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Abstract: Languages that allow free word order, such as Arabic dialects, are of significant difficulty
for neural machine translation (NMT) because of many scarce words and the inefficiency of NMT
systems to translate these words. Unknown Word (UNK) tokens represent the out-of-vocabulary
words for the reason that NMT systems run with vocabulary that has fixed size. Scarce words are
encoded completely as sequences of subword pieces employing the Word-Piece Model. This research
paper introduces the first Transformer-based neural machine translation model for Arabic vernaculars
that employs subword units. The proposed solution is based on the Transformer model that has
been presented lately. The use of subword units and shared vocabulary within the Arabic dialect
(the source language) and modern standard Arabic (the target language) enhances the behavior of
the multi-head attention sublayers for the encoder by obtaining the overall dependencies between
words of input sentence for Arabic vernacular. Experiments are carried out from Levantine Arabic
vernacular (LEV) to modern standard Arabic (MSA) and Maghrebi Arabic vernacular (MAG) to MSA,
Gulf–MSA, Nile–MSA, Iraqi Arabic (IRQ) to MSA translation tasks. Extensive experiments confirm
that the suggested model adequately addresses the unknown word issue and boosts the quality of
translation from Arabic vernaculars to Modern standard Arabic (MSA).

Keywords: neural machine translation (NMT); transformer; Arabic dialects; modern standard Arabic;
subword units; multi-head attention; shared vocabulary; self-attention

1. Introduction

The area of Machine Translation (MT) is undergoing unbelievable development thanks
to deep learning and artificial neural network models. Although a few years ago, machine
translation research tried to produce a high-quality translation for the most popular and
resourceful languages, today’s level of translation quality has increased the need and
significance of low-resource languages and the solution of further and more interesting
translation tasks [1]. In particular, even national language varieties such as Arabic dialects,
which are practiced by large populations (450 million) in the Arab world, lands as a spoken
verity of modern standard Arabic (MSA) and has been largely ignored by industry and
research. At the moment, commercial machine translation services do not provide transla-
tion services for any Arabic vernaculars. Conventional translation systems that perform
translation from Arabic dialects to MSA generate inconsistent outputs such as mixing
lexical parts. These systems translate parts of the source sentence twice and do not produce
high translation quality. Moreover, in Arabic, a linguistic phenomenon known as diglossia
occurs, in which language speakers practice local vernaculars for informal environments
and they practice modern standard Arabic language for formal contexts. For example,
communities in Morocco use both “standard” Arabic and Maghrebi vernacular, depending
on the context and situation. This Maghrebi vernacular reflects their own identity, his-
tory, lived experiences, and culture. Dialects by region are immense, such as Levantine,
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Maghrebi, Yemeni, Iraqi, Nile basin (Egypt and Sudan), and Gulf. Still, Arabic vernaculars
also change even within individual Arabic-speaking countries. A further difficulty is
mixing Arabic dialects and modern standard Arabic language together. To illustrate the
importance of dealing with Arabic vernaculars, Ethnologue reported that Arabic has the
5th largest number of L1 speakers scattered all over 21 regional vernaculars. There are four
types of machine translation: statistical machine translation (SMT), rule-based machine
translation (RBMT), hybrid machine translation and neural machine translation (NMT).

Traditional methods such as statistical machine translation (SMT) require powerful
computing devices. SMT is not suitable for managing the problem of word order, one of
the Arabic vernacular’s main syntactic problems. To study the word order, we need to
know where the verb, object and subject in the phrases are. According to the research
studies, languages can be categorized as verb-object-subject VOS (Arabic), subject-object-
verb SOV (Hindi language), subject-verb-object SVO (English), and other languages such
as Arabic vernaculars that allow the free word order feature. The word order does not only
convey any information about the subject and the object but possible different information
(old and new). These profound differences pose a challenge to the statistical translation
systems due to the fact that as sentences become lengthier, they do not just contain an
object, verb, and a subject, but instead, the sentence will have a complex structure made
up of several parts. In the case of Neural Machin Translation (NMT) systems, the encoder
compresses the input sequence into a single vector representation as noted in the encoder-
decoder structure, where the decoder uses this vector representation to produce the output
sequence. However, this structure has the disadvantage that input sequence information is
lost and the quality of translation declines when the input sentence is longer. Furthermore,
the lack of standardized spelling for Arabic dialects presents a challenge in developing
an NMT models for these vernaculars. The lack involves morphological dissimilarities
which are apparent by using affixes and suffixes that are not used in MSA. Basically,
for NMT systems training, we need large amounts of annotated data, which is not possible
in languages with low resources such as Arabic vernaculars. Moreover, the quality of
translation is decreasing alongside a decrease in the amount of the training data for low
resource languages.

In Arabic dialects, the translation of rare words is a clear problem. Typically, there
are 30,000–50,000 words confined to the neural model’s vocabulary. Nonetheless, trans-
lation is an open-vocabulary problem, mainly in languages that use productive word-
formation processes such as compounding and agglutination; models of translation require
methods below word level. For instance, in word-level NMT systems, the translation
for the out-of-vocabulary words was discussed via back-off to a dictionary lookup [2,3].
We note that these techniques usually make incorrect assumptions in reality. For instance,
due to the differences in the morphological synthesis between Arabic vernacular and mod-
ern standard Arabic language, one-to-one connection between source words and target
words is not constantly occurring. Furthermore, word-level NMT systems are ineffective
in translating and generating unseen words. One of the approaches is to copy unknown
words into the target text as done by [2] and [3]. It is a suitable strategy for names, but
it requires transliteration and morphological changes, particularly when the characters
are different. In the case of transformer model that was proposed newly [4], it has out-
performed recurrent neural network (RNN)-based models [5–7] and convolutional neural
network (CNN)-based models [8] on various translation tasks, drawing the attention of MT
researchers. The Transformer model, which applies a self-attention approach to measure
the strength of a relationship within two words in a sentence, has contributed to raising
performance in MT and various natural languages processing tasks, for instance, semantic
role labeling and the language modeling. The techniques to tackle the difficulties of Arabic
vernaculars translation are under research and investigation. There has been no earlier
research project that concentrated exclusively on developing a Transformer-based NMT
model running from Arabic vernaculars to modern standard Arabic language at the level
of subword units.
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A Transformer-based NMT model is presented in the current research, using subword
units to perform translation tasks from various Arabic vernaculars to modern standard
Arabic language. Moreover, this research study introduced and developed a Word-Piece
model to create subword units for the Arabic dialects. Experiments showed that machine
translation tasks, computed using Bilingual Evaluation Understudy (BLEU) metric and
human evaluation metric, have been enhanced on the performance of Arabic vernaculars
to modern standard Arabic language. Furthermore, we found that the proposed NMT sub-
word model based on transformers achieves higher efficiency for the translation of scarce
words in comparison with models that have a large vocabulary and back-off dictionaries.
The model can produce new words that are not seen during training time. Moreover, the
proposed Transformer-based NMT subword model achieved high translation accuracy
per sequence for Arabic dialects. Additionally, the research investigated the impact of
training the model with subword embeddings and with different dimensions. Moreover,
this research study investigated the influence of utilizing subword units on the Arabic
dialect’s translation quality. This research project investigated the impact of training the
model with a different number of encoders and decoders and with a different number of
attention heads in the self-attention (MHA) sub-layer in the decoder and encoder.

2. Related Work

Despite that machine translation research area has been investigated for several years
and decades, the majority of research effort has focused on high-resource translation
pairs, for instance, French–English and German–English which have many free parallel
datasets. Nevertheless, most language pairs in the world do not have large parallel data.
Research attention in these low-resource translation settings has been growing during
the last five years. Translations from and to written language varieties are mainly based
on phrase-based SMT systems, such as those for Croatian, Serbian and Slovenian [9],
Hindi and Urdu [10], and Arabic vernaculars [11]. Pourdamghani et al. [12] developed
an unsupervised deciphering design to translate similarly associated languages with no
need for parallel training data. Costa-jussà [13] showed the comparison of the Catalan–
Spanish language pairs amongst rule-based systems, phrase-based systems, and NMT
systems. The performance of NMT is better and more reliable than other systems when an
in-domain test set is applied. Experiments in the out-of-domain test dataset have shown
that better performance was provided by the rule-based method from Spanish language to
Catalan language and phrase-based method from Catalan language to Spanish language. In
order to translate texts from Kurman to Sorani, Hassani [14] introduced and developed an
Intralingual MT model. The model performed a word-to-word translation either direct or
literal translation between Kurman and Sorani dialects. The outcomes have been estimated
by native speaker evaluators. The experiments confirmed, according to human raters, that
this strategy can produce significantly clear results. Experiments also revealed that this
strategy could be regarded as a fundamental solution to the lack of corpus problem.

