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Abstract: Multi-object tracking is a significant field in computer vision since it provides essential
information for video surveillance and analysis. Several different deep learning-based approaches
have been developed to improve the performance of multi-object tracking by applying the most
accurate and efficient combinations of object detection models and appearance embedding extraction
models. However, two-stage methods show a low inference speed since the embedding extraction
can only be performed at the end of the object detection. To alleviate this problem, single-shot
methods, which simultaneously perform object detection and embedding extraction, have been
developed and have drastically improved the inference speed. However, there is a trade-off between
accuracy and efficiency. Therefore, this study proposes an enhanced single-shot multi-object tracking
system that displays improved accuracy while maintaining a high inference speed. With a strong
feature extraction and fusion, the object detection of our model achieves an AP score of 69.93% on
the UA-DETRAC dataset and outperforms previous state-of-the-art methods, such as FairMOT and
JDE. Based on the improved object detection performance, our multi-object tracking system achieves
a MOTA score of 68.5% and a PR-MOTA score of 24.5% on the same dataset, also surpassing the
previous state-of-the-art trackers.

Keywords: multi-object tracking; object detection; single-shot; traffic scenario; vehicle tracking

1. Introduction

In recent years, numerous studies have been conducted to implement multi-object
tracking (MOT), which is a process that predicts trajectories of multiple objects detected
across a sequence of video frames [1–7]. Among all the approaches, deep learning-based
methods have shown remarkable improvements and have enabled several applications,
such as video surveillance and analysis [8], human recognition and communication [9],
and autonomous driving [10].

Deep learning-based MOT systems in early works have been composed of two sepa-
rate and sequential processes: object detection and embedding extraction [2,3]. The two
processes operate in a sequential manner, in which the bounding boxes of objects are
first predicted by an object detection model, and then the appearance embeddings are
extracted by an embedding extraction model to determine whether the objects are matched
to existing trajectories. Object detection and embedding extraction are independent of
each other; thus, they have been developed respectively, and the main focus has been to
finely combine these two processes. Despite the high accuracy of two-stage methods, their
inference speed is severely limited, which makes their real-time applications infeasible.

To address the aforementioned limitation, single-shot approaches, which apply a
parallel structure to object detection and embedding extraction, have been developed [4–7].
Single-shot methods simultaneously predict the locations and extract the appearance
embeddings of objects in separate branches. Therefore, the time gap between the two
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processes decreases, and the inference speed notably improves. Furthermore, most single-
shot methods enhance the inference speed to the point that it can run in real-time by using
a lightweight backbone network. However, their accuracy suffers from a trade-off from a
high inference speed because it is difficult to extract rich features with a small network size.

In this study, we propose a fast single-shot MOT system that achieves high accuracy.
By using an optimized backbone network and an efficient feature fusion, our proposed
method shows higher MOT accuracy without significantly reducing the efficiency. In par-
ticular, our system exhibits an outstanding performance on vehicle tracking tasks, showing
improvements on the experimental results on the public UA-DETRAC dataset [11].

2. Related Works

Multi-object tracking has become highly challenging in the last decade, requiring
complex multi-stage algorithms and high-end hardware performance, such as computing
memory and speed [1]. Meanwhile, deep learning and processing units have made rapid
advancements and have actualized MOT to the level of real-world applications [2–7].
In particular, previous studies on a wide range of fields in deep learning, such as image
classification [12–16] and object detection [17–25], have inspired and guided researchers to
devise groundbreaking solutions for MOT.

Image classification is one of the earliest tasks in computer vision that uses deep
learning. LeNet-5 [12] marked a watershed in the history of deep learning in computer
vision by proposing a gradient-based learning of a convolutional neural network (CNN),
which successfully enhanced the identification of handwritten numbers. Successive studies,
such as AlexNet [13], VGGNet [14], GoogLeNet [15], and ResNet [16], improved the
performance of image classification with thorough analysis and various modifications to
the structures of CNNs, training strategies, and other details.

With the development of image classification, several studies have been conducted
on object detection, which is a process of predicting the locations and classes of objects
in an image or sequence of video frames. Object detection using deep learning can be
classified into two-stage [17–20] and one-stage methods [21–25]. Two-stage detectors, such
as the R-CNN family [17–20], operate sequentially in two steps, in which they first make
region proposals and then classify each one into a class. In contrast, one-stage detectors,
such as the YOLO family [21–23], SSD [24], and RetinaNet [25], simultaneously carry out
localization and classification.

Based on the foundational studies on object detection, several studies have been
proposed for matching detected objects with IDs across frames to implement MOT. The
ID-matching procedures can be classified into non-deep learning [1] and deep learning-
based methods [2–7]. Non-deep learning methods perform data association with only the
locations of the objects. SORT [1] is a widely used non-deep learning data association
algorithm, which links the current object locations with the previous object locations
by applying the Kalman filter [26]. In particular, SORT associates objects based on the
Intersection over Union (IoU) and facilitates matching using the Hungarian algorithm [27].
Non-deep learning methods can be utilized for any detector, which is a great advantage;
however, they have a great weakness for occlusions.

