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Abstract: Cellular and subcellular spatial colocalization of structures and molecules in biological
specimens is an important indicator of their co-compartmentalization and interaction. Presently, colo-
calization in biomedical images is addressed with visual inspection and quantified by co-occurrence
and correlation coefficients. However, such measures alone cannot capture the complexity of the
interactions, which does not limit itself to signal intensity. On top of the previously developed density
distribution maps (DDMs), here, we present a method for advancing current colocalization analysis
by introducing co-density distribution maps (cDDMs), which, uniquely, provide information about
molecules absolute and relative position and local abundance. We exemplify the benefits of our
method by developing cDDMs-integrated pipelines for the analysis of molecules pairs co-distribution
in three different real-case image datasets. First, cDDMs are shown to be indicators of colocaliza-
tion and degree, able to increase the reliability of correlation coefficients currently used to detect
the presence of colocalization. In addition, they provide a simultaneously visual and quantitative
support, which opens for new investigation paths and biomedical considerations. Finally, thanks
to the coDDMaker software we developed, cDDMs become an enabling tool for the quasi real time
monitoring of experiments and a potential improvement for a large number of biomedical studies.

Keywords: local density; local co-density; co-occurrence; correlation; colocalization quantification;
data visualization; fluorescence microscopy; subcellular local image analysis; cancer cell

1. Introduction

In a biological context, colocalization is defined as the presence of two or more dif-
ferent molecules residing at the same physical location in a specimen. Subcellular spatial
colocalization analysis is fundamental for determining whether molecules are located in
sites where they can interact with each other, especially when their reciprocal interac-
tion and reaction cannot be assessed directly. The molecules’ location can be easily and
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efficiently addressed by confocal fluorescence microscopy [1]: while fluorescent probes
allow the selective visualization of specifically marked molecules [2], the confocality of
acquisition allows the investigation of their distribution in the whole cellular volume,
while reducing the out-of-focus contributions to probe’s signal [3,4] and avoiding image
blurring accordingly, which can introduce false positives. A first common method to
analyze colocalization of fluorescent signals is image superposition (i.e., merging or, more
technically, fusion) for visual inspection [5,6]. However, such a method is subject to percep-
tive errors and bias [7], cannot discriminate between random and potentially functional
colocalization [8] and is poorly quantitative [9]. Accordingly, several methods for quan-
tifying colocalization have been developed through years. A first discrimination occurs
between pixel-based and object-based methods [10,11]. As for many other applications, the
former is based solely on the intensity information in each pixel, while the latter is based
on information from a set of semantically coherent pixels, called the object. Therefore,
object-based methods are more appropriate for super-resolution microscopy, which is more
suitable for accurately separating interacting molecules in adjacent pixels and discerning
objects boundaries [12,13], while the application of pixel-based methods is quite indepen-
dent of microscopy resolution. Pixel-based methods conventionally regard colocalization
as quantifiable by two components [14]: co-occurrence, i.e., the simple spatial overlap of
two signals, and correlation, which quantifies the direction and indicate the magnitude
of the relation between markers’ signal intensities [13,15]. This approach has given rise
to a large number of different correlation coefficients [8,16–20], first of all, Pearson’s [21]
and Manders’ [6] coefficients, for their ease of implementation [22] and their capability
to provide, respectively, a quantification of correlation and co-occurrence, when used in
pair [6,7,13]. The derived forms of these coefficients have been progressively introduced to
overcome their main drawbacks, such as noise dependency [23], lack of linearity [14] and
absence of spatial informativeness [20]. However, their adoption is still limited by their
shared inadequacy to provide an intuitive and effective representation of colocalization
that could really help researchers in the biological interpretation of results. In addition,
none of them can provide information about the stoichiometry of colocalization [3], which
is still approximated from the pixel intensities scatterplot as the slope of the fitting line
assuming, a priori, a linear relation between the two signals intensities [8,24,25].

All methods exploiting pixel intensities neglect information regarding pixel intercon-
nections that, if considered, could permit the enforcement of colocalization information.
In fact, co-localized pixels, by definition, must appear with the same connecting pattern
in both channels. Based on this assumption, we developed the concept of density distri-
bution maps (DDMs) [26], which qualitatively and quantitatively describe the subcellular
molecules’ absolute and relative locations. As a natural extension, here, we introduce
the co-density distribution map (cDDM), a novel tool to automatedly and quantitatively
improve colocalization analysis in biomedical images by firstly introducing information
about molecules local density and co-density. Consequently, cDDMs borrow all of the
advantages of DDMs, including the capability to increase the confidence of colocalization
when this is not achievable by increasing the image resolution; the capability to speed-up
routine, large-scale and follow-up experiments; and the applicability to any resolution
study. Working on densities, cDDMs introduce an additional constraint that makes the
overall colocalization assessment more reliable, becoming a tool for the refinement of
correlation coefficients computation, when these coefficients are chosen as quantifiers of
colocalization. In practice, cDDMs provide a more reliable indication than intensity alone
about the location and extent of colocalization (that is by definition a spatial information, as
local density). In addition, being representative of markers’ local co-density, cDDMs offer a
visual support preserving the spatial information and making the biological interpretation
of results easier. After presenting the cDDMs’ creation method and discussing its main
implications, here, we exemplify the effectiveness of cDDMs through their application
to two more real image datasets acquired by fluorescence microscopy, which prove how
cDDMs can advance the actual colocalization analysis framework, provide information
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about markers’ density and degree of colocalization and, thus, open to the formulation
of new biological considerations. Finally, we supply an updated version of the software
program DDMaker [26], coDDMaker and its Graphical User Interface (GUI), to support
researchers in building and analyzing the DDMs and cDDMs for their own experiments.

