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Abstract: To shift the paradigm towards Industry 4.0, maritime domain aims to utilize shared
situational awareness (SSA) amongst vessels. SSA entails sharing various heterogeneous information,
depending on the context and use case at hand, and no single wireless technology is equally suitable
for all uses. Moreover, different vessels are equipped with different hardware and have different
communication capabilities, as well as communication needs. To enable SSA regardless of the
vessel’s communication capabilities and context, we propose a multimodal network architecture
that utilizes all of the network interfaces on a vessel, including multiple IEEE 802.11 interfaces, and
automatically bootstraps the communication transparently to the applications, making the entire
communication system environment-aware, service-driven, and technology-agnostic. This paper
presents the design, implementation, and evaluation of the proposed network architecture which
introduces virtually no additional delays as compared to the Linux communication stack, automates
communication bootstrapping, and uses a novel application-network integration concept that enables
application-aware networks, as well as network-aware applications. The evaluation was conducted
for several IEEE 802.11 flavors. Although inspired by SSA for vessels, the proposed architecture
incorporates several concepts applicable in other domains. It is modular enough to support existing,
as well as emerging communication technologies.

Keywords: Wi-Fi; IEEE 802.11; maritime communications; application-network integration; shared
situational awareness; multimodal communications

1. Introduction

Transport over water is an important part of freight transport, where around 80% of
the world’s trade is shipped over sea [1]. As is the case in almost any transport sector,
transport over water is undergoing an evolution towards unmanned vessels, supported by
shore/remote control centers, and in the next stage autonomous vessels. To support this
evolution, work is being done to connect the actors in this quite specific environment in
light of the Industry 4.0 evolution by applying Internet of Things (IoT) technologies.

The main purpose for connectivity is of course enabling actors to have access to the
necessary information to develop situational awareness, and more importantly, a shared
version thereof, so that data critical to recognizing situations can be shared from and
to the actors of the environment, even in real-time. Therefore, the underlying network
architecture for supporting such communication is an active field of research, both in the
maritime and inland waterway setting.

It should be clear that communication between vessels offshore has been more
challenging as compared to application fields on land, simply because one cannot rely on
the vast and dense communication infrastructure available on land. For example, ships in
need of exchanging information can be far at sea, hundreds of miles apart. Ships in the
vicinity of each other performing collaborative tasks on international waters will need to
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share resources (like radar, lidar, sonar, or other means of perceiving the world around
them) and be connected to information systems (like for weather, traffic, currents, etc.).
Furthermore, in a transition to fully autonomous vessels, and even long after, ships need
to be connected to control centers (mostly on land), monitoring vessel actions as well as
having the capability to take control when a situation calls for it. Therefore, these centers
will need the tools to be aware of the situation a vessel is in while operating vessels as if
they are locally at the helm of those vessels.

Advances in connected vessels for Shared Situational Awareness (SSA) are today
constrained by a limited set of communication methodologies. One example of a broadly
used system for SSA is Automatic Identification System (AIS). However, AIS has very
limited capabilities regarding the sharing of vessel states and their intentions. Being an
older technology, security is lacking (for example spoofing, i.e., pretending to be another
vessel), update rates are lacking (not faster than once per 2 s and in worst case once per
12 min), there are scaling problems (for example relevant to busy harbors), and correctness
guarantees and trust is missing (only 30% of AIS messages are found to be correctly
representing a vessel’s intentions and states [2,3]). Moreover, the strong connection between
the AIS protocol and the physical (wireless) link used to transmit and receive messages
makes it a less than optimal solution to support future developments in communication
for unmanned (autonomous) shipping, requiring SSA. That is, additional connectivity
solutions are required to complement AIS.

Independent of the information content shared for SSA, the channels over which
that information can be shared require special attention. Next to Very-High Frequency
(VHF) radio broadcasting (for AIS), in practice, vessels make use of cellular networks,
satellite networks, and point-to-point networks (e.g., Wi-Fi mesh) to interconnect, and
this to share information, diagnose problems, remotely control assets, and collect big
data. However, even with these connectivity solutions, vessel operators face significant
limitations related to data rates, coverage, topologies, latency, etc. Hence, to cover for
the varying communication needs across edge, fog, and cloud solutions, there are many
challenges to consider. For instance, satellite communication (although omnipresent)
has low bandwidth, high latencies, and a high usage cost. Cellular networks, only
available in near-land and inland waters, can have poor coverage in low-populated
regions and can demonstrate frequent handover failures. Wi-Fi mesh (although high
in bandwidth) is a localized technology, operating in unlicensed spectra and thus prone to
unwanted/unexpected interference.

