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Abstract: In this paper, comprehensive mPoint, a method for generating 3D (range, azimuth, and
elevation) point cloud of human targets using a Frequency-Modulated Continuous Wave (FMCW)
signal and Multi-Input Multi-Output (MIMO) millimeter wave radar is proposed. Distinct from the
TI-mPoint method proposed by TI technology, a comprehensive mPoint method considering both the
static and dynamic characteristics of radar reflected signals is utilized to generate a high precision
point cloud, resulting in more comprehensive information of the target being detected. The radar
possessing 60–64 GHz FMCW signal with two sets of different dimensional antennas is utilized in
order to experimentally verify the results of the methodology. By using the proposed process, the
point cloud data of human targets can be obtained based on six different postures of the underlying
human body. The human posture cube and point cloud accuracy rates are defined in the paper in
order to quantitively and qualitatively evaluate the quality of the generated point cloud. Benefitting
from the proposed comprehensive mPoint, evidence shows that the point number and the accuracy
rate of the generated point cloud compared with those from the popular TI-mPoint can be largely
increased by 86% and 42%, respectively. In addition, the noise level of multipath reflection can be
effectively reduced. Moreover, the length of the algorithm running time is only 1.6% longer than that
of the previous method as a slight tradeoff.

Keywords: mm-wave radar; data processing; human detection; 3D point cloud; comprehensive mPoint

1. Introduction

Human target detection systems are widely employed in various areas for specific
purposes such as safety, healthy and energy conservation. For the application in smart
vehicles, human detection technology can aid in avoiding collisions around the vehicle
and provide child-left-behind warning to drivers, which enhances safety and security. For
applications in smart homes, it is helpful to offer comfortable living environments and
to improve the quality of living by controlling temperature, humidity, noise, light and
air quality by detecting and tracking people in a room [1]. In addition, the incomplete
list also includes military applications, service robots and search and rescue after severe
disasters [2,3].

In recent years, numerous sensors have been applied to achieve contactless detection,
tracking and classification of human targets [4,5]. Conventional sensors are utilized to
detect occupancy in a specific area, such as passive infrared (PIR) sensor, CO2 sensor and
ultrasonic sensor [6–9]. However, these sensors have the limitations such as sensitivity to
temperature, slow response, etc. The vision-based system takes the advantage of ultra-high
resolutions and can be implemented easily. However, its light sensitivity and privacy
violation also limit the promotion of the system in some other applications [10–12].
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Compared to the above sensors, the millimeter-wave radar sensor has the advantages
of long-range capabilities, low cost and the ability to work in non-line-of-sight situations,
such as through building walls and clothes [4,13,14]. It was proved that the mm-wave
radar is robust against non-line-of-sight interference including foam, plastic, etc., with
less than 1% change in point-cloud density [15].Moreover, it is a form of non-intrusive
technology and does not cause privacy issues, which is particularly valuable [16]. Thus,
millimeter-wave radar sensors currently attract increasing attention from both academia
and the industry [17–21].

In order to apply the mm-wave radar in practical applications, the relevant data
features must firstly be extracted from the reflected signal [22–26]. Hence, data processing
methods for extracting more detailed features from the reflected signal, such as the features
of the distance [27], velocity [28,29], Radar Cross Section (RCS) value [30] and angle [31],
are widely investigated. Radar point cloud data not only contains almost all the aforemen-
tioned features but also can directly indicate the spatial locations of the targets, and they are
receiving more attention. However, most of these research investigations are focused only
on feature extraction and recognition after obtaining point clouds without paying much
attention to the generation of the point cloud [15,32–36]. This causes inaccurate results
because it is well known that the quality of the generated point cloud has a significant
effect on the accuracy and effectiveness of the subsequent data process.

As it is well known, high angle resolutions that can generate dense point clouds are
closely related to the antenna array with a large aperture in both azimuth and elevation.
However, the cost of the hardware increases along with the number of antenna elements.
One possible solution to reduce costs without sacrificing the angle resolution is by utilizing
MIMO radar [37–39]. For example, the MIMO radar with two-dimensional sparse arrays
and hundreds of virtual elements can enable high-fidelity four-dimensional sensing (range,
Doppler, azimuth and elevation) [40].