2. Materials and Methods

Three datasets are used to exemplify cDDMs’ benefits to biomedical colocalization
and co-distribution studies: (1) the SYP-VGLUT1 dataset is used to present cDDM utiliza-
tion and main implications (results for the SYP-VGLUT1 dataset are also reported in the
Supplementary Table S1); (2) the Lamp-1-Ce6 dataset is used to present a case of limited
colocalization between differently dense markers, where the analysis is complemented by
novel information from the cDDM, including indication on the degree of colocalization;
(3) the NF200-FM dataset is used to present a case of cDDMs application at tissue level,
where local co-density numerical and spatial information also permits new biological
considerations about sample’s heterogeneity.

2.1. Sample Preparation and Image Acquisition

(1) The 12 bit range images from rat brain immunostained for Synaptophysin (SYP,
λEX = 488 nm, λEM = 525 nm) and vesicular glutamate transporter 1 (VGLUT1, λEX = 561 nm,
λEM = 595 nm), as described in [27], were sequentially acquired with a Nikon Ti-E A1R
laser confocal fluorescence microscope (Nikon, Tokyo, Japan), equipped with a Plan
Apo 60x/1.4 objective at a resolution of 512 × 512 × 9 pixels with a pixel size (XYZ)
of 0.1 × 0.1 × 0.25 µm3 (Pinhole size = 39.59 µm). (2) The 12 bit range images of hu-
man osteosarcoma MG-63 cells exposed to Keratin-based nanoparticles (PTX-Ce6@kerag,
λEX = 649 nm, λEM = 700 nm) were sequentially acquired with a confocal fluorescence
laser scanning microscope Ti-E A1R (Nikon, Amsterdam, Netherlands), equipped with
a 60×/NA 1.4 oil Plan-Fluo at a resolution of 1024 × 1024 × 19 pixels with a pixel
size (XYZ) of 0.2 × 0.2 × 0.25 µm3 (Pinhole size = 24.27 µm). MG-63 cells were indi-
rectly immunostained against the Lysosomal-associated membrane protein 1 (Lamp-1,
λEX = 563 nm, λEM = 595 nm) as described in [28]. 3) The 8 bit range images from rat spinal
cord immunostained for neurofilaments (NFs, primary antibody: mouse anti-NF200, 1:800,
Sigma Aldrich Saint Louis, MO; secondary antibody: Rhodamine Red™-X, 1:100, Jackson
Immuno Research, Cambridgeshire, UK, λEX = 570 nm, λEM = 590 nm) and stained for
myelin with FITC-Fluoromyelin™ (FM, Thermo Fisher, λEX = 479 nm, λEM = 598 nm) were
acquired with a Nikon Eclipse E600 (Q Imaging, Surrey, BC, Canada), equipped with a
Plan Apo 10x/0.4 objective and Q Imaging RETIGA-2000RV camera. For each sample,
10 images were acquired and stitched into a single mosaic (resolution: 3532 × 2384 pixels,
pixel size: 0.74 × 0.74 µm2) with Photoshop (Adobe Suite, release 22.4.2).

2.2. Image Segmentation

All the following procedures are implemented in MATLAB® (R2019a v.9.7.0, The
MathWorks, Natick, MA, USA). SYP and VGLUT1 signals are segmented by Isodata
thresholding. Lamp-1 and Ce6 signals and NF200 and FM signals are segmented by
Otsu method.

2.3. Local Distribution and Co-Distribution Analysis, DDM and cDDM

Starting from pairs of input grey level images, the cDDM is computed from single
DDMs (Figure 1a).
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Figure 1. Flowchart of cDDM creation pipeline for a couple of markers. (a) The acquired images are segmented in binary
masks and their pixel connectivity separately explored by local density analysis for the two pseudo-color DDMs building.
Then, the cDDM is built through local co-density analysis, by comparing the single markers DDMs pixelwise. (b) Details of
local density (blue boxes) and co-density (orange boxes) analyses: after setting the search (moving) windows size, each
foreground (FG) pixel of each binary mask is assigned a number representing the amount of FG pixels in its locality, this
constituting the input to build the pseudo-color DDM (here shown with no “saturated” densities). Then, the local co-density
analysis is performed by pixelwise subtraction of the two DDMs.

As schematized in Figure 1b, distribution analysis is performed by firstly computing
the local density indices (LDIs) and DDM of each imaged marker, as described in [26],
after setting the search (moving) Windows Size (WS), which can differ for the two markers.
Then, for each pair of markers, the co-distribution analysis is performed by computing the
co-density distribution map (cDDM), by subtracting the two markers’ DDMs pixelwise.
Consequently, the resulting cDDM’s values (i.e., local co-density indices, cLDIs) can be
only computed inside the markers’ co-occurrence region, resulting from ANDing the two
markers’ masks and can range from −(WS2 − 1) to +(WS2 − 1). Different LDI couples can
result in the same cLDI (Figure 1b, red and green arrows). Negative cLDI values indicate
pixels where the first marker signal is locally denser than the second one, the opposite
holds for positive values. A cLDI equal to zero indicates pixels where the two markers are
equally dense, hence defining the equi-density region, where the signals are in a 1:1 ratio.
However, non-zero cLDIs cannot be considered indicators of a specific ratio, but rather, of a
specific difference in the markers’ abundance that is, by definition, a more correct indication
of the degree of colocalization than of pixel intensities correlation. Finally, mapping cLDIs
back to the image domain in pseudo-colors also allows us to gain information about the
markers’ spatial co-distribution.

