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Abstract: Extracting features from sensing data on edge devices is a challenging application for
which deep neural networks (DNN) have shown promising results. Unfortunately, the general
micro-controller-class processors which are widely used in sensing system fail to achieve real-time
inference. Accelerating the compute-intensive DNN inference is, therefore, of utmost importance.
As the physical limitation of sensing devices, the design of processor needs to meet the balanced
performance metrics, including low power consumption, low latency, and flexible configuration.
In this paper, we proposed a lightweight pipeline integrated deep learning architecture, which is
compatible with open-source RISC-V instructions. The dataflow of DNN is organized by the very
long instruction word (VLIW) pipeline. It combines with the proposed special intelligent enhanced
instructions and the single instruction multiple data (SIMD) parallel processing unit. Experimental
results show that total power consumption is about 411 mw and the power efficiency is about
320.7 GOPS/W.

Keywords: sensing system; dnn; intelligent computing architecture; RISC-V; VLIW; SIMD

1. Introduction

Traditional Internet of Things (IoT) devices are usually responsible for data mea-
surement, data collection, and pre-processing tasks. Due to the limitation of bandwidth,
the huge amount of data generated by the edge devices cannot be transmitted to the cloud
for further AI intelligent computing. Extracting features from sensing data by DNN in the
sensing system is challenging as deploying intelligent applications requires the trade-off
between real-time and high efficiency in the resource-limited edge devices. At this stage,
the widely-used micro-controller-class processors in sensing system, such as MCS51 and
STM32, accomplish given tasks without an operating system and with limited memory and
low processing capacity. Because of the poor performance of the micro control unit (MCU),
deploying neural networks directly on micro-controller-class processors faces many diffi-
culties. Notably, intelligent applications impose strict requirements on: (1) high computing
performance, (2) low power consumption, and (3) flexible configuration [1]. Therefore, it
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is necessary to design advanced processors equipped to the sensing system to satisfy the
demands of deploying DNN with balanced performance metrics. Therefore, it is necessary
to design advanced processors equipped with the sensing system to satisfy the demands of
deploying DNN with balanced performance metrics.

In the edge applications of feature recognition and data abstraction, DNN calculation
has to be executed with sub-millisecond latency, which requires the computing perfor-
mance of the sensors with large data sampling interval is not less than 3 GOPS. Presently,
typical neural network hardware accelerator is designed for servers or high-performance
computing centers [2–7], which focus on accelerating performance and ignore resource
consumption and power budget.

Although they have high computing performance, they cannot be used in the resource
and power constrained sensing system.

To alleviate the poor-performance problems, a number of studies have been under-
taken to accelerate DNN implementations by designing hardware-accelerated intelligent
computing architecture for sensing system.

Some researches exploit the property of DNN to reduce latency by using the parallel
characteristics of special acceleration circuit design, such as [8–14]. Yet these works ignore
that the whole power consumption exceeds budget. At present, most of the ideal edge
devices in the sensing system are powered by battery, which requires power consumption
around hundreds of milliwatts. The power budget consists of average power consumption
and instantaneous power consumption. Limited instantaneous power consumption will
lead to a decrease in computing performance.

The other part of the researches are devoted to use optimization method to improve
energy efficiency ratio. For example, the throughput of the architecture proposed in [15]
reaches 59.52 GOPS at 120 MHZ, and the power consumption is 1.35 W. The same phe-
nomenon appears in [16–18]. Although these works on intelligent computing architecture
for edge applications meet the requirements of real-time performance, the balance between
energy efficiency ratio and overall power consumption cannot be achieved. In short, these
previous works focus on the energy efficiency of the embedded intelligent computing. For
the limited power budget in specified AIoT applications, the lack of system level energy
and power optimization are still needed to be researched.

The network deployed in the sensing system of the feature extraction is not a single
structure. Different network characteristics require corresponding neural network struc-
tures for better support. The computing architectures designed in [19,20] rely on single
network structure or are only for a single application field, resulting in poor adaptability.
So these works are difficult to apply to other application scenarios or different network
structures. For example, it will cause a lot of waste of resources when the neural net-
work structure with a large number of channels is used to accelerate the calculation of
small-channel networks. In the intelligent application of feature extraction of sensor data,
the obtained data have various characteristics from the perspective of space, so the network
structures are adapted to different scenarios, which puts forward requirements for config-
uration flexibility. In terms of time, as the amount of sensor data increases, the analysis
strategy needs to be adjusted and the acquisition algorithm needs to be modified, resulting
in higher demands on flexibility. Most of them are dedicated circuits designed for a specific
network, and their flexibility is difficult to support the analysis of multi-source data.

It is, therefore, extremely challenging to deploy DNN calculation flexibly on sensing
system with large power consumption constraints and real-time requirements, which is to
adapt to the application requirements of feature extraction and further realize the efficient
deployment of DNN model on edge devices.

