for tracking and mapping tasks to
realize a dynamic SLAM.

The proposed framework is tested on the KITTI Datasets [28] and evaluated against
the established metrics. The results and comparison with the related works suggest that the
proposed approach is an effective solution for the dynamic SLAM. The key contribution in
this work is the efficient generation of dynamic object mask from the Visual-LiDAR based
MODT in real-time without the need of exceptional computational resources. Furthermore,
a loosely coupled approach for 3D MODT and SLAM is proposed that can exploit the
redundant information with a minimalistic interdependence.

In the future, it is intended to incorporate the further static–dynamic classification of
characteristically dynamic objects supported by the MODT information. Furthermore, in-
formation pertaining to static regions of the scene can be utilized in semantic representation
on the maps. Moreover, the tracking and semantic information of the dynamic objects in
the environment is at the disposal of SLAM framework, which can be exploited at several
stages of SLAM to attain better accuracies and generation of semantic maps.
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