As for the solutions of data processing from the FMCW-MIMO radar raw data to
the target point cloud, the 3D-Fast Fourier Transform (FFT) algorithm still occupies the
mainstream position [41]. The algorithm was clearly illustrated in related investigations, for
example, the FFT is performed firstly on the data of three different dimensions (radar signal
in time domain, chirp and antenna) one after another; on the other hand, velocity and angle
of the target are determined as a result [42,43]. Common peak detection methods such
as threshold-based methods and Constant False Alarm Rate (CFAR) are applied between
FFT signal processing to finally generate the spatial point cloud. However, the point cloud
generated is too sparse and cannot distinguish the difference between the background
environment and human targets.

Recently, the method proposed by Texas Instrument Technology (TI-mPoint) is widely
used in human detection, and its strategy is shown in Figure 1a. The order of the data
process could be simplified as the Range-FFT, moving target indication (MTI) method [44]
and Minimum Variance Distortionless Response algorithm (MVDR) [45], and it can capture
the Range Angle Image (RAI) of the target and detect the peak points by the Constant
False Alarm Rate (CFAR) [46,47]. At the end, the human target 3D point cloud is obtained,
which is denser and more accurate than the aforementioned method by introducing Digital
Beamforming (DBF) technology (get more information on TI-mPoint, please refer to
https://training.ti.com. Accessed on 25 August 2021). Since the MTI process is added in the
TI-mPoint, the point cloud of the human targets could be separated from the background,
which extended the application of the mm-wave radar [15,35]. However, due to the
multipath reflections caused by other objects in the background during the MTI process,
noise points badly appear in the point cloud. Moreover, since the MTI results show the
intensity of the motion of the target and not the true intensity of human body reflection, the
point cloud generated by TI-mPoint cannot reflect true spatial information of the human
body that is accurately detected.

https://training.ti.com
https://training.ti.com
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Figure 1. The radar signal processing flows: (a) TI-mPoint and (b) proposed comprehensive mPoint. 
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the help of MVDR, and the more detailed feature of the direct RAI is located and extracted 
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produced as a result of the combined RAIs. Subsequently, the results of the methodology 
and the length of the algorithm running time were verified in six different human postures 
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Figure 1. The radar signal processing flows: (a) TI-mPoint and (b) proposed comprehensive mPoint.

In this paper, a novel method (comprehensive mPoint) for generating 3D point cloud
of human targets, considering both the static and dynamic characteristics of radar reflected
signals, is proposed and illustrated in Figure 1b. Firstly, by introducing the Range Doppler
Image (RDI), the multipath refection noise in the RAI from MTI result is reduced, and the
optimized RAI is obtained; then, direct RAI from Range FFT data is obtained with the help
of MVDR, and the more detailed feature of the direct RAI is located and extracted by com-
bining the optimized RAI, namely combined RAI. Finally, 3D point cloud can be produced
as a result of the combined RAIs. Subsequently, the results of the methodology and the
length of the algorithm running time were verified in six different human postures based
on the defined point cloud accuracy rate. Compared with the TI-mPoint, the point numbers
and accuracy rate of the point cloud generated by our proposed comprehensive mPoint
increased by 86% and 42%, respectively. The comparisons will be explained in the paper.

The innovative contributions are summarized as follows:

1. In this paper, a novel data processing method considering both the static and dynamic
characteristics of radar reflected signals is proposed and utilized in order to generate
the point cloud of the human bodies.

2. The RDI is introduced to help reduce noise during the radar signal target detection
process in order to improve the performance of angle estimation on MTI results. The
optimized RAI is obtained.

3. The optimized RAI is utilized to locate the target on the direct RAI from Range-FFT
data. More detailed reflection information of detected target is obtained from the
combined RAI.

4. Both the azimuth and elevation angle information of the detected target from two
combined RAIs are captured based on the corresponding range and SNR value in
order to help generate the 3D point cloud of the target.