The first NMT system that was trained to translate among language varieties was
presented by Costa-jussà et al. [15]. The authors utilized language variety pairs, European
Portuguese and Brazilian Portuguese for experiments, as well as a corpus of subtitles for
neural machine translation training. The authors gained an additional 0.9 BLEU points
for translating from European Portuguese to Brazilian Portuguese compared to the SMT
system trained on similar data and an additional 0.2 BLEU points when translating in
reverse direction. The results show that the neural machine translation model offers more
reliable translation in terms of BLEU scores and seven native speakers’ evaluation than
the SMT model. Lakew et al. [16] investigated NMT training difficulties from English into
special pairs of language varieties, analyzing parallel texts and low-resource situations,
both labeled as well as unlabeled. The authors conducted experiments from English to
two languages, European Brazilian Portuguese and European Canadian French and two
standardized pairs, from Croatian language to Serbian and from Bahasa Indonesia to
Malay. The researchers demonstrate that a significant BLEU score increases over basic
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models when translation into related languages is learned as a multilingual task with
shared representations.

The main focus of research for Arabic vernaculars has been on SMT and rule-based
methods. PADIC is a multi-dialect-Arabic corpus that was introduced by Meftouh et al. [17].
The PADIC corpus includes MSA, Levantine vernaculars (Syrian and Palestinian) and
Maghrebi vernaculars (Tunisian and Algerian). In comparison to many other approaches,
diverse experiments were applied on different SMT models with all language pairs (vernac-
ulars and standard Arabic). In changing the smoothing methods, the researchers examined
the influence of the language model on MT by interpolating them with a larger one.
The most reliable translation outcomes were obtained in Algerian vernacular, which is
not remarkable because there is no closeness between the Algerian vernacular and the
MSA; therefore, the SMT model during training could not capture the whole semantic and
syntactic features of Algerian vernacular. It also was noticed that because of the closeness
of the vernaculars, MT performances within Palestinian and Syrian were relatively high.
As far as MSA is concerned, Palestinian vernacular has achieved the most reliable results
of MT. Sadat et al. [18] presented an approach to do translation of the Tunisian social media
vernacular into modern standard Arabic. This system depends on a bilingual lexicon that
was designed for this translation task. A collection of syntactic mapping rules alongside a
disambiguation phase is used to choose the most appropriate translation phrases, depend-
ing on language model for MSA. The translation system should be noted as word-based.
By using a test dataset of 50 sentences of Tunisian vernacular, it achieves a BLEU score [19]
of 14.32 (the reference was done by hand). Bakr et al. [20] proposed a comprehensive
system for translating Egyptian vernacular phrases to enunciated versions of modern
standard Arabic phrases. The authors applied the statistical method to tokenize and tag
Arabic phrases. The technique for producing diacritics for the target phrases in MSA was
explicitly selected based on important rules. The research was assessed using a dataset
that contains 1000 Egyptian vernacular sentences where the training set is 800 and the test
set is 200. The method obtained a performance of 88% when translating vernacular words
to modern standard Arabic words and an accuracy of 78% when generating the words in
their correct order.

The majority of the methods discussed earlier concentrated on SMT system and
rule-based system. The rule-based translation method has a notable shortcoming: the
development of the before-mentioned methods requires a significant quantity of time. It is
essential to adjust the rules to raise the rule-based MT quality, which needs an exceptional
degree of lingual understanding. The statistical methods require high computing devices
and these methods are unable to manage one of the Arabic vernacular syntactic problems:
the problem of word order. There have been relatively few publications in NMT discussing
the translation of closely related languages. Multitasking is widely regarded as a highly
effective technique for boosting the effectiveness of translation for Arabic vernaculars.
A new study that investigates NMT for Arabic vernaculars was first introduced by Baniata
et al. [21]. For translation from Arabic vernaculars to modern standard Arabic, the re-
searchers presented a multi-task neural machine translation system. The suggested system
is based upon multitask learning, where the language pairs share a single decoder and
every source language has a separate encoder. The practical experiments demonstrate that
by employing small amount of training dataset, the multitask NMT model can generate a
correct MSA phrase and produce a translation with very good quality and learning the pre-
dictive information of various targets at the same time. Among many methods to translate
Arabic dialects, one of the most significant is the incorporation of outer knowledge into the
neural network models for Arabic dialects. Baniata et al. [22] proposed a Multitask NMT
model that shares an encoder between two types of tasks; Arabic vernacular to modern
standard Arabic translation task and POS task on segment level. Between translation tasks,
the system shares two layers; shared layer and invariant layer. By alternatively training
translation and POS tagging tasks, the proposed model may exploit distinctive knowledge
and enhance the translation effectiveness from Arabic vernaculars to modern standard
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Arabic. Practical experiments involve translation tasks from Levantine Arabic to modern
standard Arabic and from Maghrebi Arabic to modern standard Arabic.

Nguyen et al. [23] created a lexical semantic framework for unique features of Ko-
rean text as an information database to develop a morphological analysis and word sense
disambiguation system called Utagger. Moreover, the authors created a corpus for Korean–
Vietnamese where they utilized the word segmentation algorithm RDRsegmenter for
Vietnamese text and Utagger for Korean text. This research team was able to build a
bidirectional Korean–Vietnamese NMT system, using the encoder-decoder approach with
attention. These experimental findings showed that the usage of UTagger and RDRseg-
menter in the Korean–Vietnamese NMT system might increase its performance, obtaining
exceptional outcomes from Korean to Vietnamese with BLEU score of 27.79 and TER score
of 58.77 and in reverse way a BLEU score of 25.44 and TER score of 58.72. Park et al. [24]
proposed the first ancient Korean NMT system based on the use of a Transformer. The
method improves translator performance by instantly generating a draft translation for
different ancient documents that remain untranslated. Moreover, shared vocabulary and
the entity restriction byte pair encoding is a new subword tokenization approach that was
proposed by the authors recently. This approach depends on the textual characteristics
of ancient Korean sentences. By using this proposed approach, the effectiveness of the
traditional subword tokenizing approaches such as the byte pair encoding will rise by
5.25 BLEU points. Additionally, several decoding algorithms such as the ensemble mod-
els and n-grams blocking contribute an additional 2.89 BLEU points to the performance.
Luo et al. [25] suggested an NMT model in which the network is trained sequentially on
not closely related high resource language pairs, intermediate language pairs which is
related and low resource language pairs. These parameters are transferred and tuned
from one layer to another for initialization step in the same way. Thus, the hierarchical
transfer learning design unites data amounts benefits of languages with large resources
with grammatical propinquity benefits the related language. For data preprocessing, the
researchers applied byte pair encoding and character level embedding, which completely
address the issue of shortage of vocabulary (OOV). Experiments analyzing Uygur–Chinese
and Turkish–English translations illustrate the suggested method’s superiority over the
neutral machine translation model with parent–child framework. Few publications have
been published on the subject of MT for Arabic vernaculars that employ subword units.

Aqlan et al. [26] suggested employing a romanization method that turns Arabic
texts into subword units. The authors analyzed the impact of this strategy on Neural
MT performance in various segmentation settings and measure the findings to methods
trained on modern standard Arabic. Additionally, the authors combine Romanized Arabic
text as an input component for Arabic-sourced neural machine translation compared to
well-known components, including lemma, POS tags, and morph characteristics. The
experiments that were performed on Arabic–Chinese translation show that recommended
methodologies address the unknown word issue and improve the translation quality for
the Arabic source language. This work carries out further experiments with the NMT
system and develops it on Chinese–Arabic translation. Prior to conducting the experiments,
the researchers created a criteria for filtering the text in the parallel corpus to remove
the noise. Included sentence patterns have been shown to improve the performance of
MT, particularly SMT and RNN-based NMT [27–29]. Further, Strubell et al. [30] have
enhanced a Transformer-based SRL design by adding dependency formations of phrases
into self-attention, which is named linguistically-informed self-attention (LISA). In LISA,
one of the attention heads of a multi-head self-attention system is trained with constraints
based on dependency relations to attend to syntactic parents for each token.

3. Background

Recently, the NMT has been offered as an exciting framework that has the possibility
to overcome the shortcomings of the standard SMT methods. The strength of the NMT
approaches is their capability in learning the mapping from the input text to the corre-
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sponding output text directly, in an end-to-end pattern. Neural models in the domain are
not new, as Neco et al. [31] proposed an approach years ago. Other models [32,33] were
introduced later, but Chao et al. [6] and Sutskever et al. [7] were the first to design a robust
machine translation system. Peyman et al. [34] presented an encoder-decoder structure
in which two RNNs are trained to maximize a target sequence’s conditional probability
(possible translation). y = y1, . . . , ym, given a source sentence x = x1, . . . , xn. Sequentially,
the input words are processed until the end of the input string is reached. The encoder
reads the input sequence and turns it into fixed length representation. Every time in step t
an input word is received; the hidden state is updated. Equation (1) illustrates this process:

ht = f (Ex [xt], ht−1) (1)

where ht ∈ Rd is the hidden state (vector) at the time step t and f (.) is a recurrent function
such as the long short-term memory (LSTM) [35] or the gated recurrent unit (GRU). f (.)
is reasonable for updating the hidden state of the layer and other associated unit (if there
are any, such as memory unit, etc). Ex ∈ R|Vx |×d is an embedding matrix for the source
symbols (d is the embedding size). The embedding matrix is a lookup table whose cells are
treated as a network parameters and updated during training. The embedding (numerical
vector) for the vth word in vx (vocabulary) resides in the vth row of the table. In the next
step, the model undertakes processing for all words in the source sentence; hn is a summary
of input sequence, referred to as context vector (c). Another RNN is initialized by c and
seeks to produce a target translation. There is one word sampled from a target vocabulary
vy at each step of the process. The decoder conditions the probability of picking a target
word yt on the context vector, the last predicted target symbol, and the decoder’s sate. This
can be expressed in Equation (2):

yt = g(Ey[yt−1], St, c) (2)

St = f
(
Ey[yt−1], St−1, c

)
where St is the hidden state of the decoder. Since we compute the

probability of choosing yt as the target word, g(.) should give a value in the range [0, 1].
The most common function for g(.) is Softmax. The encoder and decoder RNNs are trained
together to maximize the log probability of generating a target translation and are given an
input sequence x, so the training standards can be defined as in Equation (3):

max
θ

1
K

k

∑
k=1

log(yk|xk) (3)

where θ signifies a set of network parameters and K denotes the training set’s size. As previ-
ously noted, the recurrent functions used in encoder-decoder models are not conventional
mathematical functions.