2. Motivation

As the large sampling interval of the edge devices in the sensing system, the limitation
of low power consumption is the main areas of concern, and the requirement for improving
the calculation performance is relatively low. Most of the common embedded processors are
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simple MCU, which usually use Harvard structure. In accelerator mode, a lot of redundant
data transmissions are inescapable. Previous work has found that memory access energy
consumption accounts for the main part (76.3%) of the energy consumption of DNN
accelerators [21,22]. The power consumption of transmitting 32-bit data from memory is
three orders higher than that of addition operations [23]. In addition, the utilization of the
computing unit is limited by the high latency and low bandwidth of memory access [24],
since the computing unit remain idle, waiting for data to be transferred from memory.

As is shown in Figure 1, it is a complex round trip for data movement since the storage
of loosing coupling architecture is independent. Firstly, the sensor data are transmitted
to the kernel space of memory through the bus, and then transferred to the user space for
preprocessing. After the preprocessing has been completed, it is necessary to move the
data from the user space to the kernel space and then to drive the accelerator under the
system call mode. The accelerator with private storage fetch the data from the kernel space
for intelligent computing. The accelerator with private storage fetches the data from the
kernel space for intelligent computing. Massive redundant data movements are incurred,
such as the third step in Figure 1, which causes significant energy consumption. The design
in this work is a tightly coupled architecture, thus the coprocessor and the CPU share the
key resources, such as register files, memory, and cache. The intelligent components work
in the form of coprocessor and fetch data directly from the user space, thereby improving
the efficiency of data access and reducing energy consumption.

Figure 1. Data movement in the whole system.

The neural network is in a period of rapid development, and the network structure
is constantly updated. The key problems in designing a tightly coupled coprocessor for
intelligent computing are data storage access and dataflow maintenance. The core of data
storage access is that convolution calculation is high dimensional, but the off-chip storage
accesses are through one-dimensional linear address, which leads to the dispersion of data
access. In addition, dataflow needs to be reorganized on the chip, which puts forward
further requirements for the flexibility of data scheduling [22]. In order to support the
mapping of different dataflows and various network structures, it is necessary to calculate
the parallel features according to the network structure information and the scheduling
relationship, and then determine the data path and data access features. To satisfy the
reconfigurable requirements, most of the existing intelligent computing structures rely on
hardware dynamic scheduling. By modifying the register to adjust to the data path, a large
number of hardware scheduling logics have been added to the computing structure, which
introduces a very large hardware complexity and energy consumption. Although many
optimization methods are used in Eyeriss, the cost of control of the data path is still high [2].
In edge applications with limited resources and power consumption, the scheduling space
is limited, thus the flexibility is insufficient.

The complexity of the dataflow maintenance by hardware calculation is high, whereas
the software is more suitable for scheduling. From the point of view of the instruction,
the pipeline is the execution process of overlapping instructions. Relying on the software
technology for static discovery parallel during compilation, the relationship between each
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calculation and the previous calculation is controlled by the compiler, which controls how
the data are moved. The method reduces so much power consumption that higher energy
efficiency can be obtained. The irrelevant operations in the pipeline are analyzed and
encapsulated into VLIW to complete the static scheduling. For example, in the process of
DNN calculation, the next data-block can be transmitted while the convolution calculation
of the current data-block is carried out. This irrelevant relationship is so fixed that it is easy
to maintain by VLIW. At the same time, SIMD structure is used for the pipeline level with
a large number of data-level parallelism so as to achieve the balance between algorithm
adaptability and computational performance.

This paper proposes a dedicated intelligent enhanced RISC-V instruction subset
which supports adaptive structure mapping and dataflow maintenance, thereby reducing
hardware complexity. Under the tightly coupled architecture, the VLIW + SIMD structure is
used to further realize the instruction-level parallelism and the data-level parallelism, which
meets the balanced performance metrics including low power consumption, low latency,
and flexible configuration. The contributions of our work are summarized as follows:

1. We design a mapping method to realize the deployment of different dataflows, thereby
satisfying the requirements for configuration flexibility;

2. We propose a lightweight tightly coupled architecture, VLIW ISA based SIMD ar-
chitecture (VISA), achieving a balanced performance metrics including low power
consumption, low latency and flexible configuration;

3. We develop a RISC-V dedicated intelligent enhanced VLIW instruction subset to
maintain various dataflows and support different DNN calculations.

3. Mapping Method of Data Flow

Common DNN models have some typical characteristics, including computational
characteristics and dataflow characteristics. In this section, we analyze the typical features
in details and optimize some operations to guide the design of the VLIW and tightly
coupled processor.