2. Background Theory and Proposed Method

Figure 2 shows the transmitted signal of the FMCW-MIMO mm-wave radar utilized
in the study. A chirp signal is the FMCW signal in a cycle Tc. In each chirp signal,
the radar uses the Time-Division Multiplexing (TDM) MIMO Angle-Of-Arrival (AOA)
estimation algorithm to increase the angular resolution by M transmit antennas and N
receive antennas, as shown in Figure 2b.
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Figure 2. (a) The time-frequency diagram of the FMCW signal, (b) the MIMO antenna structure and 
(c) the FMCW signal chain of the radar. 
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Figure 2. (a) The time-frequency diagram of the FMCW signal, (b) the MIMO antenna
structure and (c) the FMCW signal chain of the radar.

Mathematically, a transmitted chirp signal and the corresponding received signal is
given by the following:

sT(t) = At exp
(

j
(

2πfmin t + π
B
Tc

t2
))

, 0 < t < Tc (1)

sR(t) = Ar exp
(

j
(

2πfmin(t− τ) + π
B
Tc

(t− τ)2
))

(2)

sIF(t) = sT(t)∗sR(t) = AtAr exp
(

j
(

4πBRt
cTc

+
4πR
λ

))
(3)

where At and Ar are the amplitudes of the signals, fmin is the initial sweep frequency, B is
the sweep bandwidth and τ = 2R/c is the time delay between the transmitted signal and
the received signal reflected by the target at the distance R. Two signals are mixed to obtain
the Intermediate Frequency (IF) signal, which is related to the range of target.

Although FFT processes data of multiple dimensions, Range FFT data including range
information and RDI including velocity information are calculated [33]. The frequency
of IF signal is fIF = 2BR

cTc
, the range resolution is ∆R = c

2B , the maximum unambiguous
velocity is v = λ

4Tc
and the velocity resolution is ∆v = λ

2Tcfn
, where λ is the wave length of

the radar signal, and fn is the number of chirps. In former studies, RDI was mostly utilized
to estimate the velocity of the targets. However, its implementation in noise reduction has
received little attention.

To determine the AOA of the target, the MVDR algorithm, which has better resolution
than Angle-FFT, is introduced [48]. In this paper, the receive antenna is assumed as a linear
antenna array possessing N receive antennas, and the received signal of the first receive
antenna is sr(t); the received signal is given by the following:

x(t) = sr(t) ∗ a(θ) (4)

where a(θ) is the steering vector
[
1, ej 2πd sin (θ)

λ , ej((N−1) 2πd sin (θ)
λ )

]T
. By using the maximum

likelihood method, the power distribution at different angles is calculated as follows:
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P(θ) =
1

a(θ)HR−1a(θ)
(5)

where R = xt∗xH
t , the angle information (RAI) of the targets is obtained.

In order to detect more comprehensive information of the target by using radar
data, the data process method proposed here considers more data features, as shown in
Figure 1b.

Firstly, the captured raw radar cube data are regarded as three-dimensional (radar
signal in time domain, chirp and antenna) cube data. After Range FFT data and RDI are
calculated, the MTI process is applied to remove static information in the received signal;
dynamic information (DI) is calculated to highlight movement information existing in the
target in which FFT(chirpi) is the FFT result of the ith chirp signal.

DI =
fn

∑
i=1

(
FFT(chirpi)−

fn

∑
i=1

FFT(chirpi)

fn

)
(6)

Next, the MVDR algorithm is applied to obtain the direct RAI from Range-FFT data
and the RAI from MTI result, respectively. Afterward, the RDI and two different RAIs are
combined to obtain more detailed information and the point cloud of the target as stated
below:

• Detect the peak value of velocity in RDI and determine the distance R of the human
target.

• Find the moving target information at R in the RAI from MTI result, which is repre-
sented by area A. Area A refers to an area in the Range–Angle plane where the moving
target is located, such as the target area in the RAI.