4. The Proposed Transformer Based-NMT Model for Arabic Dialects That Utilizes
Subword Units

Even while the translation is considered to be an open vocabulary issue, systems of
NMT always work with word vocabularies that are fixed (names, numbers, dates, etc.).
To address out-of-vocabulary (OOV) words, there are two broad approaches. One strategy
is to try to copy and obtain scarce words from source language and place them in the target
language (since most of the scarce words are numbers or names so the right translation
is a copy), either through the use of an attention mechanism [2], external alignment
approach [3], or through the use of a complex special purpose pointing framework [36].
An extra group of methods is the subword units such as the combined word/characters or
more knowledgeable subwords [37]. Subword segmentation is fundamentally an algorithm
used under the assumption that a word consists of a combination of several subwords.
Even Arabic dialects and MSA are languages based on Arabic characters, and many words
are made of subwords. Therefore, breaking into subword units through suitable subword
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detection can reduce the number of vocabularies and efficiently reduce sparsity. In addition
to reducing sparsity, the most representative outcome of subword segmentation is a useful
coping with unknown (UNK) tokens. The majority of the deep learning NLP algorithms,
including Natural Language Generation (NLG), take sentences as inputs simply as word
sequences. So, when UNK appears, the probability of the language model in the future is
very ruined. Therefore, it is difficult to encode or generate suitable sentences. Especially
for sentence generation such asautomatic machine translation, it is more difficult because
it predicts the next word based on the previous word. However, through subword units’
utilization, it is possible to create a combination of known tokens by dividing UNKs such
as new words or typo into units of subwords or characters. In this way, by eliminating
UNK itself, you can completely cope with UNK and boosts the translation quality of
Arabic vernaculars. Many word patterns were generated from the same origin and root
in Arabic vernaculars and modern standard Arabic, fragmenting the data and generating
scattered data.

Various research papers introduced statistical segmentation for the Arabic language in
order to divide words down into their morphemes, which are the smallest meaningful unit
in the language. This subtask is a fundamental part of a variety of natural language process-
ing applications. For example, machine translation (MT) is powerful for the representation
of the input and needs consistency across test and train data. Thus, by segmenting Arabic
vernaculars and MSA words into subword units, the affixes and suffixes that are attached to
the words are separated and the proposed model will capture more semantic and syntactic
features of the input source sentence and produce a high-quality MSA sentence. This re-
search paper developed an Arabic dialects Transformer-based NMT model that utilizes AD
and MSA Subwords units to translate from different Arabic vernaculars to MSA. We created
the model depend on the Transformer model introduced recently by Vaswani et al. [4].
For the proposed Transformer-Based NMT Subword model, as illustrated in Figure 1, both
the decoder and encoder consist of a stack of 12 layers. Every layer has two different
sub-layers: multi-head attention sub-layer and position wise feed forward sublayer (FFN).
The encoder and the decoder in the suggested Transformer NMT model architecture for
Arabic dialects make use of an attention model and feed-forward net to create sequences
of changeable lengths without the need to use the RNN unit or CNN unit. The operation
of attention across the various layers is based on multi-head attention (see Section 4.1).
An input sequence of symbol representations (source sentence) X = (x1 , x2, . . . , xnenc)T is
mapped to an intermediate vector. Next, the decoder creates an output sequence (target
sentence) Y = (y1 , y2, . . . , yndec)T, given the intermediate vector. Because the transformer
architecture does not contain convolutional or recurrent structure, it encodes positional
word information as sinusoidal positional encodings:

P(pos ,2i) = sin
(

pos/100002i/d
)

(4)

P(pos ,2i+1) = cos
(

pos/100002i/d
)

(5)

where pos is position, i is considered to be the dimension, and d is the dimension of the
intermediate representation. At the first layer of both encoder and the decoder, the posi-
tional encodings computed by Equations (4) and (5) are summed to the input embeddings.
The encoder subnetwork comprises a stack of L similar layers so that L is set to different
numbers 12, 8, and 4.
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Figure 1. The Architecture of Transformer Based-Neural Machine Translation Subword Model for Arabic dialects.

Every encoding layer has two layers: a multi-head attention sub-layer and position
wise feed forward sub-layer. To ease training and improve performance, residual con-
nection mechanism [38] and a layer normalization unit (LayerNorm) [39] are employed
around each sublayer. Formally, the outcome of every layer l (Hl

e) is calculated as below:

Sl
e = LayerNorm

(
MHA

(
Hl−1

e , Hl−1
e , Hl−1

e

)
+ Hl−1

e

)
, (6)

Hl
e = LayerNorm

(
FFN

(
Sl

e

)
+ Sl

e

)
, (7)

where Sl
e is considered to be the output from multi-head attention sublayer calculated

based upon source sentence representation of previous encoding layer (l − 1). Moreover,
the decoder consists of a stack of L similar layers in which L is set to different numbers 12,
8, and 4. Unlike the encoder, every layer in the decoder consists of three sublayers, a multi-
head attention sublayer and a position wise feed forward sublayer. However, the encoder
decoder multi-head attention sublayer is placed between them. The (encoder-decoder)
multi-head attention sublayer is utilized to perform attention calculations for the output of
encoder HL

e particularly, output of every decoding layer l (Hl
d) is computed as:

Sl
d = LayerNorm

(
MHA

(
Hl−1

d , Hl−1
d , Hl−1

d

)
+ Hl−1

d

)
, (8)

El
d = LayerNorm

(
MHA

(
Sl

d, HL
e , HL

e

)
+ Sl

d

)
, (9)

Hl
d = LayerNorm

(
FFN

(
El

d

)
+ El

d

)
(10)

where Sl
d is considered to be the output of multi-head attention sub-layer computed from

target representation from previous decoder layer (l − 1). El
d is considered to be the output

of the encoder decoder MHA sub-layer generated based upon Sl
d and HL

e . The top-level
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layer output (HL
d ) of the decoder is used by a linear transformation layer to generate

the target sequence. Specifically, the linear transformation layer via Softmax activation
computes probability distribution of the output for target vocabulary.

4.1. Multi-Head Attention (MHA)

A neural attention mechanism is an essential feature of the seq2seq structure, which is
used to solve a variety of sequence generating challenges, including document summa-
rization [40] and NMT. The Transformer Based-NMT subword model perform the scale
dot product attention function as shown in Figure 2. This takes three vectors as inputs, the
queries Q, values V and keys K. It outlines the provided query and key–value pairs to an
output weighted sum of the values. The weights show the association among every query
and key. An attention is illustrated below:

Attention(Q, K, V) = so f tmax(α)V (11)

α = score(Q, K) (12)

score(Q, K) =
Q× KT
√

dk
(13)

where k ∈ RJ×dk is the key, V ∈ RJ×dv is the value Q ∈ RZ×dk is a query. Z and J are
considered to be the lengths of sequences expressed by Q and K, respectively. dk and
dv are considered to be the dimension of value and key vectors, respectively. The query
dimension is expressed by dk to perform the dot product calculation.

Figure 2. The Multi-Head Attention consist of several attention layers running in parallel.

