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Abstract: The LOG-a-TEC testbed is a combined outdoor and indoor heterogeneous wireless testbed
for experimentation with sensor networks and machine-type communications, which is included
within the Fed4FIRE+ federation. It supports continuous deployment principles; however, it is miss-
ing an option to monitor and control the experiment in real-time, which is required for experiment
execution under comparable conditions. The paper describes the implementation of the experiment
control and monitoring system (EC and MS) as the upgrade of the LOG-a-TEC testbed. EC and MS is
implemented within existing infrastructure management and built systems as a new service. The EC
and MS is accessible as a new tab in sensor management system portal. It supports several commands,
including start, stop and restart application, exit the experiment, flash or reset the target device,
and displays the real-time status of the experiment application. When nodes apply Contiki-NG as
their operating system, the Contiki-NG shell tool is accessible with the help of the newly developed
tool, giving further experiment execution control capabilities to the user. By using the ZeroMQ
concurrency framework as a message exchange system, information can be asynchronously sent
to one or many devices at the same time, providing a real-time data exchange mechanism. The
proposed upgrade does not disrupt any continuous deployment functionality and enables remote
control and monitoring of the experiment. To evaluate the EC and MS functionality, two experiments
were conducted: the first demonstrated the Bluetooth Low Energy (BLE) localization, while the
second analysed interference avoidance in the 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e)
wireless technology for the industrial Internet of Things (IIoT).

Keywords: continuous deployment; testbed; real-time monitoring; Contiki-NG; 6TiSCH; Bluetooth
Low Energy

1. Introduction

The ever-growing number of Internet of Things (IoT) applications and scenarios using
wireless sensor networks (WSN) can be categorized into particular domains, such as smart
cities, smart grids, industrial automation, traffic management and logistics, remote moni-
toring, healthcare and assisted living, agriculture and breeding, public safety, and others.
Due to the WSN system complexity and possible interferers, the experimentally-driven
research is recognized as a key approach toward the fast and efficient design, development,
and deployment of the IoT applications [1]. In this respect, testbeds, which mimic the
real but controllable deployment environments, are essential for the experimental research
and WSN system development. This was recognized within the European Commission

Sensors 2021, 21, 6422. https://doi.org/10.3390/s21196422 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5220-875X
https://orcid.org/0000-0002-6754-5000
https://orcid.org/0000-0003-3288-8254
https://orcid.org/0000-0001-7274-3901
https://orcid.org/0000-0002-8676-5658
https://doi.org/10.3390/s21196422
https://doi.org/10.3390/s21196422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196422
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196422?type=check_update&version=2


Sensors 2021, 21, 6422 2 of 16

framework Horizon 2020 [2], supporting projects in future internet research and experi-
mentation (FIRE)—for example, the Fed4FIRE+ [3] project, which offers a large federation
of next-generation internet (NGI) testbeds consisting of wired and wireless devices.

Deployed WSNs may consist of heterogeneous wireless technologies sharing the same
radio resources [4]. In order to mimic the real environment, the wireless testbeds have to
support several wireless technologies and enable the execution of various experiments,
such as wireless link performance evaluation, custom or standard wireless protocol bench-
marking, interference analysis, spectrum sensing, etc. A testbed has to preserve the same
test environment for successive experiments and should support automation, real-time
monitoring, and control of the experiments by also enabling experiment pausing and stop-
ping. This is of the utmost importance in iterative research processes, such as developing
new communication protocols and algorithms. Furthermore, the testbed has to support
common tools for the experiment definition, description, control, and execution to enable
running the same experiment in various testbeds and radio environments. In addition, the
testbed has to be remotely accessible and controlled, in order to provide access to a wide
international research community. When a testbed is applied for the evaluation and testing
of new devices, protocols, or applications, the testbed’s support of continuous deployment
principles is of vital importance [5].

LOG-a-TEC [6], included in a Fed4FIRE+ facilities, combines outdoor and indoor het-
erogeneous wireless testbeds for experimentation with sensor networks and machine-type
communications. It supports continuous deployment principles [5], enabling fully auto-
mated experiment execution and results collection, but the interactivity with the nodes has
not been fully supported until now. The real-time control and monitoring is very important
in the process of designing a software or testing process, which simplifies experiment
application debugging and allows for faster comprehension of the results [7]. Moreover,
a real-time control of the experiment flow enables the execution of more challenging
applications. For instance, when testing the overall performance of the wireless sensor
network, it is necessary to establish a fully operational network before executing any tests.
However, the moment the fully operational network is established cannot be automatically
and precisely detected, unless it is monitored in real-time with the possibility of manually
issuing certain commands that influence the network formation, such as setting network
coordinator nodes. Thus, to enable the testing and evaluation of all aspects of the wireless
sensor networks, apart from automation, it is necessary to provide interactivity in real- or
near-real-time. The motivation to upgrade the testbed is two-fold; firstly, provisioning its
intuitive usage and better user experience, as well as the inclusion of new functionalities,
are all characteristics for wireless environments to run a set of experiments in comparable
radio environments. The former includes the design of a new graphical user interface,
consisting of the devices monitor, experiment controller with menus, command line input,
and textual output. The latter includes additional functionalities: real-time monitoring
of the experiment state, option to start or stop the experiment application, reset or restart
the nodes in the experiment, monitoring, and controlling the topology of the network
under testing.