• Corresponding to the target information in the RAI from MTI result, the data at the
corresponding position (area A) in the direct RAI from Range-FFT data is used as the
target data, which is A∗ =

{
P(range, angel, SNR)

}
. The set A∗ is a set of target points P

on the angle plane, and it includes the distance, angle and signal-to-noise ratio values.
• After obtaining the target data A∗1 =

{
P(range, azimuth angle, SNR)

}
on the azimuth plane

and A∗2 =
{

P(range, elevation angle, SNR)

}
on the elevation plane, the point cloud of

the target is finally produced based on the corresponding range and SNR value on
different angle planes. The formula is given by the following:

A∗1 ⊕A∗2 →
{

P(range, azimuth angle, elevation angle, SNR)

}
(7)

where ⊕ represents the combination of target data in two different angle planes. The
above algorithm process can be represented in the following pseudocode (Algorithm 1).

Algorithm 1: Point Cloud Generation

FUNCTION Combined RAI Generation (data = Radar Raw Data):
Range-FFT data = 1D FFT (data), RDI = 2D FFT (Range-FFT data)
MTI result = MTI (Range-FFT data), RAI from MTI result = MVDR (MTI result)
Direct RAI = MVDR (Range-FFT data)
For d (range bin, velocity) in RDI:

If d> SNR:
range bin(d) ∈ speed change area

If d in no speed change area:
Optimized RAI = RAI from MTI result(d = 0)

For d (range bin, velocity) in optimized RAI:
If d > SNR:

Combined RAI = Direct RAI (d)
Return combined RAI
combined RAI (azimuth), combined RAI (elevation) = Combined RAI Generation (data)



Sensors 2021, 21, 6455 6 of 21

For d1 (range bin, azimuth angle bin) in combined RAI (azimuth):
If d1 > SNR:

For d2(range bin, elevation angle bin) in combined RAI (elevation):
If range bin(d2) = range bin(d1) And d2 = d1:

Point cloud add p (range, azimuth angle, elevation angle, SNR)
Return Point cloud
END

The comprehensive mPoint proposed here considers more data features of the fol-
lowing: The velocity information of the target in RDI is considered creatively for noise
reduction in order to obtain the optimized RAI; not only the position of target is located
from the optimized RAI but also the directly reflected information in the RAI from Range-
FFT data is regarded as the target data; the target data in the combined RAIs of two different
angle planes is correlated in order to produce point clouds based on the fact that the target’s
reflection points in azimuth and elevation planes have the same range and SNR values.

3. Experimental Implementation, Result and Discussion
3.1. Radar Sensor and Testbed Setup

The system is developed on a commercial millimeter wave radar sensor IWR6843ISK-
ODS (Texas Instruments) using three transmit antennas in L-shaped configuration and
four receive antennas in rectangle-shaped configuration. The two-dimensional antenna
array shown in Figure 3 has 120 degrees range of view at both the azimuth plane and
elevation plane. The detailed configuration of the radar parameters is shown in Table 1.
The specific test environment is set up in an office room, as shown in the Figure 3a, where
the radar board is located 1 m away from the ground. The sensor data are transferred to
the computer through the DAQ (FPGA board DCA1000). All data processing of the system
is implemented in the computer, which receives the raw data collected by the radar and
then generates a 3D point cloud.
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Table 1. Radar parameters.

Parameter Configuration

Start frequency 60 GHz
Sweep bandwidth 3.92 GHz

Sweep slope 98 MHz/µs
Frame rate 5 fps

Sampling frequency 2200 ksps
Number of samples per chirp 64
Number of chirps per frame 200

3.2. Point Cloud Generation with Two Moving Targets and Discussion

To better explain the comprehensive mPoint, the experimental environmental is set up
(Figure 3). The test environment is a 3 × 5 m room. The radar is located in the left center of
the room and 1 m away from the ground. There are three iron tables evenly distributed
on the right side of the room, and the size of the table is 1.2 × 0.6 × 1 m. Testers A and B
are pacing around 1.5 m and 2.0 m in front of the radar, where A is 1.64 m tall and weighs
52 Kg and B is 1.75 m tall and weighs 75 Kg.