The division of Q × KT by
√

dk is performed to measure the output of the prod-
uct operation so maintaining the calculation Vaswani et al. [4]. The overall attention
weight distribution is obtained by applying the so f tmax(.) operation to the attention score
α ∈ RZ×J . For better performance, the transformer architecture uses MHA, which com-
prises Nh (number of head attentions) measured dot product attention operations. Provided
the Q, K, and V, multi-head attention computation is shown below:

MHA(Q, K, V) = O, (14)

O = HWo, (15)

H = concat
(
head1, head2, . . . . . . , headNh

)
(16)

headh = Attention
(

QWQ
h , KWk

h , VWv
h

)
(17)
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where QWQ
h , KWk

h and VWv
h are projections of query, key and value vectors for hth head, re-

spectively. These projections are made with metrics WQ
h ∈ Rdmodel×dk , Wk

h ∈ Rdmodel×dk ,
Wv

h ∈ Rdmodel×dv . The inputs to the MHA(.) are K ∈ RJ×dmodel , V ∈ RJ×dmodel and
Q ∈ RZ×dmodel . headh ∈ RJ×dv is the output of measured dot product calculation for
the hth head. The Nh measured dot product operation are united by using the concatena-
tion function concat(.) to generate H ∈ RZ×(Nh .dv). Eventually, the output O ∈ RZ×dmodel is
produced from the projections of H utilizing the weight matrix Wo ∈ R(Nh .dv)×dmodel . The
MHA contains the same number of parameters as vanilla attention if

dk = dv =
dmodel

Nh
(18)

4.2. Segmentation Approach: Wordpiece Model

The subword units are the best approach for handling the problems and challenges of
Arabic dialects. This study uses the WordPiece Model (WPM) implementation, which was
originally used by Google to tackle a Japanese–Korean segmentation challenge [41]. This
method is entirely data-driven and guarantees that any possible Arabic dialect sequences
are segmented in a deterministic way. It is similar to the approach used in Neural Machine
Translation [37] to address rare words. To begin the process of the random words, we
divide these words to word pieces using a trained wordpiece method. Prior to training the
model, accurate word boundary symbols are added to ensure that original word sequence
is extracted without ambiguity of word piece sequence. At the time of decoding, this
model produces the wordpiece sequence, where this wordpiece sequence is reshaped to
an identical word sequence. The example below illustrates the sequence of the word and
equal word piece sequence for a sentence in Levantine Arabic vernacular:

Word: “ �
é
	
JK
YÖÏ @ h. Q

	
m× �AJ.« I. »P@ ú



æ



	
¯ 	áK
ð”

Word Translation: “Where can I take a bus to the city exit”
Wordpieces: “ _ 	áK
ð_ ø



ú



	
¯_ I. »P@_ �AK. ¨_ h. Q

	
m×_ �

é
	
JK
YÖÏ @”

As illustrated in the above example: The Arabic word in LEV dialect “ú


æ



	
¯” “ I can ”

is decomposed into two-word pieces “ ú



	
¯” “particle that derives a preposition from ú



æ



	
¯”

and “_ ø



,” “ particle that derives a suffix from ú


æ



	
¯” while the word “ �AJ.«” “ a bus ” is

decomposed into word pieces “ ¨” “ particle that derives an affix from �AJ.«” and “_ �AK.”

“particle that derives a noun from �AJ.«”. The remaining of the words are maintained
as single word pieces. Wordpiece design is constructed by employing the data driven
method which maximizes the language model probability for the training data given a
word description. In the availability of parallel corpus for training and set of tokens R,
the optimization challenge is by choosing R word pieces in a way where the final corpus
contains the fewest word pieces when segmented by the word piece method. A unique
token is utilized at the beginning of words rather than two ends. Additionally, the number
of primary characters is decreased to a changeable number based upon the data. Moreover,
the remaining characters are mapped to a particular unknown alphabet to avoid connecting
word piece vocabulary with divided characters.

We noticed that when exploiting a vocabulary within 100,000-to-24,000 word pieces,
it leads to a high BLEU score and fast decoding quality for all language pairs that were
evaluated. It is advantageous in translation to copy scarce names or numbers from source
language to target language in a direct way. We utilized a shared word piece approach for
the source language (Arabic dialect) and the target language (modern standard Arabic)
to facilitate this type of direct copying. When this strategy is applied, the same string is
segmented precisely in the same way in the source and target sentences, which makes it
more straightforward for the model to copy these tokens. Word pieces accomplish sta-
bility between words’ efficiency and alphabets’ flexibility. The motivation behind can be
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summarized in two points. The first point illustrates that the processing for the source
language (Arabic vernaculars) and the target language (MSA) is done by exploiting the
shared vocabulary approach. The encoder of the proposed model shares the same vocab-
ulary with the decoder. By applying the shared vocabulary approach between decoder
and encoder, the proposed model substitutes the words in input sentence with translation
words in target language. The second point, as illustrated by Lample et al. [42], a shared
vocabulary enhances the alignment of embedding vectors. We also notice that when we use
wordpieces, our suggested model achieves superior overall BLEU scores, which is most
likely due to the proposed model’s ability to deal with an effectively unlimited vocabulary
without simply relying on characters. The latter would require more computation and
greatly increase average lengths for output and input sequences.

5. Experimental Results

Multiple experiments were conducted to evaluate the proposed Transformer-based
NMT subword system on a variety of translation tasks. The introduced model is evaluated
on the basis of its ability to translate from Arabic vernaculars to modern standard Arabic.
Practical experiments were carried out with five different dialects of Arabic: Levantine,
Nile Basin, Maghrebi, Gulf and Iraqi. Levantine Arabic is an Arabic dialect spoken widely
in Jordan, Syria, Lebanon and Palestine. The Maghrebi variety is commonly practiced in
Algeria, Morocco, Tunisia, Libya. Arabic in Nile Basin is a popularly spoken dialect used
in Egypt, Sudan and South Sudan. Gulf Arabic is a spoken dialect commonly spoken in
KSA, UAE, Qatar, Oman, Kuwait and Bahrain. Iraqi Arabic is a dialect spoken in Iraq. For
the language of low resources, the proposed Transformer-Based NMT subword model will
be applied.

5.1. Data

For the translation tasks, we grouped the Maghrebi vernaculars (Moroccan vernacular,
Algerian vernacular, Tunisian vernacular and Libyan vernacular) unitedly from PADIC
corpus [17], MPCA corpus [43] and MADAR corpus [44] into a single corpus, we will
name it PMM-MAG. The Levantine vernaculars (Jordanian vernacular, Syrian vernacular,
Lebanese vernacular and Palestinian vernacular), which are grouped collectively from
PADIC corpus, MPCA corpus and MADAR corpus are grouped into a single corpus, and
we will name it PMM-LEV. Furthermore, we concatenated Nile Basin Dialects (Egyptian
vernacular, Sudanese vernacular) from MADAR corpus and the Gulf Dialects (Saudi
Dialect, Omani Dialects and Qatari Dialect) are concatenated together from the same
corpus. Moreover, we used the MADAR Corpus for the translation task of the Iraqi dialect.
Figure 3 presents an example translation graph with nodes and dotted edges. We will use
this graph as our running example. The Transformer NMT subword system was trained
on 36,850 sentence pairs for Levantine vernacular, 54,736 sentence pairs for Maghrebi
vernacular, 18,000 sentence pairs for Nile Basin Dialect, 18,000 sentence pairs for Gulf
vernacular and 5000 sentence pairs for Iraqi vernacular. Textual information was gathered
from many resources such as television episodes, films and social media. Regarding
the test dataset, the proposed system was tested on 3000 sentence pairs for Levantine
vernaculars, 3000 sentence pairs for Maghrebi vernacular, 2000 sentence pairs for Nile
Basin vernacular, 2000 sentence pairs for Gulf vernacular, and 1000 sentence pairs for Iraqi
vernacular. Moreover, the suggested system was trained with 13,805 sentence pairs for
Levantine vernacular and it was trained on 17,736 sentence pairs for Maghrebi vernacular
from the same corpus that was utilized by Baniata et al. [22] and tested on 2000 sentence
pairs for Levantine vernacular and 2000 sentence pairs for Maghrebi vernacular.
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Figure 3. Translation graph: Arabic dialects (nodes), Parallel Corpora (dotted edges).

The parallel corpus for each Arabic dialect was divided into two parts: 80% for train-
ing and 20% for testing. Additionally, each Arabic dialect’s test set was drawn from the
same domain. The corpora employed in this study contain unprocessed information that
may affect the proposed model’s performance. Therefore, all categories of Arabic vernac-
ulars and modern standard Arabic sentences have undergone pre-processing. Hashtags,
punctuation, non-Arabic characters and diacritics were excluded in Arabic vernaculars
and modern standard Arabic. Additionally, the orthographic normalization process was

applied. As an example, the characters
�
@

�
@ @

were converted to the @alphabet. Stop word

removal or stemming have not been applied. The modern standard Arabic (MSA) includes
various tokens found in Arabic dialects (AD), and the AD Sentences are shorter than those
found in MSA. Three cross-validation strategies are commonly applied to determine a
predictor’s predicted success rate: jackknife test approach, K-fold cross validation and
independent dataset test. Among these procedures, the jackknife test is considered to be the
least arbitrary and the most thematic, and as a result, it is popularly known and regularly
chosen by researchers in order to evaluate the quality of different predictors. However,
this strategy consumes the time and consumes the source because its estimated standard
error tends to be slightly larger than other methods. Moreover, the jackknife test performs
poorly when the estimator is not sufficiently smooth. Accordingly, K-fold cross-validation
is applied in this paper, which sets K to 2 to create a train/ test split to assess the proposed
Transformer-Based NMT Subword model. To avoid model overfitting, we used the Early
stopping option where the patience parameter is set to 3 epochs and the model checkpoint
is used to save the best weights for the evaluation of the proposed model.