3.1. Analysis of Calculation Consistency

The DNN model is usually composed of some basic calculation layers. The basic
calculations mainly include convolution, activation function, batch normalization (BN),
pooling, and Softmax. Except for Softmax, the rest of the calculations use hardware modules
for calculation. Because Softmax often uses exponents, divisions, and other algorithms
which are relatively complex to implement in hardware, and are often at the last layer in
the classification network, the Softmax calculation is implemented by the software.

3.1.1. Convolution

The convolution operation is to slide the convolution kernel on the input feature map,
which multiplies the corresponding data in the current window, and then add them up.
Assuming that the window size is Kc * Kr, if there are Nin input channels, a pixel of the
output feature map is obtained by adding the multiplication results of Nin * Kc * Kr. The
convolution operation can be expressed as Formula (1):

Output(r,c,n) =
Nin

∑
m=0

Kc

∑
i=0

Kr

∑
j=0

Input(x,y,m)
′ ∗Weight(r,c,x,y,m,n) + bias(n) (1)

Note: m,n denote the input and the output channel respectively. i,j denote the size of
convolution kernel. r and c denote the size of output. x and y represent the size of output
feature map.

Convolution can be carried out by utilizing the parallelism of input channels. The data
of multiple input channels can be organized into vectors, and the corresponding weights
can also be organized into vectors for calculation. The input data among multiple output
channels are the same, but the index of weights is different.
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3.1.2. Batch Normalization

The normalization methods mainly include: local response normalization (LRN), local
comparison normalization (LCN) and BN. In recent years, BN has gradually replaced LRN
and LCN. BN calculation can be summarized as the Formulas (2)–(4):

Output(i,j,k) =
Input(i,j,k) −mean(k)√

var(k) + 0.00001
∗ α(k) + β(k) (2)

mean(k) =
1

NHW

N

∑
n=1

H

∑
h=1

W

∑
w=1

x(k,n,h,w) (3)

var(k) =

√√√√ 1
NHW

N

∑
n=1

H

∑
h=1

W

∑
w=1

(x(k,n,h,w) −mean(k))
2 + ε (4)

Note: Input(i,j,k) or Output(i,j,k) represents the pixel(i, j) of the kth input/output
channel in the output feature map. H, W represent the number of rows and columns of
the feature map. N represents the number of training samples. bn_weight and bn_bias are
obtained after training.

In order to avoid a large number of division operations, we can treat 1√
var(k)+0.00001

as a multiplier, which is calculate by CPU. BN calculation can be re-summarized as the
following Formulas (5) and (6):

Output(i,j,k)
′
= (Input(i,j,k) −mean(k)) ∗ γ(k) + β(k) (5)

γ(k) =
1

√var(k)+0.00001
∗ α(k) (6)

Since mean, var, bn-weight, bn-bias, and the convolution calculation bias are shared
with all pixels on a output feature map, mean(k), and bias(k) are fixed parameters in a
output channel. Therefore, the calculation formula is as Formulas (7) and (8):

Output(i,j,k)
′′
= (CONV(i,j,k) − bias(k)

′′
) ∗ γ(k) + β(k) (7)

bias(k)
′
= bias(k) −mean(k) (8)

Note: Input(i,j,k) is the final multiply-accumulate (MAC) result of convolution
calculation.

After the MAC of convolution calculation is completed, the new bias is added to
obtain a new convolution result. The BN calculation is finally summarized as Formula (9):

Output(i,j,k) = Input(i,j,k)
′ ∗ γ(k) + β(k) (9)

Note: Input(i,j,k)
′

is the convolution calculation result after bias adjustment. γ(k),β(k)
is new parameters for the BN layer.

In summary, through the pretreatment of parameters and the optimization of calcu-
lation, the original complex BN is transformed into a similar operation as convolution.
The combination of calculation parameters cannot only reduce the amount of calculations,
but also reduce the errors caused by parameter fixed point representation, and improve the
accuracy of the calculation. In addition, BN calculation can be carried out by convolution
calculation unit to simplify the structure.

3.2. Data Flow Scheduling Analysis

As is well known, the convolution can be expressed as a six-fold nested-loop, which
contains numerous MAC computations. Due to the limited on-chip storage, a large number
of parameters for the convolution cannot be stored on the chip at the same time. Different
loop-unrolling ways construct a variety of dataflow patterns, which makes the degree
of the data reuse varies greatly. Flexible dataflow scheduling is an effective methods to
improve the computational performance of DNN as it can achieve better data reuse in the
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condition of limited bandwidth. The dataflow scheduling of convolution calculation in this
paper is based on the analysis of the three patterns of DI\DO\DK [25].