To solve the difficulty of non-deep learning methods in tracking overlapping objects,
few approaches for matching IDs based on deep learning have been suggested. Compared
to non-deep learning methods, deep learning-based methods use not only locations but
also appearance embeddings, which are embedding vectors that represent the appearance
information of objects, such as the shape and color. Early studies, such as POI [2] and Deep
SORT [3], successfully developed a deep learning-based model of appearance embeddings
as a subsequent object detection process. Both POI and Deep SORT first predict the bound-
ing boxes of objects and then forward-pass the cropped regions to extract the appearance
embeddings. POI utilizes the GoogleNet [15]-based network for embedding extraction and
applies the cosine distances to the integrated predicted motions and visual information for
data association. Deep SORT uses the squared Mahalanobis distances for motions and the
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cosine distances for appearance embeddings, respectively. Despite the increase in MOT
accuracy, two-stage trackers have issues with inference speed because they perform object
detection and embedding extraction sequentially. As a solution, single-shot trackers that
concurrently perform the two processes have been proposed. JDE [4] first extracts and
fuses the features by using the backbone network of YOLOv3 [23], and then predicts the
locations and classes of objects in each prediction head with the extraction of appearance
embeddings. FairMOT [5] utilizes DLA [28] for a feature fusion and employs a heatmap
head to predict the centers of the objects. Both JDE and FairMOT achieved a speed of
30 FPS, enabling a real-time operation of deep learning-based MOT systems.

Vehicle tracking is one of the most important tasks in MOT owing to its extensive
applications, such as traffic monitoring, analysis, and control [8]. The vehicle-tracking task
has several challenges, including tracking objects in various sizes and views, in different
environments of illuminations, and with heavy occlusions. Several studies have suggested
robust MOT systems as a solution for tracking vehicles in traffic scenarios recorded by
an unmanned aerial vehicle or a self-driving car. Early approaches have used non-deep
learning methods that combine detectors, such as DPM [29], ACF [30], R-CNN [17], and
CompACT [31], with data association algorithms, such as GOG [32], CEM [33], DCT [34],
IHTLS [35], H2T [36], and CMOT [37]. Bochinski et al. [38] proposed an integration of
Mask R-CNN [20] and V-IOU, which performed well on the UA-DETRAC dataset [11]
and achieved a PR-MOTA score of 30.7%. Meanwhile, considerable approaches that
apply deep learning-based methods to vehicle tracking have also been made. Track R-
CNN [6] simultaneously performs MOT and segmentation with a single CNN by training
its network with the pixel-level annotated KITTI [39] and MOT17 [40] benchmarks. DMM-
Net [7] predicts motion parameters of anchor tubes and directly associates the tracklets
based on the IoU. By using the tracklet association, DMM-Net tracked vehicles at a highly
enhanced speed (123.3 FPS) and achieved a PR-MOTA score of 12.8% on the UA-DETRAC
dataset. Single-shot vehicle trackers have made notable developments in speed; however,
their accuracy has not been fully focused on in prior works. Therefore, considering future
applications of vehicle tracking, it is important to improve the accuracy and not only
the efficiency.

3. Proposed Method

In this section, we propose a backbone network and a method for output-feature
fusion for accurate and efficient single-shot MOT. Among many MOT models, we adopt
FairMOT [5] as a baseline model since it operates at a high inference speed by decreas-
ing the time gap between object detection and embedding extraction. For rich feature
extraction and fusion, we replace the original backbone network with a strong yet simple
network that performs optimized cross-scale connections. In addition, we show how we
can effectively integrate the multi-scale features output from the backbone network for
subsequent operations.

The overall flowchart of our single-shot MOT system is shown in Figure 1. The MOT
system begins by forward-passing an input frame into the backbone network. We use
EfficientDet [41] as a backbone network; it consists of two stages: feature extraction and
fusion. In the first stage, EfficientNet [42] performs feature extraction and produces three
multi-scale feature maps. In the second stage, the features go through the process of feature
fusion via the bi-directional feature pyramid network (BiFPN) [41] layers and five multi-
scale feature maps are taken out from the backbone network. Before being transferred to
prediction heads, the output features are fused into one to match the feature dimensions.
In Sections 3.1 and 3.2, we describe the backbone network and output-feature fusion of the
proposed method, respectively. For predictions of the center heatmap, center offsets, and
box sizes of the objects, the integrated feature is transferred to the detection head. Likewise,
the same procedure is carried out for the re-ID head to extract appearance embeddings
from the feature map. Finally, online association is applied to the output results from the
prediction heads to match the IDs of objects in the current and previous frames.
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Figure 1. Overall flowchart of our single-shot multi-object tracking (MOT) system.

3.1. Backbone Network Architecture

A backbone network plays a significant role in the overall MOT system, in that it gen-
erates features that are essential for further steps. The performance of a MOT system varies
greatly, depending on how the backbone network extracts and aggregates high-quality
features with its own method. In our proposed method, we adopt EfficientDet [41] as a
backbone network to improve the performance of MOT by increasing the accuracy while
minimizing the loss of efficiency. We present two reasons for using EfficientDet. Efficient-
Net [42], which is the backbone network of EfficientDet, shows outstanding performance
for a small number of parameters, and achieves high accuracy and a fast inference speed.
The second reason is that BiFPN [41], which is the fusion network, increases the average
precision (AP) whilst having a lower computational cost, as compared to others [43,44].

EfficientDet offers eight different optimized models based on thorough observations
by considering depth (number of layers), width (number of channels), and input resolu-
tion. Among them, we utilize EfficientDet-D0, which is the most lightweight model that
repeats the BiFPN layers three times, uses 64 channels, and takes an input resolution of
512 × 512. EfficientDet-D0 is selected to minimize the decrease in the inference speed. This
is because scaling up the three factors reduces the efficiency to the extent where it differs
significantly from the baseline [5]. The backbone network architecture of the proposed
method is shown in Figure 2. An input frame is first forward-passed into the backbone
network, and EfficientNet produces three multi-scale features with resolutions of 8, 16, and
32 times lower than the input size, respectively. In this process, EfficientNet effectively
decreases the parameters and FLOPs by using the mobile inverted bottleneck convolu-
tion (MBConv) [45,46]. As a pair, EfficientNet-B0 is applied to the feature extractor. The
original EfficientNet-B0 operates 18 convolutions of different kernel sizes, including two
standard convolutions and 16 MBConvs, and uses a fully-connected layer for classification.
However, because EfficientNet-B0 only performs feature extraction without additional
processes of classification in EfficientDet-D0, the last 1 × 1 convolutional layer and the
following fully-connected layer are removed from the original model. The structure and
specifications of the modified EfficientNet-B0 are listed in Table 1.