5.2. Model Setup

The proposed model was developed using Python, Keras and TensorFlow. The experi-
ments on the LEV–MSA, MAG–MSA, GULF–MSA, Nile–MSA and IRQ–MSA translation
tasks are conducted based on these basic and advanced configurations where the subword
embedding dimension has the three values which are 1024, 512 and 256, hidden state has
two values which are 1024 and 512 and the attention heads are set to two values which are 8
and 4. The position-wise FFN has a filter of dimensions 512 and 1024. The proposed Arabic
dialect Transformer-based NMT Subword model trained on the LEV–MSA, MAG–MSA,
GULF–MSA, Nile–MSA and IRQ–MSA translation tasks consists of a 12, 8 and 4-layer
encoder subnetwork. Moreover, it consists of a 12, 8 and 4-decoder subnetwork.

5.3. Traning and Inference

For the translation tasks LEV–MSA, MAG–MSA, GULF–MSA, Nile–MSA, and IRQ–
MSA, the proposed model is trained for 13k iterations with batch size 2048 tokens and
the maximum sequence length is set to 100 subword tokens. Moreover, the maximum
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subword tokens length is set to 150 subword tokens. The optimizer employed to train the
model in this research study is Adam optimizer [45] with (β1 = 0.9, β2 = 0.98, ε = 1 × 10−9).
Further, the number of epochs is set to 6 for all translation tasks. By following So et al. [46],
a single cosine cycle with a warm up is applied for the learning rate schedule algorithm.
The target sentences are produced by using beam search during the inference stage. For the
LEV–MSA, MAG–MSA, GULF–MSA, Nile–MSA, IRQ–MSA, LEV–MSA (Baniata et al. [22]
Corpus) and MAG–MSA (Baniata et al. [22] Corpus) translation tasks, beam size of 6
and length penalty of 1.1 are applied. The study used a shred vocabulary for the source
language and target language. This research study employed 21,000-subword vocabularies
for Levantine vernacular (LEV)—MSA translation task, 21,000 subword vocabularies for
Maghrebi vernacular (MAG)–MSA translation task, 21,000 subword vocabularies for the
Nile Basin Arabic (NB)—MSA translation task, 21,000 subword vocabularies for the Gulf
Arabic (Gulf)—MSA translation task and 9235 subword vocabularies for the Iraqi Arabic
(IRQ)—MSA translation task. Twenty-nine thousand five hundred subword vocabularies
are employed for the corpus applied by Baniata et al. [24] on the Levantine Arabic (LEV)–
MSA translation task and on the Maghrebi vernacular (MAG)–MSA translation task. Relu
dropout value and attention dropout value are 0.1. The suggested model proved to be very
fast and required 268 s per epoch for MAG–MSA task (Baniata et al. [22] Corpus), 419 s per
epoch for LEV–MSA task (Baniata et al. [22] Corpus), 251 s per epoch for the MAG–MSA
task, 216 s per epoch for Nile–MSA task, 254 s per epoch for LEV–MSA task, 231 s per
epoch for Gulf–MSA task, 152 s per epoch for IRQ–MSA task. For each translation task, the
proposed model is trained to minimize cross-entropy loss.

5.4. Results
5.4.1. Automatic Metric

Many practical experiments were carried out with the proposed Transformer-based
NMT model through exploiting subword units and shared vocabulary for Arabic vernacu-
lars and MSA. The proposed Transformer-based subword model was experimented with
different subword embeddings to find the most efficient subword embedding dimension
of the proposed model. Moreover, the proposed model was trained with different number
of encoders and decoders and with different number of heads in multi-head attention
sublayer to find the most efficient number of attention heads for the proposed model.
The translation quality is reported based on the sacreBLEU. SacreBLEU is a standard
BLEU [19] implementation that manages WMT datasets, creates scores on detokenized
outputs and reports a string encapsulating BLEU parameter, helping the generation of
sharable, comparable BLEU scores. This section shows the performance evaluation of
the suggested transformer-based NMT subword model for Arabic dialects on five Arabic
dialects translation tasks. The findings of the LEV–MSA translation task are summarized
in Table 1. For the MAG–MSA, Nile–MSA, Gulf–MSA and Iraqi–MSA translation tasks,
Tables 2–5 illustrate the results. Table 1 shows Transformer-Based NMT subword model
results with different settings on the test dataset for the LEV–MSA translation task. The
results in Table 1 show the effectiveness of the proposed transformer machine translation
subword model. As illustrated from Table 1, the suggested model achieved an outstanding
63.71 BLUE score where the number of encoders’ layer and decoders’ layer value is 12,
number of attention heads is 4 and the subword embedding value is 512. The findings
are obvious as a result of the close connection between Levantine vernacular and modern
standard Arabic, and the fact that both languages share a large number of vocabularies.
It can be noticed from Table 1 that the experiments’ settings with low dimensions of sub-
word embeddings achieved better BLUE score results in comparison to experiments with a
high dimension of subword embeddings.
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Table 1. Results of the Transformer-Based NMT Subword Model on PMM-LEV corpus for LEV–MSA
translation task, where SW-E-D is the Subword embedding dimension, FS is the filter size, EL is the
encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 61.65
512 1024 8 8 4 63.56
512 1024 12 12 4 63.71
1024 1024 4 4 4 59.68
1024 1024 4 4 8 59.53
512 512 4 4 4 60.04

Table 2. Results of the Transformer-Based NMT Subword Model on PMM–MAG corpus for MAG–
MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the filter size, EL is
the encoder’s layers, DL is the decoder’s layers and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 59.46
512 1024 8 8 4 63.02
512 1024 12 12 4 65.66
1024 1024 4 4 4 59.54
1024 1024 4 4 8 62.17
512 512 4 4 4 56.68

Table 3. Results of the Transformer-Based NMT Subword Model on MADAR–Nile Basin corpus for
NILE–MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the filter
size, EL is the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 47.51
512 1024 8 8 4 48.19
512 1024 12 12 4 47.58
1024 1024 4 4 4 42.02
1024 1024 4 4 8 44.08
512 512 4 4 4 47.52

Table 4. Results of the Transformer-Based NMT Subword Model on MADAR–Gulf corpus for GULF–
MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the filter size, EL is
the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 47.26
512 1024 8 8 4 46.66
512 1024 12 12 4 47.18
1024 1024 4 4 4 43.48
1024 1024 4 4 8 43.68
512 512 4 4 4 46.35
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Table 5. Results of the Transformer-Based NMT Subword Model on MADAR–Iraqi corpus for IRQ–
MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the filter size, EL is
the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 56.50
512 1024 8 8 4 49.03
512 1024 12 12 4 47.14
1024 1024 4 4 4 25.51
1024 1024 4 4 8 40.17
512 512 4 4 4 55.23

Table 2 illustrates the findings of the suggested model on test dataset for the MAG–
MSA translation task. We observed that the proposed Transformer-based NMT subword
model, as shown and highlighted with bold text in Table 2 is able to translate the Maghrebi
Arabic sentences to MSA with a 65.66 BLEU score. It is clear that Maghrebi vernacular is a
combination of many diverse languages such as the Berber language, African Romance,
old Arabic expressions, Turkish language, Spanish, Italian and Niger Congo languages,
as well as some new vocabularies borrowed from French and English. Therefore, the
proposed Transformer-based NMT subword system was able to capture the semantic and
syntactic features of Maghrebi dialect and improved the translation performance on the
(MAG)–MSA translation task despite that the Maghrebi dialect is not close to the MSA in
terms of expressions and vocabularies. Conventional NMT models [21,22] were not able to
produce a high translation quality for the Maghrebi vernacular because Maghrebi dialect
has expressions from many other languages. By utilizing subword units as an input to the
encoder, there will be a sharing of information between the subwords forms and words
forms and the model will generate MSA sentences with high quality.

Table 3 reveals the proposed model results with diverse settings on the test dataset for
the Nile–MSA translation task. As seen from Table 3, the proposed system achieved a 48.19
BLUE score and the model was able to translate the Egyptian and Sudanese sentences to
MSA correctly. Tables 4 and 5 present satisfied results on Gulf–MSA, Iraqi–MSA translation
tasks, respectively. The proposed model proved to produce high translation quality of
Arabic Gulf sentences with a 47.26 BLEU score and 56.50 BLEU score on the Iraqi–MSA
translation task. Furthermore, the model was applied on Maghrebi–MSA, Levantine–MSA
parallel Corpora used by Baniata et al. [22]. It can be shown from Tables 6 and 7 that
the proposed Transformer-based NMT subword system has achieved 57.85 and 57.92
BLUE scores on Maghrebi–MSA, Levantine–MSA translation tasks, respectively. Therefore,
it can be summarized as illustrated in Tables 6–8 that the proposed Transformer-Based
NMT model that utilizes Arabic dialects subword units outperforms the multitask NMT
system with part of speech tags that was proposed by Baniata et al. [22] on Maghrebi–MSA,
Levantine–MSA translation tasks. These results were an indication of the effectiveness of
utilizing subwords units and the usage of the shared vocabulary between Arabic dialect
and MSA in the proposed model. Exploiting subwords’ units of Arabic dialects (Levantine,
Maghrebi, Nile Basin, Gulf and Iraqi) as an extra feature in the Transformer-based machine
translation model is advantageous for word order problem and it generated a high quality
MSA sentences. By using subword units and Self-attention (multi-Head attention), the
proposed model could better represent and obtain more semantic features from AD source
language and solve the grammatical problem for AD: the word ordering issue.