The data index contains three dimensions: block, row, and column. The data are
placed in the off-chip memory by blocks, each block contains T channels. The organization
in each block is shown in Figure 2, Ri, Ci, and chi represent the number of rows, columns,
and channels of the input feature map, respectively. The data of eight input channels in
each pixel are expressed as one row of memory. In memory, the eight input channels of
each pixel are continuous and stored from column to row. Each transmission bursts at least
one pixel of the data.

Figure 2. The placement and delivery forms of feature map data.

Three types of the dataflow correspond to three types of loop unrolling modes. The
internal minimum cycle is fixed, and the window is the minimum unit. Therefore, all the
data in sub-block1 are transmitted to the chip first, so as to transmit the first calculated
demand data as soon as possible to establish the pipeline. The global buffer is set in the
form of a row buffer to store sub-block1, sub-block2 and the next row data, that is, a total
of K + 1 rows. Each calculation of the main computing unit will use a pixel data. Adjusting
the data index address according to the calculation requirements.

For the three dataflow patterns of DI\DO\DK, the difference of input data scheduling
is shown in Figure 3. The rectangular boxes represent the filling of data in the global buffer.
The movement of each rectangular box indicates the change of global buffer data filling. In
DI\DO patterns, the data is scheduled based on units of the entire feature map. However,
DI traverses all input channels firstly. Each block (e.g., Block_1) is transferred from the
memory outside the chip in sequence until the first set of output channels is computed.
DO traverses all output channels firstly, so the partial sum of all output feature maps is
computed and superimposed. DO preferentially traverses all output channels, and block1
is transferred from the memory outside the chip to calculate the partial sum of a set of
output channels. Since global buffer cannot store the whole graph data, it is necessary
to transfer the data of block1 again to compute the partial sum of the next set of output
channels, and to accumulate the partial sum to form output feature maps. Obviously,
in DK pattern, the data are scheduled based on the row instead of the entire feature map.
After calculating the first K rows of data, it switches to the next block to traverse the input
channels. As if the size of feature map is too large, which the whole row cannot be stored
in the buffer, each row will be divided into sub-rows.
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Figure 3. Three dataflow scheduling patterns.

4. VISA: A Lightweight Pipeline Integrated Deep Learning Architecture

The lightweight pipeline integrated architecture proposed in our work mainly includes
the dedicated intelligent enhanced VLIW extended instruction set architecture and the
SIMD computing architecture.

4.1. Architecture Overview

The system architecture of this design is shown in Figure 4. The intelligent acceleration
components are integrated into the main pipeline in the form of coprocessor. Sensors are
mounted on the same bus as processors and memory. The main processor pipeline and the
intelligent calculation coprocessor, respectively, access the memory through their respective
MMUs. Main processor and intelligent coprocessor share data through the shared area in
memory. As shown in Figure 1, the data from the sensor will be first transmitted to the
kernel space of memory through the bus, and then moved to the shared area of the user
space. The preprocessing program is run by the main processor, and then the intelligent
acceleration operation is carried out by the intelligent coprocessor. The final result data are
put back to the memory, waiting for the next operation.

Figure 4. Overall architecture.
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The custom compiler uses unified programming method to compile the target code of
the main processor and the intelligent computing coprocessor. The compiled instructions
are divided into ordinary instructions and dedicated intelligent computing instructions.
The overall calculation is performed in the form of an instruction pipeline. The main
processor first uses the first-level decoding unit to decode the fetched instructions. The
main processor then uses the second-level decoding unit to decode the fetched instructions
and use the main processor for processing when it is an ordinary instruction. It is put into
the AI instruction queue of the intelligent computing coprocessor to wait for processing
when it is an intelligent computing instruction. The decoding unit for intelligent calculation
decodes instructions and sends the decoded information to each calculation unit to control
and achieve specific intelligent calculation operations.

The intelligent computing coprocessor mainly includes an AI instruction queue, an AI
decode, a variety of AI computing units, a global buffer, a set of data registers which
include vector registers and a set of parameter registers.

Instruction queue is used to temporarily store special intelligent enhanced instructions.
The decoding unit decodes the fetched instructions and uses the decoded information
to control other components. The parameter register file stores the fixed parameters
for invocation.

Global buffer is a global data buffer unit. The hierarchical storage structure of intelli-
gent computing coprocessor includes three parts: memory outside the chip, global buffer,
and the data register file on the chip. Global buffer is a global data buffer unit. As the first
buffer area in the chip, the input, weight data obtained from memory access and the output
data that will be stored to memory are temporarily stored, which are the intermediate
buffer units of the out-of-chip memory access data. The data stored in the data register
file are the data of the calculation site. The input data and weight data are distributed
to the data vector registers for calculation. The intermediate process data are also stored
in the specified data register file, and the output data are collected into the global buffer
according to the organization form.

The intelligent computing coprocessor computing unit consists of the main computing
unit, the activation computing unit, and the pooling computing unit.