The results of the Range-FFT are shown in Figure 4; there are obviously several peaks
in the Range-FFT data that correspond to the different distance of the targets in four
selected chirp signals. In the experiment, two testers are 1.5 m and 2 m away from radar
respectively, but due to the reflection characteristics of the human body, the two peaks
appear around 1.5 ± 0.3 m and 2.0 ± 0.3 m, respectively. In addition to these peaks, there
are also other FFT peaks caused by other indoor objects such as tables, walls, etc., that will
be suppressed after the MTI process. Then, Doppler-FFT result RDI is shown in Figure 5.
The bright spots illustrate the reflection of targets with the abscissa corresponding to the
velocity of the targets. There are obviously some areas brighter than the surrounding area
between 1 m and 2.2 m corresponding to the higher power data, which was clearly caused
by the motion of human body. In this paper, peak detection based on threshold is used
in both RDI and RAI, where the data value is mapped to the interval of 0–100, and 50 is
selected as the high-power value threshold after multiple tests. Thus, the range of human
targets can be determined.

The result of the MTI process is shown in Figure 6 in which part (a) shows the Range-
FFT result and (b) shows the MTI result; this clearly shows that the peaks values caused by
other static backgrounds in the room (such as tables, walls, etc.) are effectively suppressed
compared with Figure 6a at 0–1.5 m and 2.5–3 m. It is worth noting that the vertical axis
amplitude value in (a) and (b) reflects the intensity of the human body reflection and the
intensity of the human movement, respectively.

According to the comprehensive mPoint method introduced in Figure 1b, the results
in Figures 7–9 can be obtained, respectively. After the MTI and MVDR process, the dynamic
characteristics of the reflected signals and the optimized RAI were obtained and shown in
Figure 7. Direct RAIs including static characteristics of the reflected signals were obtained
from Range FFT data and shown in Figure 8a. The combined RAI shown in Figure 8b is
the integrated result of optimized RAI and direct RAI. Finally, the 3D point clouds were
generated from the combined RAI of two different angle planes, and the clustering results
are shown in Figure 9a,b.
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The RAIs from MTI result and the optimized RAI are shown in Figure 7. Two human
targets are marked out in both RAI (Figure 7a) and RAI (Figure 7b) through the MTI
process, and most backgrounds noises were reduced effectively, but the noise due to the
multipath reflection still remains in the Figure 7a. With the help of RDI, this kind of noise
in areas with no speed change can further be reduced, as shown in Figure 7b. In addition,
some noise is also reduced in peak detection process, for example, the noise signal under
target B in Figure 7a is suppressed in Figure 7b since the power value is lower than the
SNR threshold.
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In Figure 8a shows the direct RAI from Range FFT data: The human targets are aliased
with other static backgrounds. In Figure 8b, the combined RAI and the target data on
the azimuth plane are finally determined by combining two different RAIs together. The
contours of the two human targets are clear enough to show the features of the targets.
Moreover, it is easily to understand that the target data on elevation plane is similar with
that shown in Figure 8b, but it occupies more angle bins in the elevation angle direction
because the azimuth plane represents the width and the elevation plane represents the
height of the human target. The RAI representing the intensity of movement of the human
body is shown in Figure 7a, the RAI representing the intensity of the human body reflection
is shown in Figure 8a and the combined RAI that considers both the static and dynamic
characteristics of the human body is shown in Figure 8b. Thus, the combined RAI that
includes accurate location and reflection intensity is the more comprehensive human
feature.

Then, the point cloud was produced from two RAIs of different angle plane and is
shown in Figure 9a, where the red dot (0, 0, 0) is the position of the radar. The generated
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point clouds of target A and target B are accurately aligned with the human targets’ position
from the vision system.
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In addition, in this paper, in order to detect the targets in the experiment, the density-
based cluster algorithm DBSCAN is used to detect distinct human targets and to separate
the human targets from noises that may still remain. The DBSCAN algorithm is attractive
because it does not need the number of clusters to be a priori specified, and it can mark
outliers as the noise automatically. There are two parameters in the algorithm: Epsilon,
which indicates the maximum distance of two points in the same cluster, and MinPts,
which indicates the minimum point number to initialize a new cluster. In this study, the
proper parameters 0.5 as Epsilon and 20 as MinPts are chosen for the algorithm. The cluster
result is shown in Figure 9b, the point cloud is divided into two clusters that represent the
two targets and there are no outliers in the result.
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The 3D point cloud of the human targets is finally produced based on the proposed
comprehensive mPoint, which is consistent with the test environment. Moreover, the
cluster algorithm DBSCAN can be easily applied on the point cloud to detect distinct
human targets.