Obviously, any communication technology has drawbacks and advantages and finds
appropriate use depending on circumstances. Fall-back and collaborative mechanisms to
ensure robust, reliable, and secure communication are therefore a necessity, employing the
right technologies to the situation at hand, preferably collaboratively and in a transparent
way: The SSA application in need of connectivity should not be responsible for establishing
the connectivity, optimizing and maintaining it, but only using it. To this end, the following
main contributions are made in this paper. (i) We design and implement a multimodal
communication framework to support SSA for vessels that is (a) self-organizing, whilst
being transparent to the higher layer applications, (b) that provides relevant feedback
on the communication capabilities to the applications and (c) that is sufficiently modular
to incorporate new technologies when they appear on the market (e.g., the upcoming
long-range Wi-Fi standard IEEE 802.11ah). (ii) We design and implement a centralized
discovery framework that enables automatic communication bootstrapping between
vessels. (iii) We design and implement a simple time-aware scheduling mechanism that
makes use of application-network integration framework [4] to fulfill the applications’
latency requirements. Finally, (iv) we evaluate the design in three representative use cases.

More specifically, we introduce an abstraction layer in between layers 2 and 3 of the
Open Systems Interconnection (OSI) communication stack that dynamically bootstraps
communication using any and all of the available physical network interfaces. This layer
informs applications regarding available networking capabilities (in real-time) enabling
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the application to adapt to the network (e.g., compress data or filter some out when links
degrade or start new data streams when better links become available, etc.) while providing
services to the application based on its needs as a best effort (e.g., regarding prioritization,
bandwidth shaping, etc.). As such, our concepts enable multimodal communication,
flexibly and transparently, providing traffic management without connectivity interrupts
for the application layer. Our approach is both technology and vendor/manufacturer
agnostic and can cope with various communication channels with fluctuating quality
that might only be temporarily available. By better understanding network behavior, our
approach enables applications to optimize the data transfer, as well as to have more control
over the multimodal network’s Quality of Service (QoS).

In this paper, we describe the design and proof-of-concept implementation of the
network architecture for SSA and evaluate this solution in three scenarios, considered
representative for SSA use cases for vessels in the maritime, estuary, and inland waterway
context. These scenarios are: (i) automatically bootstrapping the communication between
moving vessels depending on their location, (ii) automatically adapting the network
behavior in real-time based on the application requirements, and (iii) automatically adapting
the application behavior in real-time based on the current network conditions.

In the next section (Section 2), we discuss related work, i.e., the state-of-the-art.
Section 3 describes challenges and requirements related to SSA for vessels. Section 4
presents the design and implementation of the communication architecture, which is
evaluated in Section 5 for the three aforementioned scenarios. Finally, conclusions are
given in Section 6.

2. Related Work

Despite the advent of radio communication being largely motivated by maritime
applications, advancements in maritime communications are significantly lagging behind
their terrestrial counterparts (e.g., IEEE 802.11, 3GPP cellular). While wireless communications
have undergone significant advancement and breakthroughs, only in recent years maritime
communication has slowly been gaining momentum in modernizing mobile communication
services. As such, the International Telecommunication Union (ITU) introduced AIS
to provide vessel identification, location reporting, and tracking in order to enable the
exchange of navigational data among ships and between ships and shore stations with
the aim to improve situational awareness over voice, sight, and radar [5]. However, AIS
has limited data communication capacity and lacks a flexible architectural framework for
addressing current and upcoming aspects of maritime IoT applications and services, and
can be deemed as a primitive maritime communication system [6].

Although there is some interesting literature on maritime communication technologies
utilizing particular terrestrial and satellite communication technologies as reviewed in [6,7],
there is very limited research available on multimodal maritime communication systems.
Three recent research papers propose conceptual network architectures for maritime
use-cases analyzing the overall operation of the system, but do not provide concrete
implementations or evaluations of such systems [6,8,9]. They all present a maritime
Machine-Type Communication (MTC) concept dedicated to the maritime IoT and outline
the maritime MTC requirements on the ubiquity, heterogeneity, interoperability, service-
centricity, traffic nonuniformity, and scalability, to name a few. They address these
requirements through an MTC system design, based on the international VHF maritime
mobile spectrum recently allocated for maritime MTC by ITU to enable maritime IoT.
Wang et al. Wang et al. [8] point out challenges, advice, and pitfalls to avoid in future
development and standardization of the maritime communications, but do not present
an implementation or evaluation of such system. In addition to the unified network
architecture as presented in [8], Zhang et al. [6] propose the spectrum sharing and
interference management mechanisms for VHF maritime mobile spectrum. Xia et al. [9]
also propose an analogous unified network architecture, further defining its three functional
entities: Network Controller, Maritime Application Server, and Control Station. Additionally,
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they propose an air interface design that includes four types of air interfaces, employing
single-carrier waveforms for power efficiency and simplicity, and sharing the same transmission
time structure that is organized into frames.

Mu et al. [10] proposed an integrated wireless communication architecture design
that tries to provide maritime customers ubiquitous services by integrating heterogeneous
underlying wireless networks. Solutions for addressing key issues such as quality, security,
and mobility are covered in this architecture with a more detailed discussion of seamless
handover. The proposed design is not implemented or validated in this study.