The contributions of the paper are: (i) a innovative approach, regarding how to com-
plement continuous deployment with near-real-time experiment control and monitoring
in distributed wireless testbeds, which does not influence the functionality of continuous
deployment and improves the quality of experience for the experimenter, (ii) usage of
lightweight ZeroMQ library as an asynchronous messaging framework for control and mon-
itoring the wireless sensor network with minimal system overhead and (iii) novel usage of
Contiki-NG shell to control the testbed nodes running the Contiki-NG operating system.

The paper is structured as follows. After the related work, given in the next section, a
brief description of the LOG-a-TEC testbed, continuous deployment framework principles,
and main shortcomings of the testbed are given in Section 3. Section 4 describes the
extension of LOG-a-TEC the testbed with an experiment control and monitor system, which
introduces the interactivity in the experimentation. Two examples of the experiments and
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evaluation of the newly developed tool are illustrated in Section 5. Concluding remarks
are drawn in Section 6.

2. Related Work

The majority of wireless sensor testbeds include their own version of the monitor-
ing and management system [7]. In order to implement it efficiently, a suitable network
protocol for transporting messages between nodes, i.e. the framework, has to be selected.
The distributed communication protocols are usually applied [8], which can be classified
into two classes, namely client-server protocols and publish-subscribe protocols. Sev-
eral application layer protocols and their implementations exist [8], among which the
most popular are: advanced message queuing protocol (AMQP) [9], message queuing
telemetry transport (MQTT) [10], representational state transfer over Hypertext Transfer
Protocol (REST/HTTP) [11], and extensible messaging and presence protocol (XMPP) [12].
Some example of different framework implementation are PhyNetLab testbed [13], BOWL
testbed [14], NITOS testbed [15] and TARWIS testbed [16].

The PhyNetLab testbed [13] implements a three-tier, real-time distributed architecture,
based on REST principles. Tier I consists of the database and other servers, Tier II of gateway
nodes, and Tier III of experimental nodes. Some approaches, for example NITOS [15],
base their test and management system on a framework solutions, which is a complex
integration of several distributed communication protocols. The NITOS applies a control
and management framework (OMF), which includes several protocols, i.e., XMPP, REST,
and XML-RPC. The architecture is also extended using the WSO2 Enterprise Service Bus to
improve the interoperability of different testbed services. NITOS is also part of Fed4Fire
testbed federation. In the BOWL testbed [14], the authors presented a management and
monitoring system, based on remote method invocation (RMI) with Distributed Ruby.
A node controller runs on each node, executing commands initiated by the central node
manager. Information and collected states can be extracted from its database and visualized
for the user. The authors in [17] proposed an extensible graphical user flow interface for
a serviced-defined, network-enabled wireless solution, OpenGUFI, which visualizes the
network topology and traffic flows in real-time. The solution is based on open source
tools and combines JavaScript Object Notation Remote Procedure Call (JSON-RPC) as a
stateless and light-weight RPC protocol, over WebSockets with REST API over HTTP, to
effectively manage the distributed system of testbed devices. The framework TARWIS [16]
provides control and management functionality, independent from the node type and
node operating system. It applies Web Services Description Language (WSDL) as a basis
for the communication between components. There are web services and Simple Object
Access Protocol (SOAP) libraries for many programming languages. However, in our
experience, those can be quite complex and, thus, introduce significant overhead in the
system design process.

None of the previously described solution meet the needs for lightweight implemen-
tation and do not add perceivable computational and implementation overhead to the
existing continuous deployment approach. After careful study of the existing message
queue software and frameworks, we selected the open-source ZeroMQ concurrency frame-
work [18]. Its easy-to-use socket, well-documented library provides various flexible and
high performance patterns (one-to-one, one-to-many, many-to-many models) and ensures
high-speed, asynchronous message exchange [19]. Lightweight and robust design, with
ability to run as a part of multi-thread or multi-process application meets the requirements
for our implementation of the real-time monitoring tool. Furthermore, some approaches
to extract application state information were designed based on TinyOS [7] and do not
include support for Contiki-NG and its tool shell, which was our primal target.