Table 1. Structure and specifications of the modified EfficientNet-B0.

Operation
Input Resolution
(Width× Height) # Output Channels # Layers

Conv, k3×3 1024 × 512 32 1
MBConv1, k3×3 512 × 256 16 1
MBConv6, k3×3 512 × 256 24 2
MBConv6, k5×5 256 × 128 40 2
MBConv6, k3×3 128 × 64 80 3
MBConv6, k5×5 64 × 32 112 3
MBConv6, k5×5 64 × 32 192 4
MBConv6, k3×3 32 × 16 320 1

The following step details how to fuse the multi-scale features with BiFPN. Before
sending the three multi-scale features to the BiFPN layers, a 1× 1 convolution is performed
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on each feature map to set the number of channels to 64 and two additional lower-resolution
features are extracted by max pooling. Therefore, a total of five multi-scale features, with
the same number of channels, are transferred to the BiFPN layers. BiFPN effectively fuses
features by applying several techniques to PANet [47], which utilizes both top-down and
bottom-up pathways. The modifications for optimization are as follows: (1) Cut off nodes
that have negligible influence on the quality of feature maps. (2) Add extra skip connections.
(3) Repeat the entire BiFPN layer multiple times. By leveraging the optimized network,
the output features {P1, P2, P3, P4, P5} of the backbone network become highly robust to
scale variations.

Figure 2. Backbone network architecture of our single-shot MOT system.

Input resolution greatly affects the development of a CNN. In particular, it becomes
significantly important in tasks that require rich representations of features for small objects,
such as object detection and MOT. In general, a larger input resolution is accompanied by a
larger network size and results in higher accuracy. However, the increase in both factors
critically harms the inference speed by drastically increasing the computations. Therefore,
it is necessary to scrutinize the performance of the CNN with different input sizes and
different numbers of network parameters to find the optimal combination that optimizes
the balance between accuracy and efficiency. In Tan et al. [41], EfficientDet-D0 is designed
to operate with an input resolution of 512 × 512. In our method, we intentionally set an
input size of 1024× 512 (width× height). This idea is based on the observation that simply
increasing the input resolution of a lightweight network benefits the efficiency more than
using a heavyweight network of large resolution, while both show similar performances
for the accuracy. An aspect ratio of the input is also significant for the performance of the
CNN. This is because a wide discrepancy in the aspect ratio between the input and frame
leads to a heavy loss of information when the frame is resized. Considering the frame size
of videos in real-world applications, the aspect ratio is set to 2:1 in our proposed method.
The input resolution of the feature maps for each operation is shown in Table 1.

3.2. Output-Feature Fusion

Output-feature fusion is a vital process for integrating multi-scale features output
from a backbone network into a single feature map for subsequent operations. Based on
previous studies that utilize heatmaps for predictions [48–51], our single-shot MOT system
performs object detection and embedding extraction on a single high-resolution feature
map. Therefore, it is crucially important for our network to generate a single feature that
potentially comprises rich representations.

The output-feature fusion network architecture of the proposed method is illustrated
in Figure 3. We append the structure of the feature pyramid network (FPN) [43] to the end
of the backbone network for fusion. FPN serially merges multi-scale features from high to
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low levels to produce semantically strong feature maps. The features from the top-down
pathway and lateral connections are fused using Equation (1):

Pout
5 = Pin

5

Pout
4 = Up(De f ormConv(Pout

5 )) + De f ormConv(Pin
4 )

· · ·
Pout

1 = Up(De f ormConv(Pout
2 )) + De f ormConv(Pin

1 )

(1)

where {Pin
1 , Pin

2 , Pin
3 , Pin

4 , Pin
5 } are the multi-scale input features transferred from the back-

bone network, {Pout
1 , Pout

2 , Pout
3 , Pout

4 , Pout
5 } are the output features, De f ormConv is the de-

formable convolutional operation, and Up is the up-scaling operation. At each level, a
deformable convolution [52] is first performed on both features, which are from the higher
level and lateral connection, respectively. Inspired by [5], we use the deformable convo-
lution for every branch in order to adaptively decide the receptive field by applying a
learnable offset, which varies depending on the scales of an object, to the grid point of
kernels. Subsequently, a lower-resolution feature is up-scaled by a factor of two by the
transposed convolution; thus, it is resized to the same resolution as the other. We adopt
the concept of the depth-wise convolution [53] here to reduce the number of parameters
and computations. Finally, the feature maps of the same spatial size are fused by element-
wise summation and the output is sent to the lower level in order to repeat the entire
fusion block.

To generate a final high-resolution feature map that is transferred to prediction heads,
we up-scale the feature Pout

1 of the highest resolution among the feature maps from FPN.
The up-scaling process is identical to the combination of the operations De f ormConv and
Up, which are used in the top-down pathway of FPN. That is, the feature Pout

1 is up-scaled
by Equation (2):

Pout = Up(De f ormConv(Pout
1 )) (2)

where Pout is the final high-resolution feature map. As a result, given an input image
I ∈ RH×W×3, where H and W are the height and width, respectively, the output-feature
fusion network outputs the single high-resolution feature map Pout ∈ R H

4 ×
W
4 ×64, which is

utilized for subsequent predictions.