Maritime communication systems are briefly but concisely reviewed by Robinson
et al. [11]. Satellite communications including Low Earth orbit (LEO), Medium Earth orbit
(MEO) and Geostationary orbit (GEO), point-to-point wireless links, as well as research
communications (i.e., evaporation ducts and troposcatter), are compared in this study in
terms of range, bandwidth, latency, and cost. A more detailed, comprehensive review of
hybrid satellite-terrestrial maritime communication networks, including communication
requirements, state-of-the-art networks, and enabling technologies is published by Wei
et al. [7]. They categorized the enabling technologies into three types, namely enhancing
transmission efficiency, extending network coverage, and provisioning maritime-specific
services. They illustrated and compared the technologies in terms of their objectives,
methods, and characteristics of used maritime communication networks.

Several studies have evaluated existing wireless technologies in the maritime domain.
Allal et al. [12] conducted a case-study in the Strait of Gibraltar in order to study the
reliability, cost-effectiveness and availability of satellite communication, radio VHF, radio
Ultra High Frequency (UHF), radio High Frequency (HF), radio Medium Frequency
(MF), AIS and Long Range Identification and Tracking (LRIT). They quantified and
classified the data to be transferred, the identification of ship mobility environment
challenges, and proposed mobile WiMAX (IEEE802.16e-2005) as a reliable, secure, and
cost-effective maritime communication carrier in the strait of Gibraltar where conventional
and autonomous ships will co-exist. Choi et al. [13] also evaluated WiMAX (IEEE 802.16j)
in terms of Bit Error Rate (BER) under various sea states in vessel to vessel communication.
Ref. [14] compares different routing protocols in a delay tolerant WiMAX mesh network in
maritime environment.

Hassan et al. [15] propose a heterogeneous communication framework using 6G,
LEO and an Unmanned Aerial Vehicle (UAV) to provide global connectivity to maritime
users. They proposed UAV as an aerial backhauling and a relay medium between marine
users and LEO satellite constellation. Other studies [16,17] present Long Term Evolution
(LTE)-Maritime, a research project in the Republic of Korea to develop the communication
infrastructure for providing higher data rates with coverage around 100 km from shoreline
based on LTE technology.

Finally, Aliaj et al. [18] developed a software platform for performing wireless maritime
networking experiments. The platform brings together two features. First, a novel
middleware application, called Dedalus, is used for monitoring and controlling experiments,
and secondly, several implementations of popular protocols that perform ad hoc routing,
delay-tolerant routing, information-centric networking, and encryption.

This paper takes into account maritime communication requirements as detailed in
several previous conceptual studies [6,8,9] and presents the design, implementation, and
validation of a multimodal maritime communication framework for enhancing shared
situational awareness for vessels. No research to date has yielded a concrete system that is
environment-aware, service-driven, and technology-agnostic.

3. Requirements and Challenges

To achieve an enhanced situational awareness of vessels, it is necessary to provide
connectivity to various types of maritime applications and services. This section first
summarizes the general requirements and challenges that such a maritime communication
system faces. Then, it presents more focused technical requirements and the scope of this
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paper in terms of addressing the requirements. Finally, it summarizes the challenges in
implementing a multimodal and flexible communication system for the maritime domain.

3.1. Maritime Communication Requirements

Recent studies have comprehensively categorized the maritime communication
requirements, as detailed below. Zhang et al. [6] distinguished three key characteristics a
maritime communication system requires, namely (i) ubiquitous Connectivity and Service
Continuity, (ii) traffic nonuniformity, and (iii) radio spectrum internationality. In addition
to these three, Wang et al. [8] and Xia et al. [9] distinguish 5 more requirements as
follows: (iv) service-centricity and adaptability, (v) device heterogeneity, (vi) simplicity and
reliability, (vii) capacity and scalability and (viii) interoperability.

3.1.1. Ubiquitous Connectivity and Service Continuity

To ensure continuous and unbroken access to maritime services among vessels and
vessel-to-shore on a global scale in open oceans, including remote Polar regions, a unified
cooperative service network that can provide seamless roaming with undisrupted services
across organizational, regional, and national boundaries is needed.

3.1.2. Traffic Nonuniformity

The highest density of vessels is present in and around ports, near-shore and waterways,
whereas deep-sea vessels are sparse in density. Hence, an effective and adaptable
communication solution is needed to handle this heavy traffic load disparity.

3.1.3. Radio Spectrum Internationality

Maritime communication has traditionally used a dedicated radio spectrum for
communications, which is regulated by national standardization bodies, calling for a
dedicated international frequency band.

3.1.4. Service-Centricity and Adaptability

Having in mind that maritime applications and services vary from simple location
reporting to route exchange and remote control (e.g., for autonomous vessels), maritime
communication network needs to cooperate with other networks (e.g., Internet, owner’s
intranet, etc.) and offer amorphous services that can adapt to a wide variety of maritime
applications and support the changing demands. Hence, both network configuration and
communication resources must be flexible and adaptive to varying services. In addition,
the network needs to provide security and ensure that only authenticated vessels can access
certain services, and vice versa.

3.1.5. Device Heterogeneity

Maritime communications include a wide variety of end devices ranging from low-cost
low-power sensors to high-end devices for large vessels. Ergo, the communication network
needs to support different communication and processing capabilities these devices can provide.