Main_CU is the main computing unit of the intelligent coprocessor, which implements
convolution, full connection and and BN calculation. Convolution and fully connected
operations share the main computing unit. At the same time, by adjusting the BN operation
to a single MAC, the BN computing reuses the main computing unit. Activate_CU realizes
the activation function. In our work, the hardware is achieved to use the vector register to
complete the calculation of Relu, Relu6, and Lrelu. Pool _ CU is the pooling calculation
unit of intelligent coprocessor, which supports maximum pooling and average pooling.
When there is pooling operation behind the convolution layer, the data are organized on
chip and the results of the convolution output feature map are stored in the buffer, which is
directly used for pooling calculation to reduce the transmission of data inside and outside
the chip.

4.2. Microarchitecture of SIMD Computing Unit

The main computing unit Main_CU adopts the SIMD architecture, which uses 8 × 8
PE arrays for parallel calculations, the PE array structure mapping is shown in Figure 5. For
convolution and fully connected calculations, array rows are parallel for input channels,
and columns are parallel for output channels. In other words, all of PEs are used in the
form of microstructure 2. Different rows in each column remain the weight of different
input channels corresponding to the same output channel. The weights of the same output
channel corresponding to different input channels are used between different rows in each
column. A column of PE calculated multiplication results are sent to the addition tree unit
for accumulation. Each row of PEs maps the calculation of the same point in different
output channels and reuses the neuron data of the same input channel.
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The following takes a 3 × 3 convolution window and 8 input channels to calculate a
pixel in an output feature map as an example to illustrate the calculation process.

1. Send the data corresponding to chin 0∼7 of the window_pixel (0,0) to 8 rows of
PEs, and send the data corresponding to window_pixel (0,0) of chin 0∼7 which
are corresponding to chout0 ∼7 to PEs in rows 0∼7 and columns 0∼7, respectively.
Calculate the partial sum of chout 0∼7, and then add it to the bias value in the bias
register, that is, use bias as the initial part;

2. Send the data corresponding to chin 0∼7 of the window_pixel (0,1) to 8 rows of
PEs, and send the data corresponding to window_pixel (0,0) of chin 0∼7 which
are corresponding to chout 0∼7 to PEs in rows 0∼7 and columns 0∼7, respectively.
Calculate the partial sum of chout 0∼7, and then add it to the previous partial sums;

3. In this way, until the sending of the data corresponding to chin 0∼7 of the win-
dow_pixel (2,2) to 8 rows of PEs, and the sending the data corresponding to win-
dow_pixel (2,2) of chin 0∼7 which are corresponding to chout0∼7 to PEs in rows
0∼7 and columns 0∼7, respectively. The MAC calculation results of a convolution
window and 8 input channels are obtained.

Figure 5. Microarchitecture of computing units for CONV calculation.

When the number of the input channel or output channel is more than that of comput-
ing units, the calculations are divided into multiple input blocks, and the block switching
sequence can be configured through instructions. For example, after calculating the K lines
of an input block to obtain the output part sum of one line of the output block, change
the K lines of the next input block to calculate the K of the next input block rows and the
partial sums that have been obtained by calculating the current input block, and so on,
until a complete line of the output block is calculated, and then start calculating the next
line output data of the output block.

When the input channel or output channel is less than the number of computing units,
instructions can be used for scheduling to group the rows or columns of the PE array and
perform calculations at multiple pixels to improve resource utilization.

For BN calculation, since there is no high requirement for the calculation performance
at the edge but for the limitation on the area and power consumption, it can be considered
not to set BN calculation unit, but to reuse PE unit. In other words, the first row of PEs
is used in the form of microstructure 1 for BN calculation while the rest are still used for
convolution calculation of seven input channels in the form of microstructure 2.

The parameters (weight, bias, bn_weight, bn_bias) required for convolution or fully
connected calculations and BN calculations are read in the parameter buffer. The input data
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required for the convolution calculation are the neuron value read from the buffer, and the
input data required for the BN calculation are the convolution calculation results obtained
from the previous clock or the convolution calculation results read from the buffer.

MAC, the result of the convolution calculation, is either used as a partial sum and
directly involved in the next operation, or written out to the buffer and read when needed
for subsequent calculations. The BN calculation result is directly sent to the subsequent
calculation unit for activation and pooling calculation.

5. VLIW Instruction Set Architecture

The standard instruction set defined by RISC-V architecture only uses a small number
of instruction coding spaces, and more instruction coding spaces are reserved for users as
extended instructions. Therefore, the special VLIW instruction in this paper is based on
RISC-V Custom instruction to extend the coprocessor.

5.1. VLIW Instruction Format

All instructions contained in the dedicated intelligent extension instruction subset
are shown in Table 1. The instruction is fixed-length, but its function is variable-length.
The dedicated intelligent extension instruction subset includes three categories of instruc-
tions, namely, intelligent computing instruction, data transmission instruction, and data
movement instruction.