Figure 3. Output-feature fusion network architecture of our proposed method.
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3.3. Prediction Heads

A prediction head is a significant component in the single-shot MOT system because
it determines the specific tasks that the system will perform. In general, prediction heads
are appended to the end of a backbone network and receive the extracted features needed
to carry out various tasks, such as localization and classification of bounding boxes. In our
proposed method, the prediction heads are attached to the end of the output-feature fusion
network and take the input of a single high-resolution feature map, whose resolution is four
times lower than the size of an input image. Based on a feature with rich representations,
we utilize three prediction heads for object detection and one re-ID head for embedding
extraction. Here, the three prediction heads for object detection are composed of center-
heatmap, center-offset, and box-size heads proposed in CenterNet [50].

In front of each prediction head, a 3 × 3 convolution with 256 channels and a 1 × 1
convolution are performed to make the feature map applicable to the assigned tasks.
Specifically, the target of the center-heatmap head has only 1 channel of the heatmap
because our single-shot MOT system works for a single class. In the center-offset head, the
number of target channels is set to two (for horizontal and vertical offsets), while that in
the box-size head is set to four (for top, left, bottom, and right edges of a box). The re-ID
head utilizes a target that has 128 channels, which comprise an appearance embedding
extracted from an object center.

The center-heatmap head is used to predict the locations of the centers of the objects
and aims to estimate the probability of containing the object center at each location of
the target heatmap Ŷ ∈ [0, 1]

H
4 ×

W
4 . The probability is ideally one at the object center

and rapidly decreases as the distance between the predicted location and object center
increases. In the training stage, the ground-truth heatmap Y ∈ [0, 1]

H
4 ×

W
4 is set to a 2D

Gaussian mixture, where each Gaussian distribution corresponds to a single object. Given
a ground-truth object center c(k) ∈ R2 in an input image I, the location is first converted
into the down-scaled object center c̃(k) = [ c(k)

4 ], and then the 2D Gaussian distribution

Y(k) ∈ [0, 1]
H
4 ×

W
4 is produced by Equation (3):

Y(k) = exp

− (x− c̃(k)x )2 + (y− c̃(k)y )2

2σ2
c

 (3)

where σc is the standard deviation, which varies depending on the size of an object.
To generate the final ground-truth heatmap Y, all Gaussian distributions are merged by
element-wise maximum, as shown in Equation (4):

Yij = max(Y(1)
ij , Y(2)

ij , · · · , Y(N)
ij ) (4)

where N is the number of objects in the input image. We denote the loss function Lheatmap
is the focal loss [25] for penalty-reduced pixel-wise logistic regression [49], as shown in
Equation (5):

Lheatmap = − 1
N

H

∑
i=1

W

∑
j=1

{
(1− Ŷij)

αlog(Ŷij) if Yij = 1
(1−Yij)

β(Ŷij)
αlog(1− Ŷij) otherwise

(5)

where α and β are the hyperparameters of the modulating factors in the focal loss. In our
proposed method, we set α = 2 and β = 4, adopting the values used in CornerNet [49].

The center-offset head is employed to restore the information of accurate object loca-
tions that are lost because of the down-scaling process. The objective of this prediction head
is to precisely adjust the positions of objects by applying offsets, which are horizontal and
vertical shifts, to the down-scaled object centers. From the target offsets Ô ∈ [0, 1]

H
4 ×

W
4 ×2,

we first sample the offsets ô(k) ∈ [0, 1]2 only at the down-scaled object center c̃(k). Subse-
quently, the Manhattan distance between the sampled offsets and the ground-truth offsets,
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which are pre-determined by o(k) = c(k)
4 − c̃(k), is computed for regression. We denote the

loss function Lo f f set is the L1 loss, as defined by Equation (6):

Lo f f set =
1
N

N

∑
k=1

∣∣∣ô(k) − o(k)
∣∣∣ (6)

The box-size head is utilized for predicting the object sizes by estimating the top,
left, bottom, and right edges of the bounding boxes. In our proposed method, the regres-
sion of the four edges is used instead of the regression of the height and width for more
accurate localization. The training process of the box-size head is similar to that of the
center-offset head. Given a ground-truth bounding box b(k) = (c(k)x , c(k)y , h(k), w(k)), where
h(k) and w(k) are the height and width, respectively, the ground-truth size is computed as
s(k) =

(
c(k)x − w(k)

2 , c(k)y − h(k)
2 , c(k)x + w(k)

2 , c(k)y + h(k)
2

)
. Afterward, we compute the Manhat-

tan distance between the ground-truth size and the sampled size ŝ(k) ∈ R4 from the target
size Ŝ ∈ R H

4 ×
W
4 ×4 for the regression. We denote the loss function Lsize is the L1 loss, as

shown in Equation (7):

Lsize =
1
N

N

∑
k=1

∣∣∣ŝ(k) − s(k)
∣∣∣ (7)

The re-ID head is used to encode the appearance information of objects, such as shape,
color, and view, into the appearance embedding vectors for object re-identification. This
head aims to make the embedding vectors of the same-ID objects close to each other and
those of the different-ID objects far from each other. In the training stage, we consider all
object IDs in the training set as classes. We also append a fully-connected layer that has
the same number of output channels of the classes to the re-ID head in order to treat the
task as a classification task. From the target of the appearance embedding Ê ∈ R H

4 ×
W
4 ×128,

the embedding vector ê(k) ∈ R128 is first extracted from the down-scaled object center c̃(k).
Afterward, the class-probability vector p(k) ∈ [0, 1]M, where M is the number of object IDs
in the training set, is generated by the dense layer and softmax operation. Subsequently, the
cross entropy between the class-probability vector and the ground-truth one-hot encoded
vector q(k) ∈ {0, 1}M is computed for regression. We denote the loss function Lid is the
cross-entropy loss, as defined by Equation (8):

Lid = − 1
N

N

∑
k=1

M

∑
i=1

q(k)
i log(p(k)

i ) (8)