3.1.6. Simplicity and Reliability

Given that maritime equipment needs to endure harsh environmental conditions,
reliability and robustness are of paramount importance. To reap the full benefits of maritime
communications, communication devices will have to be mandated to all vessels. Hence,
the system has to be designed with low cost in mind and needs to be simple as simpler
systems are easier to manufacture and maintain.
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3.1.7. Capacity and Scalability

Maritime communication systems need to support the ever-growing maritime traffic,
despite the scarce radio spectrum. In addition to spectrally efficient communication
technologies, maritime communication systems need to be flexible in more than one way,
enabling future-proof scalable deployments.

3.1.8. Interoperability

The ability of different maritime applications and services to exchange data efficiently
and cooperatively needs to be ensured, having in mind that maritime applications are
provided by different companies and organizations in the maritime industry. Given that
maritime applications and services need to be available to all involved hosts, regardless of
manufacturer, owner, or origin, the underlying communication system needs to
enable interoperability.

3.2. Implementation Challenges

Given the wide variety of both services needed and communication technologies in
use, one of the major challenges in realizing a communication solution for comprehensive
situational awareness in the maritime domain is communication bootstrapping. Vessels
in remote regions do not need to exchange much data, but do need to send status reports
every once in a while, and can only use satellite communications for such long-distance
communication. In case of multiple vessels in the vicinity to each other in offshore areas,
in absence of network infrastructure an ad hoc network needs to be established in order
to exchange more data between them. Vicinity in open seas may mean anything from a
hundred meters to more than a kilometer. When closer to the terrestrial communication
infrastructure nearshore, vessels may use cellular communication. Having in mind
ubiquitous connectivity and service continuity requirements, communication bootstrapping
should be smooth, without requiring the application to explicitly select a specific technology,
which would disrupt ongoing communications and services. The use of multiple
communication technologies (also referred to as multimodal communication) , including
the presence of multiple IEEE 802.11 flavors, comes with challenges in terms of routing
and traffic handling without any connectivity interrupt for the application layer.

To dynamically bootstrap multimodal communications, vessels need to have a
technology-agnostic discovery mechanism and be able to detect other vessels and their
communication capabilities and services they offer. They need to (be able to) establish an
ad hoc communication network (like IEEE 802.11 ad hoc mode) dynamically when possible
and needed, and make use of this network in addition to, or instead of, other networking
options (e.g., cellular, satellite, IEEE 802.11 managed mode). We distinguish two options
regarding ad hoc communication bootstrapping, as follows:

• Application is already communicating over another link (e.g., cellular) with a lower data
rate. Establishing a direct ad hoc IEEE 802.11 link may enable a higher data rate, in
which case the application may send the same sensor stream at a higher data rate over
the new link, or add a new stream, while still prioritizing between the streams.

• Application is not communicating. The presence of a new link with certain properties
may trigger the discovery of additional services and start the data exchange in one or
both directions.

Wi-Fi mesh networking is not a novel concept and is already in use within some
organizations in the maritime domain. However, establishing a mesh network between
vessels owned by different organizations is not seamless. Vessels need to discover each
other, discover the services each of them offers and connect to each other while providing
service continuity in case they already communicated over another link. In addition, same
channel meshing may introduce both intra- and inter-network interference, as well as limit
the network capacity, especially in ports and waterways where many vessels coexist in the
same geographical area. To make the most out of Wi-Fi mesh, distributed and adaptive
network configuration is needed.
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Requirements listed in Section 3.1 mandate bootstrapping the connectivity between
assets at different levels (edge-fog-cloud) and from different manufacturers and owners,
over various communication channels that can have fluctuating quality and that might
only be available temporarily. To set up a distributed, shared environment model over
such a dynamic communication environment, we need to move towards flexible and
secure multipath communication solutions. At the same time, deeper insights in the
communication behavior are needed to optimize data distribution and adjust data reductions
at the application level. To be able to optimally utilize any or all of the communication
links available at a certain time, applications in vessels need to be aware of current
network capabilities and link properties for every existing link. Hence, the concept of
application-network integration should be adopted. An application should have the means
to find out what are the properties of the available links in real-time, and the network
should have the means to find out what needs do applications have in terms of bandwidth
and time, in order to provide appropriate QoS to them, if possible.

Low-cost IP-like technologies would enable access to services in the cloud over the
Internet, making the communications service-driven and technology-agnostic, irrespective
of the equipment available and vessel ownership. Costly proprietary solutions, however
effective, may not be suitable and affordable to small organizations or individuals which
disables the global shared situational awareness.

In summary, although some building blocks are available in the state of the art, there
are significant gaps in:

• Tackling multimodality, and thus multipath communication, in a dynamic environment
that also involves ad hoc networking,

• Closely monitoring the communication capabilities using telemetry to follow-up in
real-time and with limited overhead the behavior of the communication network,

• Closing the loop between the communications and the applications, with communication
delivering a more specific treatment of data based on requirements provided by the
application and the application receiving feedback on the communication capabilities
to enable adjustments.