3.3. Characteristics of the Generated Point Cloud and Discussion

In order to discuss the performance of the comprehensive mPoint, six sets of radar
raw data of target B including Standing, Sitting, Lying, Horse stance, Lunge and Hands
up postures are collected in the environment, as shown in Figure 10. The background
environment is same as that shown in Figure 3, and the person involved in the test stands
1.5 m directly in front of the radar.
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The concept of the accuracy rate of the human target point cloud is proposed and
described to estimate the accuracy of the generated point cloud in this paper: Ac =

Pin cube
Psum

where Pin cube is the point number of point cloud within the posture cube, and Psum is the
total number of the generated point cloud. In terms of posture cube, corresponding to each
test posture, the spatial position of the human body is different and marked by a cube with
height, width and thickness, respectively, and the center of the bottom surface of the cube
is located in at the coordinate (0, 1.5, −1) (shown in Figure 10). The parameters of each
body posture cube are given and shown in Table 2. It is common to understand that the
higher the value of Ac, the higher the accuracy of the generated point cloud. In addition,
the point cloud accuracy rate mentioned in the following text refers to the parameter Ac
that is defined here.

Table 2. Posture cube with six different postures.

Human Posture
Dimension

Height/m Width/m Thickness/m

Standing 1.75 0.5 0.25
Sitting 1.28 0.55 0.65
Lying 0.7 1.45 0.48

Horse stance 1.6 0.6 0.4
Lunge 1.6 1.23 0.35

Hands up 1.71 1.75 0.25

In order to compare the characteristics of two data processing methods, the TI-mPoint
and the comprehensive mPoint are both utilized to generate target point clouds. The point
cloud results based on TI-mPoint, which include 3D point cloud and its three-dimensional
distribution histogram, are shown in Figure 11. While the results of comprehensive mPoint
are shown in Figure 12. Figures 11 and 12 demonstrate the effectiveness of the comprehen-
sive mPoint. Compared with TI-mpoint, the results of comprehensive mPoint in this paper
have a denser point cloud with fewer noise points. For example, there are two clusters in
standing and sitting postures in Figure 11, while Figure 12 has only one cluster.
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The clustering results of Standing and Lying postures are vertical and horizontal cubes,
respectively, which is same as the actual situation; hence, the generated point clouds by
both methods are both consistent with the true posture, but it is intuitively shown that
comprehensive mPoint results have denser points and less noise points than the TI-mPoint
result. For example, in the TI-mPoint result, the point cloud is sparse and even includes
multipath reflection noise, which causes ghost images, but the result of the comprehensive
m-Point method shows that the generated point cloud is denser, and there is no ghost
image.

Moreover, 100 frames of original data for each posture were collected, and the point
cloud data were calculated based on the TI-mPoint and comprehensive mPoint, respectively,
for analyzation in this study. The points number and the accuracy rate of each set of point
cloud are calculated according to the described Ac parameter. According to the results, the
box plots of the points number and accuracy rate based on both methods are shown in
Figure 13, where (a) shows the number of all detected points and (b) shows the accuracy
rate of the point cloud results.