It is necessary to train multiple prediction heads to optimize our overall single-shot
MOT system; thus, we approach this work as a multi-task learning problem. Specifically,
the automatic balancing of multiple losses using uncertainty [54] is applied to the multi-
task learning of object detection and re-identification. We first define the loss function of
detection Ldet by the weighted summation of losses, as shown in Equation (9):

Ldet = Lheatmap + λo f f setLo f f set + λsizeLsize (9)

where λo f f set and λsize are the loss-weight constants. We set λo f f set = 1 and λsize = 0.1,
adopting the values used in CenterNet [50]. Finally, the total loss function Ltotal is calculated
from Equation (10):

Ltotal =
1
2

(
1

exp(wdet)
Ldet +

1
exp(wid)

Lid + wdet + wid

)
(10)

where wdet and wid are the learnable loss weights of the automatic multi-loss balancing.
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3.4. Online Association

Online association is a crucial process in MOT because the detected objects are inter-
preted as tracklets by the online association algorithm. The association algorithm aims to
accurately track objects by maximizing the leverage of the appearance embeddings, with
aid from the predicted object locations. The visualization of online association is shown in
Figure 4. In the first frame of a sequence, tracklets are initially activated by the detected
objects. Subsequently, we associate the activated tracklets with the newly detected objects
in the next frame based on the cosine distances between the embedding vectors. The
costs are computed for every combination of the tracklets and objects, whose confidence
score is higher than a threshold; the pairs are subsequently matched by the Hungarian
algorithm [27]. Furthermore, we compute the squared Mahalanobis distances between
the object centers and state distributions, which are predicted by the Kalman filter [26],
to avoid matching the distant different-ID objects with similar appearances.

For efficient tracklet management, we utilize a tracklet pool, which is a set of catego-
rized tracklets. Here, all tracklets in the pool are categorized into three states: tracked, lost,
and removed. In the matching process, if the tracked and lost tracklets from the previous
frame are successfully matched with the detected objects in the current frame, the tracked
objects remain tracked and the lost objects are re-tracked until subsequent association.
However, if there are unmatched tracklets or objects, we mark the unmatched tracklets
as lost, while new tracklets are activated for the unmatched objects. Finally, we mark the
tracklets as removed if they are lost right after the activation or have been lost for 30 frames
in a row.

Figure 4. Visualization of online association. The frames are selected from the sequence MVI-40181 in the UA-DETRAC-train
set, with a time interval of approximately 10 frames for better visualization.

4. Experiments
4.1. Datasets

We train and evaluate our single-shot MOT system on the UA-DETRAC dataset [11].
All frames in the dataset are JPEG images with a resolution of 960 × 540 (width × height)
and encompass extensive variations in object size, view, occlusion, and illumination. Our
MOT system is trained on the UA-DETRAC-train set, which consists of 84 K frames in
60 sequences, 578 K bounding boxes, and 5.9 K IDs of vehicle objects. During training, we
convert each bounding box, which is represented in the top-left corner, into the ground-
truth box with respect to the object center. In addition, all vehicle types in the dataset are
treated the same since our system does not classify vehicle objects into subclasses.

We evaluate our MOT system on the UA-DETRAC-test set, which consists of 56 K
frames in 40 sequences, 632 K bounding boxes, and 2.3 K IDs. To thoroughly analyze the
performance of MOT, our system is further evaluated on the UA-DETRAC-test subsets that
are categorized into three levels: easy, medium, and hard. The categorization is based on
the average PR-MOTA score of the MOT systems built from previous studies [17,29–37].
Similarly, we also conduct experiments on the UA-DETRAC-test subsets that are classified
into four categories: cloudy, rainy, sunny, and night, depending on the weather conditions
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and the intensity of illumination. Figure 5 shows the sampled frames from each category
of the UA-DETRAC-test subsets.

Figure 5. Sampled frames from each category of the UA-DETRAC-test subsets: (a) easy; (b) medium; (c) hard; (d) cloudy;
(e) rainy; (f) sunny; (g) night.

4.2. Evaluation Metrics

We evaluate our single-shot MOT system based on the CLEAR MOT metrics [55]
and UA-DETRAC metrics [11]. The CLEAR MOT metrics consist of several evaluation
indicators that measure the MOT performance, including the multi-object tracking accuracy
(MOTA), mostly tracked (MT), mostly lost (ML), ID switches (IDS), fragmentations (FM),
false positives (FP), and false negatives (FN). Specifically, FP indicates the number of
incorrect predictions for identifying background as objects, while FN is the opposite; that
is, the number of incorrect predictions for recognizing objects as background. IDS stands
for the number of ID changes of tracklets that are caused by mismatches, and FM is the
number of tracklet disconnections induced by unmatches. The MOTA score represents the
overall MOT accuracy of a system and is defined by Equation (11):

MOTA =

(
1− ∑T

t=1(FPt + FNt + IDSt)

∑T
t=1 GTt

)
· 100 [%] (11)

where GT is the number of ground-truth objects and T is the total number of frames in the
test set. MT and ML indicate the percentages of tracklets tracked by more than 80% and
less than 20% of their lifetime on the ground-truth tracklets, respectively.

Based on the CLEAR MOT metrics, the UA-DETRAC metrics offer an extended
evaluation protocol that thoroughly reflects the impact of the object detection performance
on the overall MOT performance. The object detection performance is first evaluated by the
precision-recall (PR) curve, which is generated by the precision and recall values measured
with a confidence score threshold that continuously varies from zero to one. Here, the
threshold of the IoU between the predicted and ground-truth bounding boxes is set to 0.7.
Subsequently, the CLEAR MOT metrics are computed at different PR values by applying
data association to the results of object detection, and each 3D PR-metric curve is plotted
along the PR curve. The UA-DETRAC metrics, which include PR-MOTA, PR-MT, PR-ML,
PR-IDS, PR-FM, PR-FP, and PR-FN, are finally computed using the line integral, which is
the signed area between the corresponding PR-metric curve and the PR curve.