Sensors 2021, 21, 6509 16 of 28

Table 6. Results of the Transformer-Based NMT Subword Model on corpus used by Baniata [22] for
MAGHREBI–MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the
filter size, EL is the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 57.06
512 1024 8 8 4 57.41
512 1024 12 12 4 57.85
1024 1024 4 4 4 37.15
1024 1024 4 4 8 49.47
512 512 4 4 4 55.14

Table 7. Results of the Transformer-Based NMT Subword Model on corpus used by Baniata [22] for
LEVANTINE–MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the
filter size, EL is the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 56.38
512 1024 8 8 4 53.98
512 1024 12 12 4 57.92
1024 1024 4 4 4 44.13
1024 1024 4 4 8 56.49
512 512 4 4 4 55.46

Table 8. Results of Multi-Task NMT Model with POS tagging using FAST Text Embedding that was
proposed by Baniata [22].

Model Pairs Epochs Accuracy BLEU

NMT+POS_LEV LEV–MSA 90 - 43.00
NMT+POS_LEV MSA-ENG 50 - 30.00

POS_LEV POS_LEV 40 98% -
NMT+POS_MAG MAG–MSA 50 - 34.00
NMT+POS_MAG MSA-ENG 30 - 29.00

POS_MAG POS_MAG 20 99% -

5.4.2. Human Evaluation

The human evaluation experiments confirm the results that were obtained by the
automatic evaluation. The pilot rating experiments were selected [15]. Participants were
requested to evaluate the translations on a 1 to 7 Likert metric. We evaluated the translation
quality for LEV–MSA, MAG–MSA, Nile–MSA, Gulf–MSA and Iraqi–MSA tasks asking
seven speakers who know modern standard Arabic and understand every Arabic vernacu-
lar to evaluate sentences generated from the proposed transformer NMT subword model.
We offered to the speakers a segment in LEV, MAG, Gulf, Nile and Iraqi and one translation
in MSA for each Arabic dialect. We selected at random 100 segments and divided them
into five subsets of twenty segments each. We give every annotator a subset and request
them to evaluate the translations considering adequacy and fluency applying Likert metric
from 1 to 7. The average results that were produced through every model using pilot rating
experiments are illustrated in Tables 9 and 10. The average results pointed out that native
speakers have positive and real judgment regarding the translations generated through the
proposed Transformer-Based NMT subword model. The average score on the LEV–MSA
translation task captured by multitask NMT part of speech tags system that was proposed
by Baniata et al. [22] was 5.9. Furthermore, the average score on the MAG–MSA translation
task captured through multitask NMT with part of speech tags system was 4.4. The av-
erage score on LEV–MSA translation task captured through the Transformer-Based NMT
subword model is 6.0 and the average score obtained for the MAG–MSA is 6.2. Moreover,
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the average score for Gulf–MSA, Nile–MSA and Iraqi–MSA translation tasks obtained by
the proposed model is 5.85, 5.8, 6.10, respectively. The findings of pilot rating experiments
give confirmation that the Transformer-Based NMT subword model (T-NMT-Subword)
generates better translation quality than the multitask NMT with part of speech tags system
for all translation tasks.

Table 9. Human Evaluation Scores -Pilot Rating Experiments (PRE).

Model Pairs Average Score

Transformer-NMT-Subword LEV–MSA 6.35
Transformer-NMT-Subword MAG–MSA 6.3
Transformer-NMT-Subword Gulf–MSA 5.85
Transformer-NMT-Subword Nile–MSA 5.8
Transformer-NMT-Subword IRQ–MSA 6.1

Table 10. Human Evaluation Scores -PRE for Levantine Arabic (LEV) and Maghrebi Arabic (MAG).

Model Pairs Average Score

Transformer-NMT-Subword LEV–MSA 6.0
Transformer-NMT-Subword MAG–MSA 6.2

Multi-Task Learning-NMT [22] LEV–MSA 1.4
Multi-Task Learning-NMT [22] MAG–MSA 1.3

MTL-NMT+POS [22] LEV-MAG 5.9
MTL-NMT+POS [22] MAG–MSA 4.4

6. Analysis

This analysis clarifies the positive effect of utilizing subword units on Arabic vernacu-
lars to modern standard Arabic translation task efficiency. Table 11 shows sample transla-
tions from the Transformer-based NMT subword model on the LEV–MSA, MAG–MSA,
Gulf–MSA, Nile–MSA, and Iraqi–MSA translation tasks. Due to the lack of standardization
for the Arabic vernaculars, Conventional NMT methods for Arabic dialects are incapable
of translating parts of input source sentences. Affixes and clitics are not obtained and
captured effectively without the need to utilize the Subword units and multi-head attention.
In Table 11, the proposed Transformer-Based NMT subword model translated 100% of
Maghrebi vernacular sentences correctly. For Levantine Arabic, the proposed model trans-
lated 99% of whole Levantine Arabic phrases properly with the exact meaning regardless
the word ZA

�
¯Y�B@

	
�ªK.“some friends” in the generated sentence is not the same word

ù




KA

�
¯Y�@“my friends” in the reference sentence, but it gives the same meaning. For the Gulf

Arabic, the proposed model was able to translate 95% of the Gulf Arabic sentence fluently
except the words

	
¬ñ

�
�

�
� AÓ É

�
JÓ“as you see “, the proposed model could not translate them

well and translated it to 	
àñºK


	áË“it will not be “rather than øQ
�
K

�
I

	
K@“you see”. Further-

more, the Transformer-based NMT subword model achieves the overall best translation
performance for Nile–Arabic and Iraqi–Arabic sentences. The translation quality of the
suggested Transformer-Based NMT subword system for Arabic vernaculars has enhanced
in comparison to Multitask NMT system (with POS tags) that was recently suggested
by Baniata et al. [22] that applied experiments on the same corpus as seen in Table 12.
The proposed Transformer-Based NMT subword model translated the source sentences of
Maghrebi dialect and Levantine dialect to MSA fluently and with high translation quality
without any translation mistakes.
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Table 11. Translation Examples for MAG, LEV, NILE, GULF and IRQ.

Source Language: MAG (Maghrebi) 	
¬@ 	QK. É¿ @ð C�@ A

	
K @ð

	
¬@ 	QK. ú



æ
�
�Ë @ XAë

�
�AjÊK. A

	
g@ð

English Translation (MAG) Yeah, but that’s so much and I ate lot

Target Language: MSA Éª
	
®ËAK.

�
IªJ.

�
� Y

�
®Ëð @Yg.

Q�

�
J» @

	
Yë 	áºËð Ég. @

Transformer-NMT Subword Model Éª
	
®ËAK.

�
IªJ.

�
� Y

�
®Ëð @Yg.

Q�

�
J» @

	
Yë 	áºËð Ég. @

English translation for output of the
Transformer-NMT Subword model Yes, but that’s too much and I’m already full

Source Language: LEV (Levantine) ú


G
.
Am�� ©Ó A

	
K @

English Translation (LEV) I am with my dudes

Target Language: MSA ù




KA

�
¯Y�@ ©Ó ú




	
æ

	
K @

Transformer-NMT Subword Model ZA
�
¯Y�B@

	
�ªK. ©Ó A

	
K @

English translation for output of the
Transformer-NMT Subword model I am with some Friends

Source Language: GULF �
èQk

�
�ñ� ø




	
Yë

	
¬ñ

�
�

�
� AÓ É

�
JÓ ? ½

�
KQ»

	
Y

�
Kð ¼ 	P@ñk. ¼Y

	
J«

English Translation (GULF) You got your passport and your ticket? as you see,
this is a duty-free market

Target Language: MSA

Qj.
�
JÓ @

	
Yê

	
¯ øQ

�
K

�
I

	
K@ ?

�
èQ»

	
Y

�
JË @ð Q

	
®�Ë@ 	P@ñk. ½ªÓ Éë

Ðñ�QË@ 	áÓ ù
	
®ªÓ

Transformer-NMT Subword Model
Qj.

�
JÓ ¼Y

	
J«

	
àñºK


	áË ? ½
�
KQ»

	
Y

�
Kð ¼Q

	
®� 	P@ñk. ½K
YË Éë

Ðñ�QË@ 	áÓ ù
	
®ªÓ

English translation for output of the
Transformer-NMT Subword model

Do you have your passport and ticket? You see,
this is a duty-free shop

Source Language: Nile (Egypt, Sudan) 	
àAK. AJ
ÊË

�
éÖÏ A¾Ó ÉÔ«@ 	PðA«

English Translation (Nile) I wanna do a call to Japan

Target Language: MSA 	
àAK. AJ
Ë AK. AJ


	
®
�
KAë ÈA�

�
�B@ YK
P@

Transformer-NMT Subword Model 	
àAK. AJ
Ë AK. AJ


	
®
�
KAë ÈA�

�
�B@ YK
P@

English translation for output of the
Transformer-NMT Subword model I want to do a phone call to Japan

Source Language: IRQ (Iraqi) �
�Ê¿ ú




	
æK


	
XA

�
K ú




�
GYªÓð

�
èXðQ�. K. �k@

English Translation (IRQ) I feel cold and my stomach is hurting me a lot

Target Language: MSA @Yg. ú



�
GYªÓ ú




	
æÖÏ


ñ

�
Kð

�
èXðQ�. K. Qª

�
�@

Transformer-NMT Subword Model @Yg. ú



�
GYªÓ ú




	
æÖÏ


ñ

�
Kð

�
èXðQ�. K. Qª

�
�@

English translation for output of the
Transformer-NMT Subword model I feel cold and my stomach hurts so much
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Table 12. Translation Examples for Maghrebi Arabic and Levantine Arabic, Baniata [22] Corpus.