In box plot Figure 13, the height of the box is the Interquartile Range (IQR) value,
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which is positively correlated with the variability of the data. In the box plot of points
number and accuracy rate, the median value of the comprehensive mPoint is obviously
higher than TI-mPoint, indicating that the method proposed in this paper produces denser
and more accurate point cloud. In the Sitting posture, due to the small reflection area of
the human body, the points number of the comprehensive mPoint result has not increased
substantially. However, the accuracy rate has almost doubled due to the large width of the
posture cube. It also proved that the point cloud generated by the new method has a higher
accuracy rate on the Y-axis. In the Hands up posture, due to the large reflection area of the
human body, the points number of the comprehensive mPoint result almost doubled.
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In addition, for each posture, the averaged values of all the detected points number
and accuracy rate of 100 sets of point cloud are calculated in order to better compare the
results of the two different methods, as shown in Figure 14.
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In terms of points number, the TI-mPoint achieved the least number of points during
the Lying posture (133) and achieved the greatest number of points during the Sitting
posture (170). The average number of points obtained on the six postures is 149. The
comprehensive mPoint obtained the lowest number of points for the Sitting posture (200),
the most points for the Lunge posture (322) and the average number of points obtained for
the six postures is 278. The averaged value of comprehensive mPoint points number in the
six postures is 86% higher than that of the TI-mPoint. In terms of accuratcy rate, TI-mPoint
achieved a minimum value of 25.52% for the Hands up posture and a maximum value
of 57.4% for the Lunge posture. The average value obtained on the six postures is 38.4%.
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The comprehensive mPoint achieved a minimum of 28.87% for the Hands up posture, a
maximum of 81.6% for the Sitting posture and an average of 54.6% for the six postures. The
accuracy rate of comprehensive mPoint for the average of the six postures is 42% higher
than the TI-mPoint. The main reason for this is that the comprehensive mPoint not only
considers the movement part of the human target but also the reflection information of the
human body surface. Therefore, when a larger target reflection area is considered, a denser
point cloud is obtained. This is consistent with the distribution of the points number for
the six postures. In terms of accuracy rate, the results indicate that the longer the thickness
of human posture cube on the Y axis, the higher the accuracy rate, illustrating that the
precision of the point cloud on the Y axis needs to be improved. Furthermore, the running
results show that the average running time of the TI-mPoint is 2.254 s, and the running
time of the comprehensive mPoint is 2.291 s. The processing time has only increased by
1.6% as a slight tradeoff.

4. Conclusions

In this paper, an efficient 3D point cloud generation method for human targets with
FMCW MIMO mm-wave radar was proposed. Compared with the commonly known
TI-mPoint method, the proposed method creatively integrates various information of
radar data, including Range-FFT, RDI, MTI results, RAI, etc., and realizes the point cloud
generation system of the human bodies. By simultaneously benefiting from the considered
human body movement in optimized RAI and human body reflection power in direct RAI,
comprehensive human body surface information can be obtained in combined RAI for
generating high density and precision point clouds. The method was explained in more
detail on two human target data sets.

At the same time, the test was conducted with respect to six different postures of the
tester. Compared with the TI-mPoint, the points number and accuracy rate of the point
cloud generated by comprehensive mPoint increased by 86% and 42%, respectively. Thus,
the density and accuracy rate of the point cloud greatly increased. Moreover, the proposed
method also reduced the influence of multipath effects and did not substantially increase
computational costs.

It is believed that the mm-wave radar, as a kind of non-intrusive technology, has excel-
lent performance in penetrating common material in the room, and it is robust against non-
line-of-sight interference and does not cause privacy issues. In the future, the application
of point clouds generated by comprehensive mPoint could be used for practical products
such as people counting, human identification recognition and posture classification.
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Nomenclature

FMCW Frequency-Modulated Continuous Wave
MIMO Multi-Input Multi-Output

Comprehensive mPoint
The point cloud generation method of millimeter wave radar
proposed in this paper

TI-mPoint
The point cloud generation method of millimeter wave radar
proposed in https://training.ti.com. Accessed 25 August 2021.

PIR Passive Infrared
SAR Synthetic Aperture Radar
FFT Fast Fourier Transform
RCS Radar Cross Section
Range-FFT The FFT performed on the radar signal in the time domain data
MTI Moving Target Indication
MVDR Minimum Variance Distortionless Response
RAI Range Angle Image
CFAR Constant False Alarm Rate
RDI Range Doppler Image
TDM Time-Division Multiplexing
AOA Angle of Arrival
SNR Signal to Noise Ratio
DAQ Data Acquisition Systems
FPGA Field Programmable Gate Array
Doppler-FFT The FFT performed on the chirps’ data
DBSCAN Density-based Spatial Clustering of Applications with Noise
IQR Interquartile Range
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