2.4. Pixel Density as a Measure of Colocalization

An established requirement for signals colocalization is their co-occurrence. Co-
occurring pixels can either be isolated (i.e., they have no neighboring pixels) or not. If
we assume that isolated pixels as the result of spurious co-occurrences, colocalization is,
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hence, defined by the presence of at least two adjacent co-occurring pixels. This means that
colocalization presents itself in patterns, in their turn defined by connections between pixels.
As a consequence, there is the necessity to also quantify colocalization with a measure of
pixel connectivity (i.e., our local co-density), rather than using an intensity-based measure
alone. Assuming that the objects of interest to be imaged are larger than single pixels, the
3 × 3 search window (i.e., WS = 3) is the smallest window to analyze pixel connectivities
and, hence, local densities. Such an assumption is fundamental to determine whether
the local co-density information carried by cDDMs also brings information about objects
colocalization. Indeed, when imaging single-pixel objects, cLDI cannot be indicative of
colocalization, being unable to discriminate between a real overlap and a close proximity,
since non-overlapping single-pixel objects can fall within a single pixel. In such cases, more
information about colocalization can be drawn from pixel-based correlation coefficients,
under the assumption of proportionality between marker intensity and molecule number.
Such an assumption is not exploited in our method, which relies on a more straightforward
measure of the marked objects abundance based on local density.

Hence, co-density is a measure of colocalization when the search window has a size
that is, at most, the same as that of the imaged objects. In such cases, a cLDI value of zero
indicates the presence of co-occurring and co-dense objects, thus identifying those pixels
where two signals colocalize not only because they co-occur (and perhaps correlate), but
also because they do it by sharing the same pattern density.

2.5. Colocalization Analysis

In this work, we implement a colocalization analysis framework according to the
most common methods in the biomedical literature. Specifically, we quantify the signals
overlap by Manders’ coefficients MOC, M1 and M2, and signals correlation by Pearson’s (ρ)
and Spearman’s (ρs) [29] coefficients. Of note, MOC’s informativeness as a co-occurrence
estimator is actually an ongoing topic of discussion [4,30–33] and the MOC values reported
hereafter should be carefully interpreted accordingly. The formulae and description for the
mentioned coefficients can be found in Appendix A. In addition, we also evaluate:

• The markers overlap region through our co-occurrence maps (cOMs) built on top
of segmented signals, highlighting in four different pseudo-colors the pixels where:
(1) both markers are absent, (2) only the first marker is present, (3) only the second
marker is present and (4) both markers are present (co-occurrence region).

• The local density and co-density of marked structures, by DDMs and cDDMs compu-
tation and analysis.

2.6. Assessment of Results

We first verify the appropriateness of cLDI as a colocalization indicator by assessing
the degree of an order relation between cLDI and correlation coefficient values. Hence,
we apply a cLDI-based refinement of classical coefficients computation, which consists in
restricting its domain from the co-occurrence region to the equi-density region.

For each image, each marker’s signal is binarized in a mask representing its own
occurring region. Then, the two masks are ANDed to identify the signals’ co-occurrence
region. Finally, the cDDM analyzes the co-occurrence region, restricting it to the co-density
region. Correlation (by ρ and ρs) and overlap (by MOC, M1 and M2) are calculated for both
the signals’ intensities (i.e., between the pixel values in the two markers’ images) and the
signals’ local density (i.e., between the pixel values in the two markers’ DDMs) to assess to
what extent density and intensity are comparable descriptors of colocalization. The signals’
intensity correlation (and MOC) is calculated in three increasingly narrowed domains:
the entire image, the co-occurrence region and the co-density region. As expected, the
first narrowing, from the entire image to the co-occurrence region, always decreases the
correlation coefficients value, excluding the random colocalization of the background (data
not shown). M1 and M2 coefficients are calculated for signals’ intensity with respect to
both the co-occurrence and the co-density regions, according to equations (3) and (4) of
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Appendix A, where the “colocalizing” pixels at the numerators are the co-occurring and
the co-dense pixels, respectively. The signals’ density correlation and co-occurrence are
calculated only for the co-occurrence region. Indeed, density computation is theoretically
impossible before the co-occurrence region definition, whilst inside the co-density region,
the coefficients values would be biased by the density-based nature of the refinement itself
(i.e., all coefficients value would be set to 1).

In addition, we also compare our cDDM-based method to binary erosion for the
restriction of the co-occurrence region, using 4-connected and 8(full)-connected kernels.
However, considering full-connection for comparison is probably fairer, since cDDMs also
explore full connectivity. The comparison regards the number of pixels and objects in
the masks, as well as the correlation coefficients (ρ and ρs) value, before and after pixel
removing by erosion and pixel selection by cDDMs.

More benefits and the effectiveness of cDDMs are then discussed in three examples.

3. Results and Discussion
3.1. Functional Implication of cDDMs

Colocalization can be defined as the functional and non-spurious co-presence of
molecules, most commonly at the single-pixel level. While co-presence can be easily
assessed, its functionality must be inferred by other measures, such as signal correlation.
However, correlation between coexistent signals does not prove, but only suggests, the
presence of colocalization. Such a suggestion can be then corroborated by local co-density
analysis that, working locally, improves the information of co-location and, being in
an order relation with correlation coefficients, can serve to improve the specificity of
colocalization analysis. The main functional implications of cDDMs are schematized in
Figure 2.