Table 1. The dedicated intelligent extension instruction subset.

Instruction Type Example Operand

Transmission instruction MEMRE, MEMWR, MEMWE
Reg (memory start address)

immediate (bias)

immediate (length)
ine

Movement instruction MOVIN, MOVOUT
immediate (buffer index)

immediate (vector reg index)

immediate (depth)
ine

Computing instruction CONV, CONVBN, POOL

immediate (vector reg index1)

immediate (vector reg index2)

immediate (count)

The data transmission instructions are designed for controlling the bidirectional
dataflow between memory and global buffer. MEMRE represents reading the feature map
data from memory. MEMWR represents writing the feature map data to memory. MEMWE
represents reading the weight data from memory. Since the weight data are covered, there
is no need to write back.

The data transfer instructions are designed for controlling the bidirectional dataflow
between the data register file and global buffer. MOVIN represents moving the data from
global buffer to the vector register file. MOVOUT represents moving the data from the
vector register file to global buffer.

Intelligent computing instructions are designed for specifying computing types and
controlling the dataflow in calculation site. CONV represents convolution computation.
CONVBN represents convolution computation and batch normalization. POOL represents
pooling computation.

The VLIW instruction format of the dedicated intelligent instruction is shown in
Figure 6, and the instruction length is 128 bits. According to the instruction encoding rule,
the sixth to zero bit interval of the instruction is the opcode encoding segment specified
by RISC-V. We set [6:0] to 0001011 to indicate the use of custom-0 command group for
expansion. Each VLIW instruction contains four instruction slots, which can be filled with
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different dedicated intelligent extension instructions. Different extension instructions in
instruction subset are distinguished by four bit opcode.

Figure 6. VLIW instruction format.

In addition to the complete instruction set in RISC-V that can be used for extension,
each instruction also reserves a customizable coding space. In addition to the index used
for register operands, there are many bits of coding space left. RISC-V custom instructions
are used to configure the storage start address, the operation type included in the DNN
layer, the input and output feature map size, the size of the convolution kernel, the number
of input and output channels and the convolution stride, convolution pad, pooling stride,
pooling pad, activation type, and other parameters. The configuration information is
directly stored in the parameter registers of the intelligent coprocessor for call.

The format of some instructions in the dedicated intelligent extension instruction
subset is shown in Figure 7. The design of the instruction is mainly focused on the dataflow
maintenance at the coprocessor side. Adaptive structural mapping is carried out for
different dataflows, and the overall control scheduling of the calculation process is realized.
The dataflow in the whole acceleration process is mainly deployed around the out-of-chip
memory space and the hierarchical storage structure in the chip.

Figure 7. Some instructions in the dedicated intelligent extension instruction subset.

The data transmission instructions describe the bidirectional dataflow between mem-
ory and global buffer, and realize variable block transmission by registers and bias address-
ing. The transmission contents include input, output, weight, and psum. Taking the data
block as the basic unit of data stream organization, the data are divided into blocks and
scheduled according to the data block. Through the address indexes of the off-chip data
blocks, the data block switching sequence (loop execution sequence) is flexibly scheduled,
so as to realize the adaptive control scheduling of the calculation.

The data transfer instruction focuses on the on-chip part of the hierarchical storage
structure, describing how the dataflow distributes to the data register file from global buffer.

Intelligent computing instructions specify computing types, focusing on describing
all structural parameters of the dataflow between the data vector registers and the comput-
ing components to obtain from the parameter registers with a fixed path and adjust the
calculation state. The count operands in the instruction are set to reduce the overhead of
complex control circuits. Only a few simple counting circuits are retained to implement
small loop bodies.

5.2. Neural Network Application Deployment

VISA is a program-oriented architecture, which realizes the configuration and map-
ping of calculation through programs. We use the method of program to achieve deploy-
ment. The deployment means is VLIW scheduling, and the processor realizes NN through
the operation of software.
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5.2.1. Scheduling of VLIW Instructions

The system pipeline has made some adjustments to suit this design. Inevitably, some
128-bits intelligent extended instructions will become unaligned due to the length of
standard RISC-V instructions is 32-bits. In order to save an additional fetch cycle, we
learn from [26] to deal with the problem of unaligned accesses. By using an additional
register that retains the last instruction, 128-bit intelligent extension instructions can be
easily fetched in one cycle even in unaligned cases.

Many parameters need to be modified to deploy different DNNs on VISA. During
DNNs loading, computing, and storing data, the corresponding instructions are set accord-
ing to network and structure parameters, as shown in Table 2.

Table 2. Instruction Setting.