3. Continuous Deployment Framework for the LOG-a-TEC Testbed

Wireless network development, testing, and deployment calls for testbeds supporting
continuous deployment principles, which have to be adjusted to the software and hardware
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architecture of the particular testbed. In order to better understand the implementation
of the experiment control and monitoring system (EC and MS), we briefly review the
LOG-a-TEC testbed first and afterwards, the reference continuous deployment architecture
is given [5], followed by highlighted deficiencies of the current solution, which motivated
this work.

3.1. LOG-a-TEC Testbed

LOG-a-TEC, located at Jožef Stefan Institute, Ljubljana, is comprised of several differ-
ent radio technologies, which, in addition, to traditional IoT and cellular 5G experimen-
tation, supports 5G capillary/MTC experiments, Bluetooth Low Energy (BLE), and WiFi
5 GHz ISM bands. It consists of outdoor and indoor parts. The outdoor part is comprised
of 56 physical nodes, which are mounted on the light posts and surrounding building
walls, from 2 to 9.3 meters above the ground. The locations of the nodes and available
radio technologies in the outdoor part of LOG-a-TEC testbed are depicted in Figure 1. The
testbed is also complemented by an additional 31 ultra-wideband (UWB) nodes, deployed
indoors and outdoors. The number of locations, their high density, and the possibility that
each location can host multiple radio interfaces enables the deployment of very dense and
heterogeneous wireless testbed.

Figure 1. Locations of nodes and available radio technologies in outdoor part of LOG-a-TEC testbed.

Each node in the testbed consists of two functional blocks, namely an infrastructure
node and a target node, also termed as a device-under-test (DUT). The infrastructure node
is an embedded computer based on the BeagleCore [20] module, running a GNU/Linux
operating system named LGTC [21]. It serves as a hosting platform, providing a power
supply to the target node, with the ability to manage, control, and program the target
node. Infrastructure nodes enable communication with the management server via a
wireless backbone. The WiFi module supports dual-band communications on 2.4 GHz
and 5 GHz bands. For experimentation purposes, the 2.4 GHz portion of the frequency
band is used, while the 5 GHz band is applied for the infrastructure management links [5].
The experimentation node is a custom VESNA (Versatile Platform for Sensor Network
Applications) device, based on the ARM Cortex-M3 microcontroller, which can run a
dedicated OS (e.g., Contiki-NG and TinyOS) or custom firmware [22]. It can be comple-
mented by application modules with dedicated experimentation transceivers or various
sensors. Infrastructure and target nodes are interconnected by a development interface for
programming and debugging using JTAG and the application interface for communication
using UART. Separating hardware infrastructure, in two functional blocks, enables us to
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combine a generic infrastructure with various experimentation nodes, in order to support
a range of heterogeneous experiments while keeping a unified way of nodes management
and reconfiguration [23]. Table 1 shows the number, type, and operating frequencies of
currently supported radio interfaces mounted in an indoor and outdoor environment.

Table 1. Wireless technologies deployed on testbed [5].

Device No. Devices Freq. ChipOutdoor/Indoor

SRD A 21/0 868 MHz AT86RF212
2400 MHz TI CC2500

SRD B 21/0 868 MHz TI CC1101
2400 MHz AT86RF231

LPWA 3/1 860 MHz LoRA
SX-1272

UWB 11/20 3500–6500 MHz DWM 1000

BLE 56/21 2400 MHz TI WL1837

Management 56/21 5000 MHz TI WL1837network

3.2. The Continuous Deployment Reference Architecture

The testbed management system architecture [5] consists of the central management
and monitoring parts, as well as the part with the experiment deployment and execution
system. The central management and monitoring of the testbed, depicted in Figure 2,
is achieved by the infrastructure management and build automation system (IMBA).
It combines several features, which comprise of testbed device handling and monitoring
solutions. It follows the microservice architecture, using self-sufficient systems packaged
in Docker [24] containers, and consists of the following services: node registry, node
monitoring with MUNIN [25], a hook service with GitHub Webhook [26], a continuous
integration service with Jenkins [27], and a node managing toll Rundeck [28]. The access
to IMBA services is implemented through a web user interface portal, named the sensor
management system (SMS). It is accessible only upon providing valid credentials.