Colocalization is usually quantified by markers overlap and intensities in correlation
coefficients within the co-occurrence region (Figure 2, 1© and 2©), defined by the intersection
of the two markers (m1, m2) masks. cLDIs computation allows the region to be split into
subregions of homogeneous co-density, each one consisting of the set of pixels at which
LDIm1 − LDIm2 = n, where n is a specific cLDI value (Figure 2, 3©). If we now compute the
correlation coefficients (ρ and ρs) within each cLDI-defined subregion (Figure 2, central
scattergram), we can see that correlation between signals intensities increases as cLDI moves
from the highest (in absolute terms, i.e., |cLDI| = 8) to the equi-density condition (i.e.,
cLDI = 0). This proportionality confirms that cLDIs can serve as indicators of colocalization,
just as ρ and ρs, at least when they hold. Then, cDDMs can be applied for a density-based
refinement of colocalization quantification by correlation coefficients, namely, by restricting
their computation from the co-occurrence region to the equi-density one (Figure 2, 4©).
Apparently, the same restriction of the computational domain could be obtained by a simply
binary erosion. However, even under the additional assumption of negligible colocalization
at the edge of the co-occurrence region, a refinement by erosion would remove the outer
pixels independently of their connection or the presence of colocalization. If this could
produce a somewhat lightly divergent set of results when the co-occurrence region is
dense (i.e., the edge pixels are a clear minority), the erosion would yield an increasingly
invalid outcome as the border indentation of the co-occurrence region increases, or in
the presence of small objects. Table 1 reports all of the results, from the initial whole
co-occurrence mask to the final masks, achieved by erosions and cDDM, used to assess
colocalization. Accordingly, the numbers of edge pixels are complementary (e.g., for
NF200-FM the percentage of edge pixels is 34.65).
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Figure 2. Functional implications of coDDM. Starting from a couple of marked images (m1 and m2), colocalization is
usually quantified as a combination of markers overlap (by co-occurrence mask and Manders’ MOC, M1 and M2 coefficients
computation, 1©) and intensity correlation (primarily by ρ and ρs correlation coefficients, 2©). By cLDIs computation,
co-occurrence pixels can be further partitioned by their local co-density and resulting groups visualized in a pseudo-color
scattergram ( 3©). When quantifying colocalization through markers’ intensity correlation, the analysis specificity can be
increased by narrowing the computational domain from the co-occurrence to the equi-density region (i.e., made of pixels
with cLDI = 0, 4©). In addition, being based on density instead of intensity, cLDIs are more appropriate for estimating
markers’ relative abundance ( 5©). Finally, cDDM permits to preserve the spatiality of original images, additionally
coding it with colors for the regional investigation of cLDI distribution ( 6©). Details of presented scatterplot data in
Supplementary Figure S1A–C.

The co-occurrence region’s border indentation is quantifiable by the number of edge
(border) pixels. Therefore, eroding with 4-connectivity makes the effects of indentation de-
crease from the NF200-FM dataset (35% of co-occurring pixels are on the region’s border) to
SYP-VGLUT1 (68%) and Lamp1-Ce6 (88%), which shows the smallest objects. As expected,
this trend still holds when eroding by considering full connectivity of pixels, as cDDM
does. We can also see that the masks achieved with 4-conn erosion are the widest ones (i.e.,
having the highest number of pixels), while showing the worst correlations (hence, the
worst colocalization performances) over all datasets. This definitely improves with 8-conn,
although the mask achieved yields correlation values that still are poor for SYP-VGLUT1
and Lamp1-Ce6. On the contrary, the masks achieved by cDDMs yield the best correlation
coefficients, the only mask to bring fair correlations in the two aforementioned datasets. Of
course, the best result is achieved with Lamp1-Ce6 because, having small objects, the effect
of keeping (co-dense) edge pixels is emphasized. In practice, cDDMs preserve those edge
pixels, removed by the erosion without distinction, deserving to be semantically retained
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instead, since contributing to the measured correlation, independently of their position
within the co-occurrence region. Therefore, cDDMs end in preserving a greater number of
meaningful pixels and objects than erosion, thus representing a tool for the more precise
mapping of stronger colocalization regions.

Table 1. Comparison between binary erosion and co-density analysis in refining the correlation computation domain.

MASKS NF200-FM SYP-VGLUT1 Lamp1-Ce6

Co-occurrence(before
refinement)

Pixel nr (% 1) 1465036 (100) 9343 (100) 737 (100)
Object nr (%) 19068 (100) 968 (100) 199 (100)

ρ (ρs) 0.5535 (0.3760) 0.2406 (0.1286) 0.1666 (0.1656)

Binary erosion refinement
(4-conn) 2

Pixel nr (%) 957332 (65.35) 3011 (32.23) 88 (11.94)
Object nr
(%)ρ (ρs)

11244 (58.97) 244 (25.21) 24 (12.06)
0.6170 (0.4456) 0.3353 (0.2112) 0.1479 (0.1459)

Binary erosion refinement
(8-conn) 2

Pixel nr (%) 810579 (55.33) 1865 (19.96) 31 (4.21)
Object nr (%) 10162 (53.29) 158 (16.32) 9 (4.52)

ρ (ρs) 0.6416 (0.4736) 0.3707 (0.2536) 0.3454 (0.3288)

cDDM refinement 3
Pixel nr (%) 851042 (58.09) 2394 (25.62) 99 (13.43)

Object nr (%) 16300 (85.48) 378 (39.05) 46 (23.12)
ρ (ρs) 0.6508 (0.5031) 0.4824 (0.4635) 0.5156 (0.4353)

1 Percentages refer to the co-occurrence region (pixel or object number) before its refinement. 2 3 × 3 structuring element. 3 3 × 3 search window.