Instruction Network Parameters Structure Parameters

MEMRE input channel/input size/block/location bandwidth/buffer size

MEMWR output channel/output size/block/location bandwidth/buffer size

MEMWE input and output channel bandwidth/buffer size

MOVIN dataflow/stride/kernel size/padding PE#/parallelism/reg size

MOVOUT dataflow/block/location PE#/parallelism/reg size

CONV stride/kernel size/padding PE#/reg size

By filling VLIW instruction slot flexibly with special intelligent extended instruction
subset, the accelerated calculation of neural network can be easily realized. Take a 104 ×
104 × 16-to-104 × 104 × 32 convolution layer as an example, and the instruction usage
statistics are shown in Table 3. Since the establishment time of transmission protocol is
uncertain during the execution of transmission instructions, the number of execution cycles
is not a fixed value.

Table 3. Cycle and Instruction Count.

Instruction Type Cycles# Instruction#

MEMRE about 22,000 7280
MOVIN 35,776 35,776
CONV 192,200 21,632

MOVOUT 43,264 43,264
MEMWR about 44,000 43,264

Sum 337,540 151,216
Average 67,508 30,243

For a convolution computing instruction control process, in the initial stage, only the
data transmission instructions and data transfer instructions are needed. When the on-chip
data are sufficient to support the operation, convolution calculation is started, and then
the data are collected until the calculation is completed and the data are saved back to the
off-chip memory.

The scheduling of the instructions maintains the dataflow. For example, Figure 8
shows the instruction control process of a layer in AlexNet and YOLO, respectively. In
AlexNet, the input feature map size is 96 × 27 × 27, and the output feature map size is 256
× 27 × 27. In YOLO, the input feature map size is 32 × 104 × 104, and the output feature
map size is 64 × 104 × 104. Therefore, flexible dataflow strategy can be realized to achieve
performance improvement.
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Figure 8. Examples of convolution calculation code.

5.2.2. Program Framework

In the intelligent sensing system with multi-sensor, the running program can be
divided into three main parts: data preprocessing, neural network acceleration calculation,
data post-processing. The input data are first transferred through the bus from each
sensor source to memory, shown in Figure 9. In particular, when mixing of various sensor
data occurs, data cleaning, and data fusion are needed. Then the intelligent coprocessor
completes data loading, data distribution, intelligent computing, data collection, data
storage, and other steps. Finally, according to different task requirements, such as target
recognition or image classification, the corresponding post-processing operation is carried
out until the whole intelligent computing task is completed.

Figure 9. VISA program framework.

6. Experimental Evaluation
6.1. Design Synthesis and Resource Analysis

We implemented VISA in 45 nm GSCL technology with standard cell at 500 MHz using
standard cell library and has been synthesized with Synopsys Design Compiler 18.06. Our
design with RISC-V core and intelligent coprocessor implements the standard five-stage
pipelined CPU based on RISC-V instruction set architecture, which supports standard RISC-
V instructions includes RV32I\M\A\F\D. As is shown in Table 4, the detailed technical
features of the VISA and the other hardware architectures are listed below.
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Table 4. Resource Costs and Utilization.

Architecture VISA Eyeriss [2] ZASCAD [27] PHAD [16] NT [26]

Technology (nm) 45 65 65 32 28
Voltage(V) 1 1 1 0.85/1.05 0.46

Frequency (MHZ) 500 200 200 500 40
Memory (KB) 132.5 181.5 36.9 1024 72 + 4

#PEs 256 168 192 4096
Area (mm2) 1.66 12.3 6.0 0.068
Power (W) 0.411 0.257 0.301 7.5 0.001

6.2. Instruction Generation
6.3. Performance Evaluation

We take the proposed structure with several previous advanced edge-oriented ar-
chitectures which are driven by instructions as a comparison. As shown in Figure 10,
when compared with the instruction-driven intelligent architectures, in the processing
of multiple different network structures, the performance and energy efficiency ratio of
our proposed structure have been greatly improved compared with the previous struc-
ture, and the power consumption and delay are lower than the previous structure.
Compared with PHAD, the power efficiency ratio is increased by 1.2×, while the total power consumption is also optimized.

Compared with NT, although total power consumption is relatively higher, the power
efficiency ratio is increased by 1.7× . Based on the limitation of realistic conditions, it is
a reasonable trade-off between low power consumption and high computational perfor-
mance.

Figure 10. (a) Power comparison with intelligent processor. (b) Power efficiency comparison with
intelligent processor. (c) Dynamic power with intelligent processor.

In order to better study the performance improvement brought by the instruction-
driven tightly coupled structure, we compared it with the intelligent accelerator LARENA [27]
(baseline) of the same scale that we have implemented before. The two architectures have
the same number of parallel computing units and support the same basic DNN operations.
The difference is that the baseline uses hardware dynamic scheduling, but the structure
proposed in our work is driven by instructions. In addition, BN is performed through a
separate module in the baseline, but the structure proposed in our work combines and
adjusts BN and convolution parameters, and reuses the main computing unit.