4. Communication Architecture

We target a modular architecture considering the following aspects:

• Communication stack,
• Communication bootstrapping, and
• Application-network integration.

Communication stack handles multimodality aspect of communications, as well as
QoS through time-aware scheduling. Bootstrapping handles the discovery of neighboring
vessels and triggering direct data exchange. Application-network integration takes care of
providing application requirements to the network, as well as providing feedback from the
network to the applications.

4.1. Communication Stack

To enable seamless multimodal communication via various network interfaces, we
propose introducing an abstraction layer in userspace that is transparent to the higher
network layers and handles multimodal communications entirely. As illustrated in Figure 1,
the abstraction layer is located between layer 2 and layer 3 of the network stack. All traffic
generated by applications is passed via the abstraction layer, which enables it to take care of
traffic handling, including in-band network telemetry. This makes the abstraction layer a de
facto processing element between the application and the physical interfaces. In presence
of multiple network interfaces (e.g., cellular, IEEE 802.11 and long-range), abstraction
layer logic can reroute the traffic over another interface, duplicate the traffic to another
interface, prioritize between different traffic streams, shape the bandwidth according to the
application requirements, etc. Such architecture enables smooth communication technology
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switch without disrupting the ongoing communications and connections to services, even
in presence of unstable or temporary links.

Figure 1. Communication architecture with the abstraction layer for traffic handling.

In this context, the abstraction layer has a threefold role, bootstrapping communication
using the information from the neighbor discovery mechanism, handling in-band network
telemetry, and improving QoS. Bootstrapping the communication includes detecting the
vessels in the neighborhood as detailed in Section 4.3, and using this information to trigger
(secure) information sharing in the context of situational awareness. In-band network
telemetry is used to measure the performance of the network in real-time, per-packet basis,
hop-by-hop, and end-to-end without introducing much overhead to the network [19].
Finally, QoS is currently handled through an adaptive time-aware scheduling mechanism
that ensures meeting the latency requirements of the applications, as described in Section 4.2.
QoS can be further improved by introducing other state-of-the-art mechanisms.

To evaluate the proposed architecture, we opted to implement the abstraction layer
in user-level using Click modular router framework [20]. To avoid processing the traffic
twice, in kernel and in user-level, we used Open vSwitch (OVS) to bypass the part of the
kernel stack and divert the traffic via the abstraction layer only. As shown in Figure 1,
the abstraction layer creates 2N TAP interfaces in Kernel, N in northbound direction
(i.e., towards the application) and N in southbound direction (i.e., towards the physical
devices), where N is the number of used physical network interfaces. OVS bridges each
southbound TAP interface with its corresponding physical interface. On the other hand,
the two corresponding southbound and northbound TAP interfaces are bridged between
each other using the abstraction layer itself. When OVS bridges an incoming layer 2 packet
from the physical network interface to the southbound TAP interface, the kernel forwards
that packet to the abstraction layer in userspace. The packet is processed accordingly by
the abstraction layer and it is passed further to the respective northbound TAP interface,
and further to the application. In this case, no IP addresses are assigned to the southbound
TAP interfaces, nor to the physical network interfaces. IP addresses are configured for
northbound TAP interfaces only, and can either be set manually or gotten from a DHCP
server in the network. There will be no IP addresses collisions as long as each interface is
connected to different network and uses different subnetwork address, which is the case in
vessel communication. In case of vessel communication, each interface will be connected
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to different network, e.g., one interface might be connected to celullar network while the
other to the Wi-Fi based ad-hoc network. In the other direction, traffic coming from the
applications will end up in the abstraction layer via the northbound TAP interface(s). The
abstraction layer can then process the traffic and send it out through the corresponding
southbound TAP interface(s) that are bridged to physical interfaces. This implementation
enables the abstraction layer to control the traffic in user-level while avoiding additional
delays as there is no interfacing with the kernel stack.

4.2. Time-Aware Scheduling

IEEE 802.11 and LTE standards define several traffic classes to prioritize traffic based
on application requirements. IEEE 802.11 uses variants of random access scheduling, where
each traffic class is assigned a queue and Carrier-Sense Multiple Access with Collision
Avoidance (CSMA/CA) is used on each queue on a node. For example, some IEEE 802.11
variants (e.g., IEEE 802.11e, IEEE 802.11ah) use Enhanced Distributed Channel Access
(EDCA) that defines four access classes: voice (VO), video (VI), background (BK) and best
effort (BE). The higher the priority, the more chances to access the wireless channel [21].
However, operating at a high priority class does not always minimize delay, especially
when Wi-Fi and LTE coexist in unlicensed bands. The class selection of one system impacts
the performance of the other, and selecting a lower priority class may result in a lower
delay under certain contention and class selection conditions [22].

The concept of Time-Aware Shaper (TAS) was recently standardized by the IEEE 802.1
Time Sensitive Networking (TSN) working group in order to provide deterministic latency
guarantees. However, TAS requires precise time synchronization in all network switches,
which is why it has not been standardized for the wireless domain yet. To this end, research
effort has been shifting towards bringing TSN into wireless networking and providing
low-overhead, high precision time synchronization in IEEE 802.11 networks [23,24].