4.3. Implementation Details

Our single-shot MOT system is implemented in the experimental environment config-
ured with Ubuntu 16.04 LTS OS, Intel Core I7-7700K CPU, two Nvidia GeForce GTX Titan
X (Maxwell) GPUs, Pytorch 1.4.0, CUDA 10.1, and cuDNN 7.6.5. We use the EfficientDet-
D0 [41] backbone network with parameters pre-trained on the MS COCO dataset [56] for
initialization. The input frame is resized to a resolution of 1024 × 512 for a forward pass,
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and the corresponding resolution of the intermediate feature map for prediction heads is
256 × 128. We apply random rotation, scaling, and color jittering to the input frames for
data augmentation. Our model is trained using the Adam optimizer [57] for 30 epochs
with a batch size of 8. The learning rate is initialized to 10−4 and drops 0.1 times at the
20 epoch.

5. Results
5.1. Object Detection

We compare the object detection performance of our single-shot MOT system with the
results of other detectors [17,29–31] and single-shot MOT systems [4,5,7] that are evaluated
on the UA-DETRAC-test set [11]. Based on the PR curve, the AP score is computed by
applying the PASCAL VOC Challenge [58] metric, which calculates the mean of precision
values at 11 recall values that are equally placed from zero to one with an interval of 0.1.
The IoU threshold is set to 0.7 for further use of the PR curve in the MOT evaluation using
the UA-DETRAC metrics. The PR curves of our model and the different methods are
compared in Figure 6. Our model, which is denoted by EMOT, shows the best performance
for object detection, achieving an AP score of 69.93%. In this experiment, we do not specify
the detector of the single-shot MOT systems, including EMOT, since they simultaneously
perform object detection and embedding extraction.

Figure 6. Precision-recall curves of our single-shot MOT system and different methods, which are
evaluated on the UA-DETRAC-test set. The results of * were taken from Wen et al. [11].

The object detection results of our single-shot MOT system and different methods are
shown in Table 2. EMOT shows the best performance, not only on the overall test set, but
also for each test subset. We specifically compare EMOT to FairMOT [5], which shows the
best performance among other methods. On the UA-DETRAC-test set, EMOT achieves a
2.2% higher AP score compared to FairMOT. In the UA-DETRAC-test subsets classified
by difficulty, EMOT achieves the greatest improvement for the easy subset, achieving a
4.9% increased AP score. In contrast, the improvement is the least for the medium subset,
which is 0.9%, whereas it is 2.2% for the hard subset. In the UA-DETRAC-test subsets
classified by illumination, EMOT yields the most significant improvement for the rainy
subset, achieving a 3.5% increase in the AP score. For the cloudy and sunny subsets, the
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increase in the AP score is 2.0% and 2.1%, respectively, while the night subset has only a
0.3% increased AP score.

Table 2. Object detection results of our single-shot MOT system and different methods, which are evaluated on the
UA-DETRAC-test set. Legends: D—detector; S—single-shot MOT system. The results of * were taken from Wen et al. [11].

Method Type Overall Easy Medium Hard Cloudy Rainy Sunny Night

DPM * [29]

D

25.74 34.55 30.33 17.68 24.82 25.59 31.84 30.95
ACF * [30] 46.44 54.37 51.69 38.14 58.44 37.19 66.69 35.35

R-CNN * [17] 49.23 59.88 54.33 39.63 60.12 39.27 67.92 39.56
CompACT * [31] 53.31 64.94 58.80 43.22 63.30 44.28 71.25 46.47

DMM-Net [7]

S

20.69 31.21 23.60 14.03 26.10 14.56 36.89 15.01
JDE [4] 63.57 79.84 70.46 49.88 76.02 50.42 73.00 58.92

FairMOT [5] 67.74 81.33 73.32 56.78 77.21 55.46 75.44 69.05
EMOT (Ours) 69.93 86.19 74.26 59.00 79.20 59.00 77.55 69.32

5.2. Multi-Object Tracking
5.2.1. CLEAR MOT Metrics

We compare our single-shot MOT system with other single-shot trackers [4,5,7] based
on the MOT evaluation on the UA-DETRAC-test set [11] using the CLEAR MOT met-
rics [55]. The MOT results of our single-shot MOT system and different trackers are
presented in Table 3. EMOT shows an overall greater MOT performance when compared to
other methods, achieving a MOTA score of 68.5%. We observe that the improvement in the
MOT performance is due to the enhancement of the object detection performance since both
FP and FN scores reduce significantly. We also specifically compare EMOT to FairMOT [5],
which shows the best MOT performance among other trackers. It is remarkable that EMOT
achieves finer scores for both MT and ML, showing a 4.4% increase and 0.5% decrease,
respectively. Only the IDS shows the results degraded, which increases by 52, whereas
the FM decreases by 762 and gives better results. Notably, EMOT runs at an inference
speed of 17.3 FPS and produces results comparable to JDE [4] and FairMOT, while showing
markedly finer results for most of the metrics.

Table 3. MOT results of our single-shot MOT system and different trackers, which are evaluated on
the UA-DETRAC-test set using the CLEAR MOT metrics. All inference speeds are measured with a
single Nvidia Geforce RTX 2080 SUPER GPU. The ↑ indicates that a higher score is better, while ↓
indicates that a lower score is better.