Source Language: MAG (Maghrebi)
ñ�A

	
g ñë ú

�
æk

	
¬

�
é
�
®K
Q¢Ë@ XAë H. ú



j

	
�

�
� ú




�
æÊJ.

�
¯ ú




�
æ

	
K úÍ@

½J
Ê«
�

�C
	

j
�
JJ
Ó ð QÓB@ XAë PY

�
®K


English Translation (MAG)
If you accept to sacrifice in this way, he is also

obliged to appreciate this matter and not abandon
you

Target Language: MSA
úÎ« Q�. m.

× ½Ë
	
Y» ñê

	
¯

�
é
�
®K
Q¢Ë@ è

	
YîE. ú



j

	
�

�
�

	
àAK.

�
IÊJ.

�
¯

�
I

	
K@ @

	
X @

½
	
J« úÎ

	
j

�
JK
 B@ ð QÓB@ @

	
Yë PY

�
®K


	
à@

Transformer-NMT Subword Model
úÎ« Q�. m.

× ½Ë
	
Y» ñê

	
¯

�
é
�
®K
Q¢Ë@ è

	
YîE. ú



j

	
�

�
�

	
àAK.

�
IÊJ.

�
¯

�
I

	
K@ @

	
X @

½
	
J« úÎ

	
j

�
JK
 B@ ð QÓB@ @

	
Yë PY

�
®K


	
à@

English translation for output of the
Transformer-NMT Subword model

If you accept to sacrifice in this way, he is also
obliged to appreciate this matter and not abandon

you

Source Language: LEV (Levantine)
YªK. ��. ÈðB@ ÐñJ
Ë @ ú




	
¯

�
éjJ


	
JÓ Q¢ªË@

�
ém�'


P ø



	P Aî
�
Dm�'


P è@

½J
ë

English Translation (LEV) yeah, it smells like perfume, good on the first day,
but later on

Target Language: MSA
AÒJ


	
¯ 	áºË ÈðB@ ÐñJ
Ë @ ú




	
¯

�
èYJ
k. Q¢ªË@

�
ém�


' @Q» Aî

�
Dm�


' @P Ñª

	
K

YªK.

Transformer-NMT Subword Model
AÒJ


	
¯ 	áºË ÈðB@ ÐñJ
Ë @ ú




	
¯

�
èYJ
k. Q¢ªË@

�
ém�


' @Q» Aî

�
Dm�


' @P Ñª

	
K

YªK.

English translation for output of the
Transformer-NMT Subword model

Yes, it smells as good as perfume on the first day, but
later on

The influence of utilizing subword units and shared vocabulary between Arabic
dialects and MSA and applying the self-attention mechanism on translation quality for Ara-
bic vernaculars is significantly evident. The proposed Transformer-Based NMT Subword
model is well-suited to handle the issue of free word ordering and create a right context
and a correct order for the target language sentences, as illustrated in Tables 11 and 12.
Furthermore, the proposed system can obtain excellent translation effectiveness with vari-
ous language pairs, as illustrated in Tables 11 and 12 for MAG–MSA, LEV–MSA, Nile–MSA,
Gulf–MSA and IRQ–MSA tasks. The proposed model was evaluated on the same parallel
corpus that was applied by Baniata et al. [22] for Maghrebi Arabic and Levantine Arabic.
Compared to the multitask NMT with part of speech tags system that was trained on
the same parallel corpus, the suggested Transformer NMT subword system scored an
effectiveness of 56.49 BLEU score for translating from Levantine Arabic vernacular to
MSA and 57.06 BLEU score for translating from Maghrebi Arabic vernacular to MSA. The
findings show that the proposed Transformer NMT subword model performs outstanding
translation quality than the multitask NMT with part of speech (POS) tagging system by
evaluating the systems using BLEU score and experiments of human assessment.

The Transformer-based NMT subword model obtained remarkable results BLEU
score for all Arabic dialects in comparison with various NMT systems, as shown in
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Figures 4 and 5. It should be noted that the representation of source language learned via
the proposed model significantly improves the translation effectiveness for language pairs.
Generally, the suggested model is capable to produce fluent sentences in MSA language
and transfer the information regarding the subject, object and verb for a free word order
language such as Arabic vernacular. This section presents more analysis to know the effect
of utilizing subword units on the performance of the proposed Transformer NMT subword
system. This analysis includes (a) contribution of different numbers of encoder layers to the
translation effectiveness of the proposed system (b) impact of translation quality regarding
source sentence length, (c) impact of varying beam size concerning the effectiveness of
the suggested model, (d) the impact of the encoder’s self-attention and, (e) quantitative
analysis of the proposed model. These analyses are applied to the MAG–MSA because of
the dataset’s size and the number of layers used to train the model.

Figure 4. Levantine Arabic-MSA BLEU Score with different models, where C 1 is a random embed-
ding, C 2 a pre-trained/Fast-text, C 3 a pre-trained/Polyglot.

Figure 5. Maghrebi Arabic-MSA BLEU Score with different models, where C 1 is a random embed-
ding, C 2 a pre-trained/Fast-text, C 3 a pre-trained/Polyglot.
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6.1. Impact of Hayperparameter n

Tables 1–7 show that performing the Transformer-Based NMT subword model across
various source representations obtained from several encoding layers significantly enhances
the performance of the proposed model for all Arabic vernaculars. n represent the number
of encoding layers in the proposed Transformer-Based NMT subword model. This part
studies the impact of varying the value n (using only the representations from top n
encoding layers). The proposed Transformer based NMT subword model is trained with
various values of n where n is set to 4, 8 and 12. Where n = 4 indicates a setup for a simple
model, n = 8 indicates a configuration for a medium-sized model and n = 8 indicates
a configuration for a large model. As seen from Table 2, for example, in the Maghrebi
Arabic-MSA task (and in all translation tasks), there is (in most cases) a significant change
in BLEU score as the value of n changes.

6.2. Length of Source Sentence

Obtaining contextual information and long-distance dependencies between the source
sentence’s tokens can considerably increase the performance of longer sentences’ transla-
tion. As mentioned by (Luong et al. [47]) sentences that have the same lengths (number of
source tokens) are collected together. The grouping is arranged by the lengths of source
sentences (the number of subword tokens in every source sentence) over the MAG–MSA
test set. We selected the MAG–MSA translation task to investigate the translation quality
of long sentences because of the large size of the MAG–MSA corpus. The comparison in
this research project is based upon these lengths: >50, 40–50, 30–40, 20–30, 10–20 and <10.
Regarding every length interval, BLEU score metric is computed for the output of the sug-
gested Transformer-Based NMT subword model. As can be noted in Figure 6, the proposed
model performance improves while the input sentence lengths increase, particularly for
the lengths between 40 and 50 subword tokens and for the lengths larger than 50 subword
tokens with 61.76 and 62.17 BLEU scores, respectively. The proposed model, through the
use of self-attention sublayers, is capable of modeling or obtaining contextual knowledge
and dependencies within the tokens regardless of their distance or location within Arabic
dialect sentence input. However, the performance of the suggested model decreased for
very short sentences that have lengths smaller than 10 (in terms of the number of subword
tokens). The performance increased for sentences with lengths larger than 50 (in terms of
the number of subword tokens). Moreover, the proposed model performed inadequately
on few numbers of short sentences with length less than 10 subword tokens with the
lowest BLEU score (23.37). This occurs because these very short AD sequences contain
only subword tokens (suffixes, affixes and morphemes) and they are cannot be aligned to
the corresponding words in the target language. Overall, the performance of the proposed
Transformer-Based NMT subword model obtained across the different groups motivates
the hypothesis that employing subword units and using shared vocabulary between source
language (Arabic dialect) and target language (MSA) enhances the encoder’s self-attention
sublayers’ effectiveness in effectively capturing the global dependencies between words in
the input sentences.
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Figure 6. BLEU Score on MAG–MSA test dataset for the Transformer-NMT Subword model with
respect to different source sentence length.

6.3. Beam Size Evaluation

A comparison is conducted for the performance of the proposed model by modifying
the beam size. The experiments are carried out based on the Transformer NMT subword
model for Arabic vernaculars. We employed Wordpiece model for subword tokenization.
Beam size has a large impact on the decoding speed (as words per second) and translation
quality (in BLEU). Table 13 shows the outcomes of the experiments on the MAG–MSA
translation task and results show that the optimum performance (in BLEU) of the proposed
model is achieved when beam size has the value 6 and the fastest decoding speed of the
model is obtained with beam size 6.

Table 13. Change in BLEU Score According to Beam Size.