Besides monitoring and managing the nodes, IMBA includes an experiment deploy-
ment and execution system, depicted in Figure 2. It is a setup composed of Docker
containers and orchestrated with the Ansible engine [29]. Docker containers enable ex-
periment abstraction, so that the required dependencies do not need to be installed on
the infrastructure node, and provide an easy way for experiment redistribution [23]. The
experiment is deployed when a new release is created in the GitHub repository by trig-
gering GitHub Webhook, depicted in Figure 2. This starts Ansible playbook at IMBA,
which contains a description of experiment setup and a list of participating devices. Each
infrastructure node downloads the GitHub repository containing a Docker file that includes
the actual experiment code. When that Docker image is built, the container is started and
the experiment can begin. Although the infrastructure node is devoted to control over the
target node, the IMBA generic experiment deployment system supports experimentation
with target nodes, as well as with the infrastructure nodes. This feature offers a use of
capable Linux-running devices, extending the diversity of the possible experiments with
the LOG-a-TEC testbed. The infrastructure node can, furthermore, be extended with any
type of USB peripherals. It also supports serial port communication via UART, which is
used for the logging of the printf() function-based output made with the target device.
At the end of the experiment, all build logs and experiment results are collected using
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the Ansible engine at IMBA and forwarded to the GitHub, where the user can access the
measurements and analyze the received data.

Figure 2. Continuous deployment reference architecture.

3.3. Real-Time Interaction and Monitoring

The described system provides a fully automated experiment execution and result
collection, enabling straightforward experimentation and experiment results evaluation.
Monitoring the node’s health, used resources, network connection, etc., is implemented by
exploiting Muning tool. Rundeck service allows simple node management and provides
configuration tools, which keeps the device’s software up-to-date. Continuous integration
practices with the Jenkins service offers quick and reliable software development, while
continuous deployment offers testing on real hardware. However, with the presented
systems, the experimenter has to wait until the end of the experiment, in order to get the
information (if the software under testing was working properly). There is no information
related to whether the addressed devices received the code and started the experiment or
if the results contain the requested measurement.

To enable in-depth testing under comparable conditions, a testbed should provide
an environment with a synchronous execution of measurements and ability to start or
stop the experiment on multiple nodes at the same time [7]. The current system does not
guarantee simultaneous environment preparation, mainly due to the different backbone
connection speeds and caching of the Docker container image on each node. Also, the
functionalities for restarting the experiment are not accessible. The interactive approach
accelerates the debugging of the deployed software and simplifies the development of a
new one [7]. While testing new technologies and protocols, there is a need for controlling
purposes during experiment execution. For example, when working with Contiki-NG
and its protocol stack, usually full operational test network has to be established before
executing an experiment. Thus, the information, which and when the chosen devices have
joined the test network, is crucial.

With this context in mind, a testbed should provide a comprehensive, post-deployment
tool for experiment control and real-time monitoring. Those tools are classified as passive,
active, and opportune [30]. Passive tools do not interfere with the test network and cannot
interact with the node and its software, while opportune tools rely on the nodes, in order
to transmit the measured data in a timely manner. Active tools, on the other hand, require
nodes’ interaction and can provide extended communication [30], typically by using serial
ports and simple printf() methods. Software of the monitoring tool must be designed
in such a way that its impact on the running experiment is minimal. Similar to any
other monitoring system, newly developed tools should provide a real-time information
exchange mechanism. Seeing that the testbed can be modeled as a distributed system,
where each node presents a sub system, a real-time interaction can be achieved with one
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of the following models for communication in distributed software: message-oriented
middleware (MOM), remote procedure calls, remote method invocation, etc. Some of them
are already presented in Section 2.

Another aspect to keep in mind, while designing such a tool, is the evaluation of
the accumulated data [7]. The use of the graphical user interface is preferable, since
the visualization of experiment execution is the most autonomous way of presenting
the results.

4. LOG-a-TEC Testbed Extension: Experiment Control and Monitor System
(EC and MS)

In order to enable experiment observation and control, we have developed new
monitoring systems, called EC and MS. Newly developed functional blocks for continuous
deployment frameworks are marked with a light gray color in Figure 2. The user may
choose whether to use the monitoring tool in the experiment or not. In the last case,
the experiment runs in the same manner as in the previous system. The EC and MS is
implemented within the IMBA system as a new service and is accessible to the user via a
new tab in the SMS portal [31]. The implemented web graphical user interface is shown
in Figure 3. It consists of two functional parts, namely, the experiment controller and
the device monitor. The experiment controller is used to issue commands to a targeted
device and obtain its responses. Currently, several system commands are supported:
start, stop or restart the application, exit the experiment, and reprogram or reset a device.
The commands can be sent to a particular device (included in the experiment) or to all
devices simultaneously. The response of the devices is given in the experiment controller
output window. The device monitor is used to represent the status of devices running the
experiment in real-time, as well as their physical position in the testbed. The status of the
nodes is represented by different colors of a device symbol. Hoovering with mouse over
the symbol displays some additional information about the node, as depicted in Figure 3.
Currently, devices in the experiment can be in one of the following states, which can be
changed on demand by the user, according to the experiment’s requirements:

• online: device is online and ready for the experiment,
• compiling: infrastructure node is compiling an application for the target node,
• running: experiment is running,
• finished: experiment has come to the end,
• stopped: user successfully stopped the experiment,
• timeout: target node is not responding,
• warning: something went wrong (experiment continues),
• error: an error occurred on the infrastructure node,
• experiment error: an error occurred on the target node.