Method MOTA ↑ MT ↑ ML ↓ IDS ↓ FM ↓ FP ↓ FN ↓ FPS ↑
DMM-Net [7] 20.3 19.9 30.3 498 1428 104,142 399,586 101.2

JDE [4] 55.1 68.4 6.5 2169 4224 128,069 153,609 17.6
FairMOT [5] 63.4 64.0 7.8 784 4443 71,231 159,523 18.9

EMOT (Ours) 68.5 68.4 7.3 836 3681 50,754 147,383 17.3

The MOT results of our single-shot MOT system and FairMOT, which are evaluated
on the UA-DETRAC-test subsets using the CLEAR MOT metrics, are shown in Table 4.
Based on a comparison of the MOTA scores, EMOT has a better MOT performance on all
test subsets. In particular, EMOT presents the greatest improvement in the hard and night
subsets with a 9.7% and 7.1% increase in the MOTA scores, respectively. Similar to the
results for the overall test set, the metric scores for the test subsets are generally finer for
EMOT, except for the IDS scores. Meanwhile, the MT and ML scores of EMOT are worse
together, only in the night subset. We find out the reason from the FN score, which is also
worse only in the same subset, since both MT and ML scores are heavily affected by the
number of true positives.
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Table 4. MOT results of our single-shot MOT system and FairMOT, which are evaluated on the UA-DETRAC-test subsets
using the CLEAR MOT metrics. The scores on the left side indicate the results of FairMOT, while those on the right side
indicate the results of our single-shot MOT system.

Subset MOTA ↑ MT ↑ ML ↓ IDS ↓ FM ↓ FP ↓ FN ↓
Easy 82.8/84.9 81.8/86.0 1.2/1.4 62/121 498/379 10,159/9276 11,304/9468

Medium 65.3/69.6 61.0/66.8 8.7/8.0 445/421 2590/2056 34,081/27,169 89,466/80,934
Hard 42.5/52.2 46.8/47.9 14.5/13.5 277/294 1355/1246 26,991/14,309 58,753/56,981

Cloudy 77.0/79.5 71.1/80.0 3.5/3.5 147/141 1216/738 12,749/12,272 32,191/27,800
Rainy 50.9/57.4 46.8/54.2 16.4/14.5 264/270 1553/1413 24,689/17,300 76,002/70,055
Sunny 68.7/73.1 77.0/78.1 3.7/2.4 65/95 488/343 8913/8253 14,217/11,605
Night 60.3/67.4 64.2/63.9 6.6/7.5 308/330 1186/1187 24,880/12,929 37,113/37,923

5.2.2. UA-DETRAC Metrics

We compare the MOT performance of our single-shot MOT system with the results
of other trackers [17,20,29–38,59–62] that are evaluated on the UA-DETRAC-test set [11].
We note that the trackers being compared are built from the combinations of the detectors
and association algorithms in a two-stage method. The MOT results of our single-shot
MOT system and different trackers are presented in Table 5. EMOT achieves a PR-MOTA
score of 24.5% and shows the best PR-ML and PR-FN scores. Based on a comparison of
the PR-MOTA scores, EMOT outperforms most of the trackers, except for the state-of-
the-art ones that use Mask R-CNN [20] as a detector. Compared to the Mask R-CNN +
V-IOU [38] method, the PR-MOTA and PR-MT scores of EMOT decrease by 6.2% and 6.8%,
respectively, owing to the inferior performance of object detection. However, the Mask R-
CNN-based trackers present critical limitations in speed because they run at a low inference
speed of 3.4 FPS, even without considering the runtime of the data association step, in
the same experimental environment, as shown in Table 6. Furthermore, these trackers
show degraded scores for the PR-ML when compared to most of the CompACT [31]-based
trackers, while EMOT achieves the finest results with a PR-ML score of 9.3%. It is also
noteworthy that the PR-FN score of EMOT is the lowest, indicating that EMOT produces
the largest number of correct predictions for the object locations. Remarkably, EMOT
presents a comparable PR-IDS score to the state-of-the-art methods by taking advantage of
the appearance information of objects in matching IDs.

The MOT results of our single-shot MOT system and FairMOT [5], which are evaluated
on the UA-DETRAC-test set and subsets, are presented in Table 5 and Table 7, respectively.
EMOT presents a better MOT performance than FairMOT on the evaluation using the
UA-DETRAC metrics, achieving a 1.8% higher PR-MOTA score. In addition, all the results
evaluated using the UA-DETRAC metrics are similar to those evaluated using the CLEAR
MOT metrics [55]. Interestingly, a comparison of the scores for the UA-DETRAC metrics
shows more consistent results than those for the CLEAR MOT metrics across the UA-
DETRAC-test subsets. This tendency is particularly distinctive in the PR-IDS and PR-FP
scores, where one surpasses the other in all test subsets. For an intuitive comprehension,
we show the qualitative results of our single-shot MOT system on the UA-DETRAC-test
subsets in Figure 7.
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Table 5. MOT results of our single-shot MOT system and different trackers, which are evaluated on the UA-DETRAC-test
set. The results of * were taken from Wen et al. [11] and the rest of the results were taken from their own papers, except
for FairMOT.