Let us now deepen the analysis of the results using cDDMs. We have seen that, exploit-
ing pixels’ density, cDDMs can also provide information about the degree of colocalization
(Figure 2, 5©). The markers’ stoichiometric ratio of interaction is sometimes inferred from
the slope of the fitting line in the intensity scattergram [22]. However, such an approach
riskily depends on the assumption of linearity between the markers’ intensities, that is not
the rule when working with biological samples. Instead, cLDI reflects markers’ density
and is then, by definition, a more appropriate indicator of the markers’ relative abundance,
even when not relying on linearity assumptions.

Although, in the previous case, we used the co-density information at a global level, to
compare it to current colocalization methods, we can exploit the locality nature of cDDMs
to open for new investigation paths at the regional level (Figure 2, 6©). Guided, for instance,
by anatomical or functional motivations, co-densities distributions can be investigated
in specific image subregions or, in the opposite way around, specific co-densities can
be addressed one at a time and their distribution singularly investigated at each local
level. As attested, especially by the last two datasets, cDDMs can more generally open
for the formulation of new biological considerations, as they include spatial quantitative
information (neglected by most coefficients), which are also locally computed, to provide a
more detailed and comprehensive overview of the investigated system.

Finally, cDDMs borrow all of the advantages of DDMs: first, the capability to provide
a more accurate estimation of molecules’ position and an increased robustness to resolution
variations based on DDMs’ local density analysis [26]; second, cDDMs are easy and fast to
build and apply to any study, independently of the specific resolution involved.

3.2. cDDMs Disclose Information about the Degree of Colocalization

The second analyzed dataset refers to a study of in vitro characterization of a drug
delivery system, in which the authors verify the compartmentalization of the developed
nanoparticles (PTX-Ce6@kerag) into late endosomes (marked by Lamp-1 staining) [29]
(Figure 3a, top).
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Figure 3. cDDM discloses information about the degree of colocalization. (a) Top: Exemplificative immunofluorescence (IF)
images of MG-63 cells exposed to PTX-Ce6@kerag nanoparticles, marked against late endosomes (Lamp-1), with Ce6 (NPs),
or both (fusion). Middle: Lamp-1 and Ce6 signals’ binary masks (BW), whose combination produce the co-occurrence
map (cOM). Bottom: Lamp-1 and Ce6 DDMs and cDDM. (b) Bar graph of co-occurrence region partitioning by co-density,
showing a prevalence of negative cLDI values that indicate NPs as generally denser than late endosomes.

We find that 19% of Ce6 signal overlaps with 17% of the Lamp-1 signal, with compati-
ble MOC of 0.16 and ρ of 0.17. Such low MOC and ρ values are explainable by the small
and sparse nature of the marked structures, which can also explain the low correlation
values between markers’ local densities (Table 2, first and second columns).
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Table 2. Comparison between Lamp-1 and PTX-Ce6@kerag intensity and local density colocalization
analysis, before and after refinement for local co-density.

Lamp1-Ce6

Co-Occurrence Region
(n * = 737)

Co-Density Region
(n * = 99)

Intensity Density Intensity

ρ 0.1666 0.1278 0.5156
ρs 0.1656 0.1270 0.4353

MOC 0.1564 0.1669 0.9059
M1 0.1852 0.1662 0.0246
M2 0.1712 0.1958 0.0275

* n: sample size, or number of considered pixels.

However, the fact that the co-density-based refinement increases the correlation coeffi-
cients values while decreasing the area of investigation (and consequently M1 and M2’s
value) hints at the capability of our method to selectively retain the colocalization between
signals, more so than with false positives.

The cOM (Figure 3a) indicates the presence of signals overlap spots (Figure 3a, red
spots in cOM magnification) enclosed in single-marker spots (Figure 3a, blue and yel-
low regions in cOM magnification), suggestive of NPs’ internalization into late endo-
somes. The cDDM (Figure 3a) further separates co-occurring pixels by cLDI, reporting
co-densities dispersed across the cLDI range, with 11 out of 16 cLDIs capturing at least
5% of co-occurring pixels and only 13% of co-occurring pixels being also equally dense
(i.e., cLDI = 0, Figure 3b). The similarity of all coefficients’ values between the first and
second columns of Table 2 indicates the local density as being an indicator of colocalization,
at least as valid as pixel intensity. Restricting correlation analysis to pixels with cLDI = 0
strongly increases ρ and ρs values (Table 2, third column), suggesting the existence of a
real, although spatially limited, colocalization. Its detection by correlation coefficients is
initially weakened by the scarcity of marked structures within the co-occurrence region,
but subsequently strengthened by coDDM-driven increase in analysis specificity. Moreover,
co-density analysis reveals that Ce6 signal tends to be locally denser than Lamp-1’s, as
attested by the prevalence of negative values in the cDDM (Figure 3b). This last finding, in
agreement with expectedly denser NPs due to their nanoformulation [28], also suggests
that NPs’ internalization into late endosomes could occur at a ratio higher than 1:1, with
many NPs entering the same endosomes at once. On one hand, this is positive for the
pharmacokinetic-improving function of the developed system, but on the other, it opens
up to the possibility that a different nanoformulation, producing less dense NPs, could
result in better colocalization values and NPs internalization.