For these reasons, instead of using vague priority classes, we designed time-aware
scheduling as a feature in the abstraction layer that dynamically differentiates streams,
and implemented a proof-of-concept solution using Click modular router framework [20].
Based on application requirements, the time-aware scheduler first categorizes packets by
period to a predefined number of queues kmax > 1, and then time-schedules pulling from
the queues proportionally to the queues’ loads and considering the strictest application
requirements of flows in each queue. Ergo, queues can only emit packets in their assigned
time intervals which are determined based on the queue load and the application
requirements. This enables deterministic scheduling of time-critical frame transmissions
while avoiding contention with low priority frames so that background traffic does not
impact the time-critical traffic, and vice versa.

For each packet, the time-aware scheduler first extracts the required latency from
the application requirements based on flow information (IP and port). As illustrated in
Figure 2, it classifies packets according to their required latency into queues, where each
queue represents a latency interval [l + (k− 1)d, l + kd− 1] (except the last one indexed
kmax which represents [l + (k − 1)d, l + kd]), where l is the lowest latency requirement
encountered at runtime, k ∈ N index of the queue in range [1, kmax], and d = (L −
l)/(kmax − 1) the time interval used to linearly split the time between lowest required
latency l and largest required latency L. The scheduler updates the latency values l and L
with each packet, calculates d, and pushes the packet to the appropriate queue based on its
latency requirement, which concludes the categorization.

Figure 2. Time-aware queues.
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The time-aware scheduler pulls from each queue for the time proportional to the
queue load, while respecting the latency requirements. In other words, a queue does not
wait to be pulled from for a time longer than the lowest latency requirement of all flows
served by that queue. Time to assign to each queue is determined as follows. Time-aware
scheduler determines the load of each queue in bytes per second using the number of
packets in the queue and flow information from the application requirements. The queue
that serves non-monitored traffic (i.e., the traffic that has no application requirements
defined) is considered the least priority queue, and the load allocated for that queue is
set to half of the value of the first non-empty larger priority queue. Once the traffic load
of each queue is known, time-aware scheduler calculates time Tk = Lkx to assign to each
queue k proportionally to its load Lk, where x is proportion coefficient calculated from:

kmax

∑
k=2

Lkx ≤ l, (1)

and l is the smallest required latency encountered in runtime. This ensures that even the
queue k = 1 which contains the flow with the strictest latency requirement l will never be
blocked by other queues for longer than l. As a consequence, all other queues that contain
flows with less strict latency requirements will be served in a timely fashion. This results in
serving each queue as frequently as the latency requirements of the packets in that queue
need while distributing the total channel time fairly between all queues (i.e., proportionally
to the queue loads). The overall period of iterating through all queues depends on the
latency requirements of the packets but is not necessarily less than l. However, the sum
of all times assigned to queues 2 through kmax will be less than l, considering that l is the
lowest latency requirement and queue indexed 1 will serve packets with such requirement,
so queue 1 will never wait for more than l to be pulled from.

4.3. Communication Bootstrapping

Vessels in the vicinity to each other may wish to exchange more information than
standard location/intentions messages and would benefit from establishing a direct line of
communication. A perfect example of this scenario is a vessel docking to another moving
vessel. In order to dock successfully, the docking vessel needs to get very frequent updates
(measuring in tens or hundreds of milliseconds) on the position and movements of the other
vessel, currents, and other situational data, and cannot tolerate the delay by communicating
over the Internet. Figure 3 illustrates this scenario.

(a) (b)

Figure 3. Bootstrapping the communication among neighboring vessels: (a) illustration of a docking
scenario and (b) topology illustration of mesh network among neighboring vessels.

In order to bootstrap the communication, vessels first need to discover each other, and
use this information to trigger (secure) data exchange, possibly via direct mesh links. We
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identified three discovery strategies: fully centralized, hybrid, and decentralized. All three
are discussed below.

4.3.1. Centralized Discovery

Centralized discovery, illustrated in Figure 4, relies on a known central server that
collects information on all vessels. Vessels publish their own information to the central
server over an existing link, including their identification, location information, and
communication context (e.g., mesh capabilities). Optionally, they can also share information
on data sources or services they offer. Vessels that wish to set up a direct link with other
vessels in the neighborhood can then pull the information on neighbors from the central
server, and learn about their location and communication capabilities in order to trigger
the link setup.

(a) (b)

Figure 4. Centralized discovery including (a) schematic representation of network topology and
(b) communication stack design.

We modeled the communication capabilities message as a structure in JavaScript
Object Notation (JSON) format shown in Listing 1. The structure consists of two main
parts, general information and interface information. General information contains a unique
identification of the vessel (i.e., Maritime Mobile Service Identity (MMSI)), its global
position, and the number of communication interfaces at its disposal. Interface information
contains a substructure for each interface. This substructure includes the type of the
interface and its properties. Properties include IP configuration, range of the used wireless
technology, interface name and its Media Access Control (MAC) address. For mesh point
interfaces, properties also include mesh ID (i.e., Service Set Identifier (SSID)) and channel
information, which is enough for the neighboring vessel to connect. In addition to this,
properties of mesh point interfaces also include an active flag to indicate if the interface is
currently in active use, and a role that can take values transmit (TX), receive (RX) or ANY.
TX denotes interfaces that are only used to connect to other vessels in order to transmit
data, RX interfaces that continuously listen for incoming connections, and ANY interfaces
that are used bidirectionally.
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Listing 1. Communication capabilities message for publishing to the central server: example.