Detection Association PR-MOTA ↑ PR-MT ↑ PR-ML ↓ PR-IDS ↓ PR-FM ↓ PR-FP ↓ PR-FN ↓

DPM [29]
GOG * [32] 5.5 4.1 27.7 1873.9 1988.5 38,957.6 230,126.6
CEM * [33] 3.3 1.3 37.8 265.0 317.1 13,888.7 270,718.5
DCT * [34] 2.7 0.5 42.7 72.2 68.8 7785.8 280,762.2

ACF [30]
GOG * [32] 10.8 12.2 22.3 3950.8 3987.3 45,201.5 197,094.2
DCT * [34] 7.9 4.8 34.4 108.1 101.4 13,059.7 251,166.4
H2T * [36] 8.2 13.1 21.3 1122.8 1445.8 71,567.4 189,649.1

R-CNN [17]
DCT * [34] 11.7 10.1 22.8 758.7 742.9 36,561.2 210,855.6
H2T * [36] 11.1 14.6 19.8 1481.9 1820.8 66,137.2 184,358.2

CMOT * [37] 11.0 15.7 19.0 506.2 2551.1 74,253.6 177,532.6

CompACT [31]

GOG * [32] 14.2 13.9 19.9 3334.6 3172.4 32,092.9 180,183.8
CEM * [33] 5.1 3.0 35.3 267.9 352.3 12,341.2 260,390.4
DCT * [34] 10.8 6.7 29.3 141.4 132.4 13,226.1 223,578.8

IHTLS * [35] 11.1 13.8 19.9 953.6 3556.9 53,922.3 180,422.3
H2T * [36] 12.4 14.8 19.4 852.2 1117.2 51,765.7 173,899.8

CMOT * [37] 12.6 16.1 18.6 285.3 1516.8 57,885.9 167,110.8
FAMNet [59] 19.8 17.1 18.2 617.4 970.2 14,988.6 164,432.6

EB [60] IOU [61] 19.4 17.7 18.4 2311.3 2445.9 14,796.5 171,806.8
DAN [62] 20.2 14.5 18.1 518.2 - 9747.8 135,978.1

Mask R-CNN [20] IOU [61] 30.7 30.3 21.5 668.0 733.6 17,370.3 179,505.9
V-IOU [38] 30.7 32.0 22.6 162.6 286.2 18,046.2 179,191.2

FairMOT [5] 22.7 23.7 10.0 347.1 2993.6 49,385.4 123,124.5
EMOT (Ours) 24.5 25.2 9.3 379.0 2957.3 43,940.6 116,860.7

Table 6. Inference speeds of our single-shot MOT system and different methods. Legends: D-object detection; E-embedding
extraction. The results of * were taken from Wen et al. [11].

Method Tasks Environment (CPU & GPU) FPS

DPM * [29]

D

4 Intel Core i7-6600U (2.60 GHz) 0.17-

ACF * [30] 2 Intel Xeon E5-2470v2 (2.40 GHz) 0.67-

R-CNN * [17] 2 Intel Xeon E5-2470v2 (2.40 GHz) 0.10Tesla K40

CompACT * [31] 2 Intel Xeon E5-2470v2 (2.40 GHz) 0.22Tesla K40

EB * [60] 4 Intel Core i7-4770 (3.40 GHz) 11.0Titan X

Mask R-CNN [20] Intel Core i7-10700K (3.80 GHz) 3.4Nvidia Geforce RTX 2080 SUPER

FairMOT [5]
D + E

Intel Core i7-10700K (3.80 GHz) 18.9Nvidia Geforce RTX 2080 SUPER

EMOT Intel Core i7-10700K (3.80 GHz) 17.3Nvidia Geforce RTX 2080 SUPER

Table 7. MOT results of our single-shot MOT system and FairMOT, which are evaluated on the UA-DETRAC-test subsets.

Subset PR-MOTA ↑ PR-MT ↑ PR-ML ↓ PR-IDS ↓ PR-FM ↓ PR-FP ↓ PR-FN ↓

Easy 29.7/30.8 30.8/32.3 5.2 /5.2 42.7 /56.8 644.5 /648.3 10,371.5/10,022.7 15,027.4/14,017.6
Medium 24.3/25.8 22.4/24.3 10.7/9.9 189.0/199.0 1652.4/1613.1 23,031.3/21,497.6 68,472.9/64,824.3

Hard 12.8/16.2 17.1/17.6 15.1/13.4 115.4/123.1 696.7 /695.8 15,982.6/12,420.3 39,624.1/38,018.9

Cloudy 29.4/30.9 25.4/28.7 7.8 /7.6 70.3 /76.0 973.0 /925.5 8485.1 /8481.9 31,822.1/28,943.4
Rainy 18.5/20.9 17.4/19.6 16.0/14.0 111.0/122.3 866.0 /849.2 13,710.9/11,493.5 50,931.3/48,182.2
Sunny 20.5/22.8 28.5/29.5 5.8 /5.4 30.6 /41.5 370.6 /390.4 9823.6 /9354.7 11,964.8/10,777.2
Night 20.7/22.1 24.5/23.9 9.6 /9.3 135.2/139.2 783.9 /792.2 17,365.8/14,610.5 28,406.3/28,958.0
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Figure 7. Qualitative results of our single-shot MOT system on the UA-DETRAC-test subsets. The frames are selected with
a time interval of 20 frames.
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6. Conclusions

In this study, we propose a single-shot MOT system that achieves both high accuracy
and efficiency by introducing an optimized backbone network and an efficient output-
feature fusion. To extract multi-scale features that are more robust to scale variations, we
utilize the EfficientDet-D0-based backbone network, which consists of the EfficientNet-
B0 feature extractor and BiFPN fusion layers. In addition, we propose the FPN-based
output-feature fusion using the deformable convolution in order to produce a single
high-resolution feature map with richer representations from the transferred multi-scale
features. By leveraging these finer features, our model performs well on both object
detection and MOT. Specifically, our system presents remarkable results on vehicle tracking
tasks, outperforming most of the state-of-the-art trackers on the UA-DETRAC dataset
and running at a high inference speed. In the future, we expect to conduct systematic
experiments to analyze and develop the structure and training for the re-identification
network to reduce the ID switches in challenging environments with numerous occlusions.
Furthermore, our future works will include extensions to various applications, such as
multi-class and 3D MOT, and integrations with different tasks, such as simultaneous
localization and mapping, and video compression.
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