In summary, the local co-density analysis here improves colocalization quantification
under different aspects. First, it advances the intensity correlation analysis, identifying the
subregions where a stronger colocalization is likely to occur. Second, it provides indication
about the degree of colocalization (here, the degree of internalization) that, in this case,
is suggested to also occur at ratios different from 1:1. Finally, the cDDM also allows the
formulation of new biological hypotheses, whose verification could lead to improvements
in the developed drug delivery system.

3.3. cDDMs Open to the Formulation of New Biological Considerations

The third dataset analyzed concerns the assessment of co-distribution of axons, visual-
ized by NF-200 immunostaining (red), and the surrounding myelin sheaths, visualized by
Fluomyelin (green) in rat spinal cord (Figure 4a, top).
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Figure 4. cDDM opens to the formulation of new biological considerations. (a) Top: Exemplificative immunofluorescence
(IF) images of rats’ spinal cord, marked against the axonal (NF200), the myelin (FM) components of the cord, or both (fusion).
Middle: NF200 and FM signal binary masks (BW), whose combination produce the co-occurrence map (cOM). Bottom:
NF200 and FM DDMs and cDDM. (b) Scattergram of NF200 and FM signals intensity color-coded by cLDI, showing a clear
prevalence of equi-density pixels (grey, cLDI = 0). (c) The line plot reports the cLDI values underlying the horizontal red
arrow (x) inside the “motor pathway” magnification. The cLDI medio-lateral distribution is shown in function of the pixel
distance (d, yellow line) from the dorsal median sulcus (DMS, white line), highlighting a progressive myelin thinning from
spinal cord center to periphery.

Both ascending and descending sensory and motor pathways run in the spinal cord
and the quantitative evaluation of respective distribution in low-power micrographs would
permit a rapid quantitative evaluation in physiological and pathological conditions, for
example, after spinal cord injury. The cOM (Figure 4a) well presents a dorsoventral pattern,
reasonably reflecting the distribution of sensory versus motor pathways. In fact, ascending
sensory paths, localized in the dorsal funiculus and the external part of the lateral funiculus,
reveal a different signals’ co-density compared to the other areas of the white matter,
occupied by descending motor paths (Figure 4a, cOM, the two magnifications). Motor and
sensory pathways are quite different under many aspects, such as axonal density, myelin
sheaths thickness and percentage of unmyelinated fibers [34]. In particular, axonal density
and myelin sheath thickness are lowered in sensory paths. The cDDM (Figure 4a) further
investigates the co-occurrence region, in which the intensity correlation is quite fair but the
overlap is suspiciously high (ρ = 0.55, MOC = 0.57, Table 3, first column).



Sensors 2021, 21, 6385 12 of 17

Table 3. Comparison between NF200 and FM intensity and local density colocalization analysis,
before and after refinement for local co-density.

NF200-FM

Co-Occurrence Region
(n * = 1,465,036)

Co-Density Region
(n * = 851,042)

Intensity Density Intensity

ρ 0.5535 0.2064 0.6508
ρs 0.3760 0.2520 0.5031

MOC 0.5741 0.7221 0.9782
M1 0.4909 0.5060 0.2983
M2 0.6772 0.6601 0.4212

* n: sample size, or number of considered co-occurring pixels.

Such a MOC value could be read as an artifact of the offsets that seem to characterize
the FM signal (shifted up, scatterplot Figure 4b), that have been proved to positively affect
the MOC, especially when a scarce correlation between the intensities is found [30]. In
this sense, a less biased measure of co-occurrence can be derived from the cOM and the
M1 and M2 coefficients. Most probably, these results Table 3, first and second columns)
can be interpreted as an artifact of image resolution, which is not able to fully capture the
concentric nature of the myelin signal, surrounding the axon, without overlapping. In
any case, these results confirm the outcome of cDDM already seen in Lamp1-Ce6, where a
reduction of the signals’ co-occurrence is coupled with a marked increase in correlation
values (ρ and especially ρs value, Table 3, third column). In fact, the resolution problem
seems to be alleviated by our approach, indeed reducing the signals’ overlap, quantified by
M1 and M2 of about 40%. The increase in correlation coefficients also indicates that markers
intensities should not be assumed a priori to linearly correlate, according to the functional
heterogeneity of axons’ and myelin’s distribution in the tissue. Even though most of
the co-occurring pixels are also equally dense (58%, cLDI = 0, Figure 4b), a remarkable
prevalence of positive values in cDDM indicates axons’ tendency to be denser than myelin,
agreeing with the reduced myelin sheaths thickness observable for some pathways. Indeed,
a lower myelin thickness reasonably reflects a lower local density of FM, but not of NF200
signal, therefore bringing higher cLDI values and decorrelating the two markers’ density
(Table 3, second column). Moreover, by locally analyzing cDDM, we can see that the local
density pattern depends on the nature of the anatomical pathway (Figure 4a, cDDM left
magnification), specifically being enriched in low values (hence, in myelin) in the proximity
of the dorsal median sulcus (DMS) and in high values (hence, in less myelinated axons)
away from it (Figure 4c, line plot of the pixel values underlying the red line in cDDM motor
pathway magnification). In conclusion, in addition to also exemplifying its applicability
at the tissue level, here, the cDDM provides new biological information, revealing and
mapping the spatial heterogeneity of the myelination pattern, which could not be derived
from the original image. This makes the local co-density an effective indicator of the local
degree of myelination and the cDDM a possible discriminator of neuronal pathways.