A vessel can use any centralized framework (e.g., publish/subscribe, request/reply)
to exchange the communication capabilities messages via a central server over the Internet.
Every vessel periodically publishes its communication capabilities, and other vessels can
subscribe to receive updates. When vessel A receives the JSON structure of a neighboring
vessel B, it compares the location of B to its own location, and based on the range
information can conclude if it is in the communication range of the vessel B or not. If it
is in the range, vessel A can join the Wi-Fi mesh network of the RX interface of vessel B.
This link establishment is handled by the abstraction layer. In order to keep the network
scalable, we opted to use two radios for mesh, one for TX and one for RX. If the same
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radio was used for both incoming and outgoing traffic, the throughput would be halved as
the radio cannot transmit and receive at the same time, and would have to switch roles
from TX to RX and vice versa frequently in runtime. In addition, every mesh link would
have to use the same radio channel. This means when one radio is transmitting, all its
neighbors must be in listening mode. This problem is amplified across the mesh, and after
a few hops, the architecture could be slowed to the point where it no longer efficiently
supports communication. Using two radios alleviates the aforementioned problems. RX
interface will never switch channels unless it wants to avoid other congested channels in
the neighborhood, but the TX interface will switch channels each time it wants to transmit
data to another neighbor that listens on another channel.

The downside of this approach is the dependency on the central server in the architecture.
If the vessel has no connection to the server, it cannot perform the neighbor discovery,
hence cannot bootstrap the communication. Unless multipath transport protocols are
used, the information on the existence and properties of the newly established link need
to be propagated to the application as well, so that it can start using it (i.e., send traffic to
the appropriate IP address). The application can either subscribe to the communication
capabilities itself and learn about the new link from there, or it needs to interface with the
abstraction layer to get the link information from there. On the other hand, the abstraction
layer may reroute or duplicate the existing traffic over the new link and feed the link
properties back to the application via in-band network telemetry. This may trigger the
application to start using more services or switch to the new link entirely. In addition,
if multipath transport protocols are used, establishing a new link will result in more
bandwidth available to the applications.

4.3.2. Hybrid Discovery

Hybrid discovery is schematically represented in Figure 5. It relies on the existing
infrastructure in the maritime domain. Vessels owned by a certain organization usually
publish their communication context, status, and services to the central server of that
organization. Moreover, vessels typically use AIS to share basic information among each
other and with the central entities on the shore. However, AIS data can also be used
to trigger bootstrapping the communication between neighboring vessels. Every vessel
periodically broadcasts its navigational information (i.e., longitude, latitude, heading,
time, speed, status: anchored or under power) via AIS. When vessel A receives such AIS
message from vessel B, vessel A may query the server to fetch additional information on
communication capabilities or services of vessel B based on its identifier learned from the
AIS message and establish a direct link (e.g., mesh) to each other.

If vessels do not have access to the same central servers, they may not be able to
retrieve the information necessary to establish the new link. This may well be the case
for the vessels owned by different organizations. In this case, vessels may exchange the
information necessary for the new link setup via extended AIS messages. However, AIS has
predefined message types and additional data can only be sent to another AIS transceiver
using a couple of message types, in the form of binary data. In addition, a vessel first
needs to reserve the AIS time slot(s) to send its message, which introduces additional
management traffic and may take some time. We have not evaluated this communication
bootstrapping approach.

4.3.3. Decentralized Discovery

Decentralized discovery uses neither central server nor AIS. Instead, every vessel
is assumed to be equipped with a Long-Range (LoRa) radio that broadcasts beacons
periodically, as illustrated in Figure 6. Each beacon will contain bootstrapping information
regarding the interfaces the vessel can support to connect to it. Given that long-range
wireless technologies typically have a limited data rate too low to be used in critical
scenarios, this technology may not be suitable for prolonged information exchange. However,
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vessels can exchange information on other communication capabilities via long-range
communication technology, and establish a Wi-Fi mesh link for example to share more data.

(a) (b)

Figure 5. Hybrid discovery including (a) schematic representation of network topology and (b)
communication stack design.

(a) (b)

Figure 6. Decentralized discovery including (a) schematic representation of network topology and
(b) communication stack design.

4.4. Application-Network Integration

Application-network integration employed in this framework utilizes Application
Network Agent (ANA) [4] and In-band Network Telemetry (INT) [19,25] for closing the
loop between the applications and the underlying network. INT is used for real-time
network performance monitoring on a per-hop and per-flow basis, whereas ANA is
responsible for feeding back the INT metrics to the applications on one hand, and delivering
the application requirements to the network on the other hand. Tighter application-network
interaction leads to a better allocation of network resources for meeting application
performance guarantees while making applications more adaptive to the underlying
network context.