The reference architecture of the EC and MS is shown in Figure 4. It consists of the
following entities: EC and MS server, EC and MS controller, and EC and MS client. EC and
MS server entity is composed of the Python Flask-SocketIO [32] web application framework,
which enables bi-directional communication between the server and users’ browsers, by
using the WebSockets protocol [33]. Contrary to pooling methods (AJAX) or server-sent
events (SSE), this approach enables sending and receiving commands, without additional
delays. The website can be updated by the server whenever any changes emerge in the
backend, i.e., in the experiment. The controller part of the EC and MS system is configured
and built with each new experiment, as seen in Figure 2. Commands from the user are
asynchronously forwarded to the EC and MS controller entity, using the ZeroMQ [18]
framework, which provides a high-speed asynchronous message exchange mechanism.
It supports multiple messaging protocols, packet buffering, and message patterns with
different sockets and can function without a dedicated message broker, which is a typical
requirement of other similar MOM software frameworks.

The EC and MS controller processes commands and forwards them to the infrastruc-
ture nodes. If a command is intended for one testbed device, the controller entity uses TCP
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protocol and a ZeroMQ router socket. If a command is targeted for several devices in the
testbed at the same time, the controller entity applies multicast protocol and a ZeroMQ
publish socket to forward the message. The EC and MS controller also serves as a device
database and contains the information regarding all devices and their status; additionally,
it enables the user to check the state of the experiment on each device in real-time.

The EC and MS client application runs in its own process on the infrastructure node,
ensuring parallel execution with the experiment application. The client receives commands
from the EC and MS controller using ZeroMQ subscribe or dealer sockets, processes the
commands, and forwards them to the target node via UART connection. The client’s
script is also responsible for storing received measurements from target node into a text
file, which is at the end of the experiment transmitted to the user for later analysis. The
measured data are filtered and forwarded to the EC and MS controller, in order to enable
experiment monitoring. Using the EC and MS client, the infrastructure node can now
re-compile, flash the target node, and perform a hardware reset on user’s request. When
the target node applies Contiki-NG as an operating system, the Contiki-NG shell can be
accessed via the experiment monitor [34]. With this feature, it is possible to check the IPv6
address of a device and its neighbours, view the routing tables, issue the command for the
network repair, ping neighbour devices, select theDirected Acyclic Graph (DAG) root of
the Routing Protocol for Low-Power and Lossy Networks (RPL) network, etc.

Figure 3. EC and MS graphical user interface during experiment execution.
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Figure 4. Experiment control and monitoring system reference architecture.

5. Experiment Control and Monitoring System Functionality Demonstration
and Evaluation

The implemented extension of the LOG-a-TEC testbed is demonstrated and evaluated
by two experiments. While the first experiment demonstrates the usability of the extension
on the infrastructure node by exploiting the BLE interfaces, the second one presents the
added value of the upgrade when experimenting with target node. In particular, the
solution is evaluated in the terms of additional overhead, delay, experiment repeatability,
and achieved goals.

5.1. Bluetooth Low Energy Localization

To demonstrate the functionality of EC and MS and its benefits, we developed and
deployed an experiment on infrastructure nodes equipped with a WL1837MOD BLE
transceiver. Due to its limited range and low power consumption, BLE technology is, in
particular, suitable for people’s proximity estimations, especially important in the Covid-19
epidemic. Proximity solutions are based on user terminal tracking, which estimates the
distance from the measured, received signal strength to neighbouring terminals. While the
estimation of user terminal proximity indoors is, in general, straightforward, due to the high
attenuation of room walls, the estimation of the proximity outdoors is a very challenging
task. In order to run more complex experiments, we first looked at the estimation of the
node location from the BLE beacon received signal strength indicator (RSSI) measurements.

For experimental purposes, we selected 10 nodes, which were asynchronously broad-
casting BLE advertising data, while storing all received messages. BLE receivers detected
the RSSI of a packet, which were stored along with packet owner’s MAC address. Devices
used in this experiment and their approximate positions are depicted in Figure 3.