Figure 11 exhibits the latency, power efficiency and GOPS evaluation results for VGG16
and AlexNet when the PE number and dataset size vary. Under the same parallelism (256),
the average and max speed-up of VISA are ×1.37 and ×1.45, respectively compared with
the baseline. Meanwhile, the throughput and power efficiency increase by 37.45% and
68.44% on average. When the number of PE increases from 256 to 512, the average and
max speed-up are ×1.88 and ×1.92, respectively. The throughput and the power efficiency
ratio of VISA in the larger size effectively improve by 123.10% and 68.44%. Due to the
bandwidth constrains for the memory-sensitive layers, the performance improvements are
non-linear with the scale-up of PE array. With the enlargement of the dataset, the latency
dramatically rises by 650%. Similarly, the throughput and power efficiency are improved
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by 6.7% and 6.8% on average. Because of the lacking of the scheduling mechanism for
different datasets, the performance of the baseline remains more or less unchanged in
Figure 11b,c. VISA adopts adaptive scheduling strategies for different datasets. The
increase in the size of dataset makes the scheduling space significantly expand. Therefore,
the resource utilization of VISA which uses scheduling strategies obviously increases,
and the performance improves as well.

To better analyze the performance of multi-sensor input, we compare the performance
of running AlexNet and ResNet one by one on VISA (VISA baseline) and computing two
sensor data sources simultaneously. As is shown in Figure 11, compared with sequential
calculation, the latency of computing multi-sensor data at the same time reduces 3.8%
when dataset size is 1. When applying multi-sensor data sources on VISA, the computing
and store resources are allocated based on different network scale. As resource alloca-
tion through fine-grained scheduling, the hardware utilization is improved for the multi
neural network computation. In this scenario, the PEs which are not used due to data
dependency are allocated to another network. In addition, with the increase in the dataset,
the performance improves due to the scheduling space expands.

Figure 11. Performance comparison with baseline.(a) Normalized latency. (b) Normalized power
efficiency. (c) Normalized throughput.

Under the same computing parallelism, the total computing latency is decreased
because of the reduction in storage access delay. The reuse of the main computing for BN
increases the calculation delay to a certain extent, but it can be seen from the Figure 11 that
this increase have no discernible impact on total latency, which is still significantly reduced.

As shown in Figure 12, the storage access acceleration ratios of each layer in the YOLO
are analyzed. The data flow strategies of each layer are DI, DK, DK, DO, DK, DO, DK, DK,
DK, DK, DO, DO, DI, respectively. Due to the support of various dataflow, VISA shows a
1.3× overall improvement compared with the baseline.
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Figure 12. Memory access latency comparison with baseline.

The power consumption of each part is shown in Figure 13, in which the total power
consumption is 411 mW. On the whole, while the core of VISA contributes little more power
(5%), the higher power consumption is mainly due to the frequent data accesses (38%),
and the coprocessor operations (39%). The proportions of the total power consumption
of VISA coprocessor are 76.3% (for off-chip memory), 14.1% (for calculation), 7.6% (for
on-chip buffer), 1.5% (for static power) and 0.5% (for non-linear component), respectively.
The off-chip memory access makes a significant contribution to the massive data transfer.

Figure 13. Power consumption of each part.

We also compare the performance of VISA with some previous accelerators which are
designed for very low power consumption conditions with hardware dynamic scheduling,
as shown in Figure 14. VISA shows a little higher power consumption than the others
because VISA runs at a higher frequency and there are much more PEs inside it. However,
the overall power consumption is still within the allowable range (hundreds of milliwatts),
satisfying low power condition. Notably, it can be seen from the figure that the performance
and power efficiency ratio of the proposed instruction-driven tightly coupled architecture
have been greatly improved compared with the previous hardware dynamic scheduling
intelligent accelerator.
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Figure 14. Performance comparison with accelerator.

As is shown in Figure 15, VISA saves the area by 79% compared with Eyeriss and 91%
compared with ZASCAD. By using the instruction extensions, the scale of control logic
circuit is reduced, which plays an important role in the reduction in area.

Figure 15. Area comparison with accelerators.

7. Conclusions

In this paper, we propose a flexible configured pipeline integrated lightweight in-
telligent computing architecture VISA. In addition, we design a set of RISC-V dedicated
intelligent enhanced VLIW instruction set for VISA. The goal of this work is to improve
the computational performance as much as possible under the limit of low power con-
sumption to obtain satisfactory energy efficiency ratio. Evaluation results show that the
proposed VISA can provide power-efficiency improvement under the conditions of limited
hardware resources.
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