3.4. GUI for cDDMs Creation

To allow any user to work with coDDMs, here, we introduce coDDMaker, an upgraded
version of DDMaker, a software endowed with a user-friendly GUI, created with MATLAB®

App Designer [26]. coDDMaker was conceived for the guided analysis of the distributions
and co-distribution of marker pairs. Starting from RGB, greyscale or directly binary
images and based on customed search window size, the software builds the markers’
DDMs, cDDM and cOM and tabulates their numerical content. With coDDMaker, we
also introduce a module for the background correction of non-binary input images [35]
and a module for their local segmentation to also be used as tools for image denoising. A
detailed description of coDDMaker functionalities is provided in Appendix B. The software
completes the colocalization analysis of a couple of images under standard setting (i.e.,
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global image segmentation and WS = 3) in less than 30 s on entry-level computers, although
the total elapsed time strongly depend on different factors (e.g., the size of the objects to
be segmented), as exemplified in Supplementary Table S2. As much as DDMaker, or even
more so, coDDMaker could serve as a checkpoint for long-lasting experiments, follow-up
and large-scale studies, that can be monitored on-line and adjusted on the basis of the
software feedbacks, therefore, optimizing time and costs. coDDMaker is available as a
public open-source software written in MATLAB® and as a 64-bit stand-alone application
(https://sourceforge.net/projects/coddmaker/ accessed on 10 September 2021).

4. Conclusions

Image colocalization is commonly assessed by a combination of co-occurrence and
correlation. However, all current methods exploiting pixel intensities neglect information
regarding pixel interconnections that, if considered, could permit the enforcement of
colocalization information. In this perspective, we introduce the co-density distribution
map, a novel tool for improving the actual colocalization analysis framework in biomedical
images. Given two imaged markers and, having built their density distribution maps,
the cDDM uniquely describes the distribution of the signals’ local densities, in terms of
relative position and abundance of marked structures. When imaging objects above the
pixel resolution, the cDDM also becomes a powerful indicator of colocalization, which
can identify the image regions at which colocalization is stronger, adding reliability to the
correlation coefficients normally employed. The cDDM also provides information about
the degree of colocalization, which can complement and validate quantitation by other
methods. Most importantly, cDDM’s information is, altogether, qualitative, quantitative
and local, making it a powerful tool for the fast and comprehensive surveyance of imaged
systems. Consequently, it can open the door to new biological considerations, both at
the global and the regional level. Working locally, DDMs (and cDDMs consequently) can
increase the confidence of colocalization when this is not achievable by increasing the
acquisition resolution, thus enhancing the information regarding distributions. Notably,
our maps can be applied to any resolution study. In addition, being easy to build, the
cDDM can benefit routine, large-scale and follow-up experiments by providing a tool for
near real-time monitoring to be used for the adjustment and optimization of experiments.
In practice, the cDDM we propose represents a fundamental tool to be integrated into
each colocalization analysis framework, whether it is based on intensity correlation or
not, to be used synergically with correlation analysis by masking the original images
before computing the different coefficients. Even though it provides only an indication
and not a direct measure of the degree of colocalization and, at present, it only works for
the colocalization of two signals, the cDDM can be used to answer a variety of biological
questions involving protein–protein interactions or co-compartmentalization. As a future
research direction, we are working on a stand-alone tool capable of providing a new
indicator of colocalization merging the information from pixel intensity and density.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21196385/s1, Table S1: Comparison between SYP and VGLUT1 intensity and local density
colocalization analysis, before and after refinement for local co-density, Figure S1A: Scatterplots of
co-occurrence region partitioning by equi-density, Figure S1B: Scatterplots of co-occurrence region
partitioning by cLDI sign, Figure S1C: Scatterplots of co-occurrence region partitioning by cLDI value,
Table S2: coDDMaker time performance evaluation, Table S3: Abbreviations.

Author Contributions: L.L., M.M. and L.C. prepared and imaged the samples for the SYP-VGLUT1
and the NF200-FM datasets, E.M. and E.L. cultured, treated and imaged the Lamp-1-Ce6 dataset,
I.D.S. and A.B. conceived the cDDMs, were involved in the images processing and analysis, the
development of the method, manuscript conception and preparation. I.D.S. developed the software
and analyzed the data. A.B. supervised the whole analysis, A.B. and L.C. performed manuscript
revision. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

https://sourceforge.net/projects/coddmaker/
https://www.mdpi.com/article/10.3390/s21196385/s1
https://www.mdpi.com/article/10.3390/s21196385/s1


Sensors 2021, 21, 6385 14 of 17

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Non applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Correlation and Co-Occurrence Coefficients

Appendix A.1.1. Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient (ρ, r, or PCC), is defined as the quotient of
covariance and standard deviation between two variables:

ρ =
∑n

i (xi − x ) ∗ ∑n
i (yi − y¯)√

∑n
i (xi − x )2 ∗ ∑n

i (yi − y¯)2
(A1)

When these two variables (x and y) describe the pixel intensity of two probes’ signals
imaged in the same domain (i.e., the signals’ co-occurrence region, composed of n pixels),
Equation (A1) can be used to quantify the extent of linear association between the signals in-
tensities, as a measure of probes colocalization [6,21]. Many reviews discuss the coefficient
history [36], meaning [15,36] and implications for image colocalization [4,8,13,24,30].