At the end of the experiment, a custom-designed Python script assembles the mea-
surements from all devices and searches for RSSI measurements advertised from device
denoted by N4. Based on the measurements, it calculates the node location and plots the
N4 transmitter in the diagram, as depicted in Figure 5. The ground true location of the
transmitter is shown as a square with a black edge line, while the estimated transmitter
locations are shown as cyan squares without colored edges. The location is calculated using
the least-square location algorithm [35]. The distance is estimated from the RSSI, assuming
free space path loss propagation with the path loss coefficient equal to 3.8. The estimated
location of node N4 is close to its real location. The receiver nodes in this experiment are
selected to surround the transmitter node, which leads to good performance.
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Figure 5. Node location estimated using RSSI BLE measurements.

5.2. Interference Avoidance in 6TiSCH IIoT Networks

Functionality of the EC and MS, when experimenting with target nodes, is demon-
strated by the experiment for testing the WSN protocols in an industrial environment
operating in 2.4 GHz ISM band [36]. In the past, WSNs were foreseen for collecting non-
time critical information from the environment, while recently applicable in the industrial
Internet of Things (IIoT) domain, the real-time requirements (i.e., low or at least predictable
delay and reliability) are of the utmost importance. Due to the harsh industrial radio
propagation environment, with strong multi-path and electromagnetic interference [37],
the standard IEEE 802.15.4e, specifying the time-slotted channel hopping (TSCH) ap-
proach [38,39], has been introduced, in order to support delay-sensitive applications. For
the further adaption of IPv6 in industrial standards [40], the 6TiSCH (IPv6 over the TSCH
mode of IEEE 802.15.4e) mechanisms are of particular interests.

Showcase experiment studies the communication capability of 6TiSCH-based WSN in
noisy environments. The experiment consists of three parts: (i) observing the performance
of the default 6TiSCH network without any interference, (ii) adding the interference and
evaluating the behavior of the 6TiSCH network, and (iii) observing the performance of
6TiSCH network with added adaptive channel strategy features under the same inter-
ference. In particular we evaluated the approach implemented in Contiki-NG examples,
called RSSI upstream-driven adaptive channel selection [41]. In all cases, the root node is
configured to periodically send a message to a random device in the network and wait
for its response. In order to measure performance, we obtain the packet error rate (PER)
at the root node by counting the transmitted and received packets, while storing radio
statistics collected at radio driver. In this respect, two networks have been created, namely
the 6TiSCH WSN network and interfering network (using three interfering nodes). WSN
consists of 17 devices, with an AT86RF231 radio running Contiki-NG OS and a custom-
developed application. They are using the 2.4 GHz ISM band, with physical channels in
range from 11 to 19. Interfering nodes are equipped with the same AT86RF231 radio, but
they are running bare-bone application to generate continuous interference, with a transmit
power of 3 dBm on channels 12, 16, and 18. The physical position of the WSNs is depicted
in Figure 6, while the interfering nodes are presented in Figure 6c,d with black color.
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In both experiments with added interference, we measured approximately the same
ratio between the sent and received number of packets as presented in Table 2, thus proving
the quality of the 6TiSCH network and its capability of delivering messages even in a noisy
environment. However, by looking at the radio driver statistics, we can see much better
performance at the 6TiSCH network with the added adaptive channel selection feature.
In the default network, the device will try to re-transmit an un-acknowledge message up
to 7 times, each time on different channel, until it succeeds. The device in the upgraded
network, on the other hand, is avoiding noisy channels before it even tries to transmit
on them. The results show that there is 3.5 times less occurrences of re-transmissions,
compared to the unmodified version of the 6TiSCH network, which results in more energy
efficient communication and smaller packet propagation delay.

Table 2. Experiment results.

PER [%] No. of Packet
Re-Transmissions

6TiSCH 99 103

6TiSCH 95.8 585with interference

Upgraded 6TiSCH 96 166with interference

Figure 6. Status of nodes in LOG-a-TEC in experiment run-time: (a) code deployment was successful, (b) 6TiSCH network
joining process, (c) nodes are running the experiment (d) experiment has come to the end.
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5.3. Evaluation and Discussion