Beam Size BLEU

1 52.82
2 58.10
3 59.69
4 60.31
5 61.70
6 65.66
7 61.22
8 61.35
9 60.72

10 61.36

6.4. The Effect of the Encoder Self Attention

The encoding layers’ effectiveness is determined by the capability of several heads of
the multi-head attention sub-layer placed inside each layer to capture important structural
information. These attention heads, to varying degrees, capture structural information.
As remarked by Raganato et al. [48] and Vig et al. [49], some of the heads in multi-head
attention sublayer hold the long-distance relations among input token. Other heads in the
multi-head attention sub-layer hold the short distance relations among input tokens. This
makes the suggested Transformer-Based NMT Subword model obtain the structural and
fundamental characteristics efficiently for the input source sentence of Arabic vernacular
to increase the effectiveness [48]. As previously stated, the use of Subword units influ-
ences how the source language information is handled through the layers of the encoder.
As mentioned by Vig et al. [49], this approach is examined through computing two things;
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the attention entropy and the attention distance spanned through several attention heads

within every encoding layer multi-head attention sublayer. The mean distance Dl
h that is

spanned by attention head h for encoding layer l is calculated a weighted average distance
within tokens pairs every sentence of a given corpus X. So:

Dl
h =

∑x∈X ∑
|x|
i=1 ∑i

y=1 wh
i,j·(i− j)

∑x∈X ∑
|x|
i=1 ∑i

y=1 wh
i,j

(19)

where wh
i,j is attention weight from the input token xi to xj for attention head h.i and j

signifies the tokens’ places xi and xj in source sentences. By performing aggregation for the

attention distance for every head, the mean attention distance spanned Dl with reference
to the encoding layer l is computed as:

Dl
=

1
Nh
·

Nh

∑
h=1

Dl
h (20)

where Nh indicates the number of attention heads that are used within the layer. Mean
attention distance provides no information about how the attention weight is distributed
through the input tokens for a particular attention head. Attention head that has greater
mean attention distance may concentrate on sequences of same tokens that are sepa-
rated [49,50]. To estimate the dispersion or concentration pattern for attention head h inside
layer l for input token xi, entropy of attention distribution [50], El

h (xi) for attention head h
is calculated as:

El
h (xi) = −

i

∑
j=1

wh
i,j log wh

i,j (21)

The mean entropy of the attention distribution for encoding layer l is computed
similarly to the attention distance spanned as:

El (xi) =
1

Nh

Nh

∑
h=1

El
h (xi) (22)

Attention heads with larger entropy have a more distributed attention pattern, whereas
attention heads with a lower entropy have a more focused attention weight distribution.
Attention distance and the entropy of attention analysis are conducted based on the at-
tention weights produced for a random 2000 sentences from the MAG–MSA task’s test
split (PMM-MAG Corpus). Figure 7 presents mean attention distance span and the mean
entropy of attention distribution for every attention head for every encoding layer of the
proposed Transformer NMT subword model for Arabic vernaculars. As remarked, some
heads focus on short-distance relations among input tokens, other self-attention heads
obtain the long-distance relations between input tokens. Furthermore, the entropy of the
attention distribution changes through layers. Moreover, the entropy of the attention distri-
bution change for the attention heads within the same layer. The mean average attention
distance and entropy for all heads in the multi-head attention through the encoder layers
are shown in Figure 8. As shown in Figure 7, for the suggested model, most of the attention
heads that have a high mean attention span and much more stable values of attention
distribution are located in fourth layer. Despite, a large mean attention distance does not
indicate stable attention distribution. The preceding layers have multiple attention heads
that have high value of distance span but significantly less consistent attention weights
distribution. For instance, in the second layer, attention heads 1 and 4 have the largest
mean attention spans (3.09 and 3.24, respectively), but the lowest mean entropy scores
(0.22 and 0.23). As Vig et al. [49] highlight, attention heads that have large value of mean
attention distance span concentrate their attention to word in repeated sentences that
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occurs in various places within the source sentence. This can justify their reduced entropy
of weight distribution over the sequence of input tokens. Attention heads with a stable or
less stable weight distribution and low attention distance span focus significantly more
on nearby tokens. Those attention heads that have changeable mean attention distance
and changeable entropy enable suggested transformer NMT subword model for Arabic
vernaculars to learn efficiently changeable structural information across its layers. This
demonstrates the Transformer-Based architecture’s superiority over seq2seq architectures
such as RNN and CNN.

Figure 7. Variation of mean attention distance span and attention distribution entropy with respect to the encoding layers and
the attention heads for the suggested model.

Figure 8. Variation of the average mean attention distance and variation of the average entropy of head attention distribution
with respect to each encoder layer for the suggested model.

In the proposed model, the Subword units have a strong influence on multi-head
attention sub-layer inside the encoding layer. As illustrated in Figures 7 and 8, exposing
the encoder layers to the decoder network, enables the encoder subnetwork to learn
the source information in a more customized manner. Figure 8 illustrates the change in
average mean attention distance span and entropy of the attention weight distribution
for different attention heads over various layers of the encoder. As illustrated in Figure
8, the proposed Transformer based subword model concentrated the attention heads that
has a shorter attention span over the layers l ≤ 3. These layers are employed to learn
the short rang contextual and local knowledge within the neighborhood of input source
tokens. The upper layers learn the long-distance interaction within the input source
tokens. Generally, utilizing subword units explained how the source information (Arabic
dialects) is captured over several attention heads and layers in the encoder as revealed
by the entropy of attention weight distribution and attention distance. This improves the
proposed Transformer-based NMT subword model’s performance at learning the source
semantic information that is required to enhance the quality of translation.
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6.5. Quantitative Analysis

The proposed model provides a method of examining the alignment of words in
generated translation with words in source sentence. This method is performed through
the visualization of annotation weights as illustrated in Figure 9. Every row of the matrix
in every plot indicates the weights linked with the annotations where the x-axis represents
the input sentence (Maghrebi Arabic) and the y-axis represents the generated sentence
in MSA. This reveals which locations in the source sentence were rated more signifi-
cant when the target word was generated. As illustrated in Figure 9, the alignment of
words between Maghrebi Arabic (MAG) and MSA is primarily monotonic. Along the
diagonals of each matrix, we see strong weights. Although, we see several non-trivial,
non-monotonic alignments. Typically, nouns and adjectives are ordered differently in MAG
and MSA, as illustrated in the upper left part of Figure 9. From Figure 9, we see that the
model correctly translates a MAG dialect sentence ( �

IjÖÞ� ñË ú


G
.
AK. i

�
J
	
®
�
K PY

�
®

�
K @QK. AJ
Ê« Qº�@)

“it has been closed from outside, can you open my door please” into MSA sentence
(? ½Ê

	
�

	
¯ 	áÓ ú



G
.
AK. i

�
J
	
®
�
K

	
à@ 	áºÖß
 Éë H. AJ. Ë @ ú



Î«

�
�Ê

	
«@ Y

�
®Ë) “the door has been closed while I am

inside, can you open my door please”. The proposed transformer-based NMT subword
model was able to correctly align ( @QK. AJ
Ê« Qº�@) “it has been closed from outside” with

(H. AJ. Ë @ ú


Î«

�
�Ê

	
«@ Y

�
®Ë) which means “the door has been closed”, the proposed model was able

to understand the contextual clues (H. AJ. Ë @) “the door” of Maghrebi Arabic and translated
the MAG sentence to MSA correctly. Additionally, the model often handles source and
target sentences of variable length. Furthermore, sub-word units approach can be applied
on various Arabic NLP tasks such as sentiment analysis [51] and text summarization.

Figure 9. (a–d) Four Sample Alignments.

7. Conclusions

This research project introduced a Transformer-Based NMT model for Arabic dialects
that utilize Subword units. Through training the suggested model on translation tasks
from diverse Arabic dialects to MSA, the model’s translation performance was significantly
improved. Utilizing various source representations captured by stacked encoding layers
enhance the efficiency of the transformer NMT subword system. The findings of this
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research project confirm that the Transformer NMT subword model that exploits subword
units enhanced the translation BLEU score for MAG–MSA, LEV–MSA, Nile–MSA, Gulf–
MSA and IRQ–MSA tasks. The utilization of subword units by using the Wordpiece
Model showed that this method is promising and significant for low-resource languages
such as Arabic vernaculars. Additionally, using a changeable number of heads in self
attention sublayer and training the model with a different number of encoders and decoders
improved the quality of translation from Arabic vernaculars to modern standard Arabic.
Experimental results on MAG–MSA, LEV–MSA, Nile–MSA, Gulf–MSA and IRQ–MSA
translation tasks showed that the proposed model improved the BLEU score’s effectiveness
in comparison to other NMT systems. However, the experimental analysis performed
reveals that performance gain is reliant on the value of the number of encoding layers
considered. Additional analysis reports that increasing the layers of encoder and decoder
subnetworks adjust how the local and general contextual knowledge is obtained and
captured by employing multi-head attention sublayer used within each encoding layer. The
current proposed Transformer-Based NMT subword model can deal with the issue of low
availability of Arabic dialects training data. Additionally, the suggested system addressed
the Arabic dialect’s grammatical problem; free word ordering. The proposed model with
subword units’ utilization is effective and suitable to perform machine translation for low
resource languages such as Arabic vernaculars.
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