Appendix A.2. Spearman’s Correlation Coefficient

The Spearman correlation coefficient (ρs, rs or SRCC) is defined as the Pearson’s
correlation coefficient between the rank variables [29] and it is then computed simply by
replacing x and y intensity values with intensity ranks of values in Equation (A1). By
working on ranks, ρs assesses how well the relationship between two variables can be
described using a monotonic function, disregarding any assumption of linearity [37].

Appendix A.3. Mander’s Coefficients

In 1993 Manders introduced the overlap coefficient to supply the lack of interpretability
for Pearson’s coefficients negative values [6]:

MOC =
∑n

i xi ∗ ∑n
i yi√

∑n
i (xi)

2 ∗ ∑n
i (yi)

2
(A2)

By simply removing the average subtraction from the intensity values, the coefficient is
claimed to become “insensitive to differences in signal intensities between the components
of an imaged caused by different labelling with fluorochromes, photo-bleaching, or different
settings of the amplifiers”. However, to increase the coefficient interpretability, Manders
further introduces the M1 and M2 coefficients:

M1 =
∑n

i xi,coloc

∑n
i xi

{
xi,coloc = xi, i f yi > 0
xi,coloc = 0, i f yi = 0

(A3)

M2 =
∑n

i yi,coloc

∑n
i yi

{
yi,coloc = yi, i f xi > 0
yi,coloc = 0, i f xi = 0

(A4)

M1 and M2 separate the fluorophores contribution to colocalization, by calculating for
each fluorophore the fraction of the total intensity that co-occurs.

Manders’ M1 and M2 coefficients have since then been widely used to quantify sig-
nals co-occurrence in intensity images. However, doubts on the suitability of the MOC
coefficient to the quantification of unbiased co-occurrence have been casted [30] and its use
along with M1 and M2 coefficients is currently a topic under heavy discussion [4,31–33].
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Appendix B

coDDMaker: GUI Description

To enable users to build customizable DDMs and cDDMs, we realized coDDMaker
(Figure A1), a software program endowed with a user-friendly GUI created with MATLAB®

App Designer.

Figure A1. Main GUI of coDDMaker. The main window is divided into five sections: (1) Input: to
select the input images’ folders; (2) Segmentation: to select the thresholding method, its locality of
application and to eventually perform background correction before threshold calculation and image
binarization; (3) DDM: to select the size of the search window for local density analysis and, to allow
user creating and binarizing DDMs after setting the colorbar for pseudo-color DDMs visualization
and the percentile for DDMs thresholding; (4) cDDM: to allow user creating and binarizing cDDMs
after setting, the colorbar for pseudo-color cDDMs visualization and the tolerance for equi-density
region segmentation; (5) Output: to visualize and save intermediates and outputs. From left to right:
markers binary masks, cOM, pseudo-color DDMs, pseudo-color cDDM.

The software was conceived as an upgrade of the DDMaker software [26] and per-
mits the performance of a density-including colocalization analysis of two markers’ co-
distribution. As before, the software does not require any training or expertise before use.
Preserving the original design, we added new modules for: (1) background correction for
uneven illumination [35], (2) local image segmentation, (3) cDDM and cOM building and
(4) saving of all numerical and visual outputs of the analysis for further investigation.



Sensors 2021, 21, 6385 16 of 17

First, the user is required to select the two folders (i.e., one for each marker to be
analyzed) where the input images to be processed are located. Images can either be RGB
color, grey level or binary, in the MATLAB-supported formats [38]. The user can binarize
RGB and grey level images by choosing among ISODATA or Otsu thresholding method.
With coDDMaker, the user can now also decide to apply the thresholding algorithm locally,
by specifying the locality dimension. The Triangle method is also supplied for global
image thresholding, where it can serve outliers removal in heavy-tailed histograms. In
addition, images can now be pre-processed for the correction of uneven illumination that
may result from vignetting distortion, inaccurate image acquisition or noise [35]. Binary
masks, resulting from thresholding or already provided by the user, serve as the input for
building the DDMs, cDDM and cOM. Local density analysis is performed using a default
search window of 3 × 3 pixels, chosen assuming that the target structures of interest in
the images are of few pixels, thus enabling the detection of small aggregation events and
single particles as well. However, users can customize the search window size, besides
the color bar for maps visualization. The resulting DDMs can be binarized by percentile
thresholding, while the equi-density region, identified in the cDDM by cLDI = 0, can be
binarized by setting a co-density tolerance (e.g., a tolerance of two identifies as co-dense
pixels with cLDI ranging from 0 − 2 to 0 + 2). To help the user in finding the best parameter
setting for its analysis, coDDMaker also displays the last binary mask for each marker
and the derived DDMs, cDDM and cOM. When satisfied with the setting, the user can
save all the intermediate and final outputs of the analysis, which include all the generated
images and maps and the numerical data associated to DDMs and cDDMs. The images are
saved in uncompressed TIFF format, while other analyses’ outputs are saved as portable
csv and excel files. A detailed explanation of coDDMaker utilization can be found in the
software documentation (https://sourceforge.net/projects/coddmaker/ accessed on 10
September 2021).
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