EC and MS present a tool for the real-time observation of experiment flow and the
device states during the experiment execution. If the experiment does not execute according
to the expectations, or the device included in the experiment malfunctions (indicated with
one of the error/warning states), it can be noticed immediately and the experimenter can
take appropriate actions. It is no longer required to wait until the end of the experiment to
analyze the execution and operation of the nodes, as when using CD approach without
extension. Additionally, EC and MS provides experiment execution and network formation
control. Users can start, stop, and restart the experiment with corresponding commands
sent to selected nodes. The experimenter can also adapt the network topology to its
requirements with Contiki-NG shell commands. For example, in the 6TiSCH experiment,
the DAG root of the network is selected with command rpl-set-root, sent to that device.
With the command ip-adr, the IP address of the node can be obtained and so forth. New
monitoring functionalities enable the user to observe the joining process of all devices
and can, therefore, start the measurements only when all devices are within the network,
which proved to be crucial in the 6TiSCH experiment. The example of described process
is presented in Figure 6a, which shows all infrastructure nodes that received the code of
the 6TiSCH experiment and are compiling the application for a target device, indicating
that the deployment was successful. In Figure 6b, gray node symbols indicate that the
nodes are online and ready for experiment. The root node was selected with command
rpl-set-root (marked with a black border around the node symbol) and devices already
joined to its network are indicated with a white border. Figure 6c presents the nodes that
are running the experiment application; the successful reception of the START command is
marked with a green color, and in Figure 6d, the nodes that have finished the experiment
are presented with a cyan color.

During the 6TiSCH experiment, the list of used channels and real-time status of the
application in the EC and MS output window, shown in Figure 7, can be observed. The
information regarding channel occupancy indicates the proper working of interfering
nodes. It additionally helped to analyze the operation of the (upgraded) 6TiSCH protocol
and its channel selection in real-time. Driver statistics served to confirm the proper working
of the experiment application and its radio drivers. This information was, in previous
systems, obtainable only by analyzing the results after the experiment. Moreover, with
the help of EC and MS, measured data during the experiment can be easily redirected
to the databases, where measurements can be visualized in real-time. For example, this
functionality enables the mobile transmitter in the BLE experiment to be tracked in nearly
real-time, by extracting the measurements from the database and plotting its position.

With the old deployment system, the nodes start the experiment application automati-
cally, immediately after the process of building the Docker container. Since building process
for the individual node can take different amounts of time to complete, depending on the
Docker image caching and quality of internet connection on each device, the experiment
start can be un-synchronised. With the new monitoring tool, devices receive the application
code and build the Docker container (state marked with gray color in the EC and MS
monitor window) and wait for incoming START command. Thus, the synchronized start of
the experiment execution, which is crucial for experiment repeatability, is now enabled.

Besides proving its essence for software development and protocol testing, the EC
and MS monitoring tool further enhanced the usage of CD and improved the user’s experi-
ence. The testbed extension enables stopping and restarting the same experiment without
triggering the whole experiment deployment process, which enables faster experimenta-
tion. On average, it takes approximately 82 s [42] to prepare the experiment environment
on the node, while the time needed by the infrastructure node to compile and build the
binaries for the target node may take several minutes (the average time to compile the
Contiki-NG OS on the infrastructure nodes takes up to 7 min). Consequently, the user must
wait around 8 minutes before the target node is ready for experimentation. In the case
that the experiment has to be repeated, the additional delay (due to compiling the code
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and preparing the experimentation environment) is eliminated by the newly introduced
solution. In addition, the response of the implemented system was checked by measuring
the round-trip time. On average, it takes 648 ms, with a standard deviation of 131 ms, for a
command to travel from a user’s browser to the infrastructure device and back and 778 ms,
on average, with a standard deviation of 156 ms, for a command to travel to the target
device and back. Some deviations are acceptable, since the system is designed in such a
way that the experiment has advantages over the user. Because the infrastructure backbone
uses Wi-Fi in the 5 GHz range, the additional traffic made by EC and MS does not have an
influence on any experimental network of currently supported technologies.

Figure 7. EC and MS output window in experiment run-time for experiment with interference.

6. Conclusions

This paper describes the implementation of the real-time experiment control and mon-
itoring for the LOG-a-TEC testbed and its integration within the continuous deployment
process, while keeping the initial continuous deployment functionality unchanged. The
newly-developed, real-time experiment monitoring tool supports the observation of the
test network formation, issuing the commands to reconfigure the experimentation nodes
and the network, as well as for starting/stopping the experiment. It provides an option
to check some meaningful variable in real-time and take action upon the received results.
The entire measurement procedure can be restarted without issuing a new deployment
process. The user can monitor and control the experiment through the web GUI, display-
ing the status of the particular node and node textual output, defined in the experiment
setup in the system output window. Because of its simple design, the user can adapt it to
his requirements. Furthermore, the results can be stored in a PostgreSQL database and
quarried, which enables the user to build their own near-real-time experiment monitoring
application. The functionality of the EC and MS has been demonstrated in two distinct
experiments, one using BLE radio technology on infrastructure nodes and the other based
on 6TiSCH and Contiki-NG OS (deployed on target nodes). Furthermore, the example ex-
periments demonstrate the importance of iterative research processes, such as developing
new communication protocols and algorithms.
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Abbreviations
The following abbreviations are used in this manuscript:

6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e
5G 5th Generation
AJAX Asynchronous JavaScript and XML
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
BLE Bluetooth Low Energy
CI Continuous Integration
CD Continuous Deployment
EC and MS Experiment Control and Monitoring System
DAG Directed Acyclic Graph
DUT Device Under Test
Fed4FIRE+ Federation for Future Internet Research and Experimentation Plus
FIRE Future Internet Research and Experimentation
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IIoT Industrial Internet of Things
IMBA infrastructure management and build automation system
IoT Internet of Things
IP Internet Protocol
IPv6 Internet Protocol version 6
ISM Industrial, Scientific and Medical
JSON JavaScript Object Notation
JTAG Joint Test Action Group
LGTC LOG-a-TEC infrastructure node
LPWA Low Power Wide Area
MAC Media Access Control
MOM Message Oriented Middleware
MQ Message Queuing
MQTT Message Queuing Telemetry Transport
MTC Machine Type Communication
NGI Next-Generation Internet
OS Operating System
PER Packet Error Rate
REST Representational State Transfer
RMI Remote Method Invocation
RPC Remote Procedure Call
RPL Routing Protocol for Low-Power and Lossy Networks
RSSI Received Signal Strength Indicator
SOAP Simple Object Access Protocol
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SSE Server Sent Events
SMS Sensor Management System
SRD A Short Range Device type A
SRD B Short Range Device type B
TSCH Time Slotted Channel Hopping
TCP Transmission Control Protocol
WiFi Wireless Fidelity
UWB Ultra Wide Band
UART Universal asynchronous receiver-transmitter
USB Universal Serial Bus
VESNA VErsatile platform for Sensor Network Applications
WSN Wireless Sensor Networks
XMPP eXtensible Messaging and Presence Protocol
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23. Vučnik, M.; Fortuna, C.; Šolc, T.; Mohorčič, M. Integrating Research Testbeds into Social Coding Platforms. In Proceedings of
the 2018 European Conference on Networks and Communications (EuCNC), Ljubljana, Slovenia, 18–21 June 2018; pp. 230–234.
[CrossRef]

24. Docker. Docker: OS-Level Virtualization Enabling to Deliver Software in Packages Called Containers. Available online:
http://www.docker.com (accessed on 12 May 2021).

25. Munin. Munin Monitoring. Available online: https://munin-monitoring.org/ (accessed on 21 June 2021).
26. Webhook. Webhooks—GitHub Docs. Available online: https://docs.github.com/en/developers/webhooks-and-events/

webhooks (accessed on 21 June 2021).
27. Jenkins. Available online: https://www.jenkins.io/ (accessed on 21 June 2021).
28. Rundeck. Rundeck Runbook Automation. Available online: https://www.rundeck.com (accessed on 21 June 2021).
29. Ansible. Ansible Is Simple IT Automation. https://www.ansible.com (accessed on 21 June 2021).
30. Schoofs, A.; O’Hare, G.; Ruzzelli, A. Debugging Low-Power and Lossy Wireless Networks: A Survey. IEEE Commun. Surv. Tutor.

2012, 14, 311–321. [CrossRef]
31. Videk. Sensor Management System. Available online: https://videk.ijs.si (accessed on 6 July 2021).
32. Flask-socketIO. An Applications Access to Low Latency Bi-Directional Communications between the Clients and the Server.

Available online: https://flask-socketio.readthedocs.io/en/latest/ (accessed on 12 May 2021).
33. WebSockets. WebSocket Is a Computer Communications Protocol, Providing Full-Duplex Communication Channels over a

Single TCP Connection. Available online: https://en.wikipedia.org/wiki/WebSocket (accessed on 12 May 2021).
34. Contiki-NG. Contiki-NG: The OS for Next Generation IoT Devices. Available online: https://github.com/contiki-ng (accessed

on 12 May 2021).
35. Wang, Y. Linear least squares localization in sensor networks. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 51. [CrossRef]
36. Park, P.; Coleri Ergen, S.; Fischione, C.; Lu, C.; Johansson, K.H. Wireless Network Design for Control Systems: A Survey.

IEEE Commun. Surv. Tutor. 2018, 20, 978–1013. [CrossRef]
37. Gungor, V.C.; Hancke, G.P. Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches.

IEEE Trans. Ind. Electron. 2009, 56, 4258–4265. [CrossRef]
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