Application requirements are used both by ANA and by the abstraction layer. ANA
instructs the monitoring stack which network metrics to collect (i.e., which parameters
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to monitor) based on the application requirements. For example, in presence of a latency
requirement ANA will ask for monitoring of TX/RX timestamping at each network hop,
whereas in presence of reliability requirement it will ask for monitoring packet loss on a
per-hop basis. These INT measurements are passed to the application that could adjust its
behavior based on the network conditions. The abstraction layer on the other hand uses
application requirements to provide adequate quality of service. As such, the time-aware
scheduler uses latency and Round Trip Time (RTT) requirements to schedule the queues.
Reliability requirement, for example, could be met by triggering transmissions duplication
in the abstraction layer over multiple communication links.

Application-network integration could enable local decision-making on whether
and when to introduce new traffic flows (i.e., sensor streams). Based on the application
requirements on one hand, and the INT data on the other hand, every node can be aware
of the current state of the network and if there is enough bandwidth available to support a
new traffic flow, considering its requirements.

5. Evaluation

This section details the evaluation of the three aspects of the proposed communication
architecture:

• Communication stack performance,
• Communication bootstrapping, and
• Application-network integration.

5.1. Communication Stack Evaluation

The implemented abstraction layer depicted in Figure 1 operates in user space as
opposed to the kernel stack. To avoid processing the traffic twice, in the kernel and
user-level, we used OVS to bypass the part of the kernel stack and divert the traffic via the
abstraction layer in user-level only. Regardless of the implementation in user-level, there
are no additional delays or bottlenecks in the communication due to bypassing the kernel
stack, and the implemented proof-of-concept that includes the abstraction layer performs
nearly exactly the same as with the standard kernel stack, as shown in Table 1.

Table 1. Performance of the proposed communication architecture with OVS and the abstraction
layer, versus Linux stack over ethernet measured with iperf (TCP).

Metric Proposed Architecture Linux Stack

Data transferred in 10 s [GB] 1.10 1.11
Number of packets 802,479 809,706
Throughput [Mbps] 944 952

Packet loss [%] 0 0

5.2. Communication Bootstrapping Evaluation

Communication bootstrapping is evaluated in the scenario depicted in Figure 7 with
two vessels, one static (STA1) and one mobile (STA2). Evaluation is done in Mininet-WiFi
network emulator [26]. Given that Mininet-WiFi cannot emulate cellular networks, we
used an Access Point (AP) with wide coverage (TX power of 35 dBm) in order to emulate a
backbone cellular network. Network Address Translation (NAT) device is wired to the AP
and serves as a gateway to the Internet where the central server is located. Hence, both
vessels have Internet access over the Wi-Fi infrastructure network served by the AP, and
make use of centralized discovery.

Each vessel is equipped with 4 Wi-Fi interfaces operating in 2.4 GHz band using
20 MHz-wide channels, out of which one IEEE 802.11g interface for utilizing the Wi-Fi
infrastructure network served by the AP, two IEEE 802.11s mesh point Wi-Fi interfaces
used for mesh communication bootstrapping (one for listening and one for transmitting)
and one simulated Wi-Fi HaLow interface. Given that Mininet-WiFi does not support



Sensors 2021, 21, 6556 16 of 23

Wi-Fi HaLow (i.e., IEEE 802.11ah), by Wi-Fi HaLow in this paper we imply IEEE 802.11g in
2.4 GHz band with 30 dBm transmit power in order to simulate a 1 km link.

The mobile vessel moves at a constant speed of 55 km/h in a straight line past the
static vessel, initially being in the range of the AP but out of both mesh and HaLow
range of the static vessel. When the moving vessel arrives around 1 km far from the static
vessel, centralized bootstrapping triggers a HaLow link establishment between the vessels.
When the mobile vessel comes within 340 m of the static vessel, centralized bootstrapping
also triggers mesh link establishment between the vessels. At this point vessels can
communicate over three links, direct mesh link with most bandwidth, Wi-Fi Halow with
mid-level bandwidth but longer range (up to 1 km), and backbone infrastructure network
with the longest range but lowest bandwidth.

Both vessels publish their communication capabilities message (cf. Listing 1) whenever
their configurations change. To reduce the network overhead, the location information is
omitted from the communication capabilities message and published periodically every
second in a shorter JSON structure containing only vessel’s MMSI and location information.
Vessels consume the Kafka location messages every second and join the network of the
remote vessel once the location of the remote vessel is within range of themselves. Table 2
summarizes the configuration of the experiment.

Figure 7. Visualization of the emulated network in communication bootstrapping evaluation,
including mesh (small dark circle) and HaLow (larger dark circle) range of nodes.

To demonstrate the benefit of multimodal communications, we used MultiPath
Transmission Control Protocol (MPTCP) [27] to measure the network throughput in the
scenario illustrated in Figure 7. Initially, both vessels use the infrastructure network to
communicate with limited throughput (cca. 800 kbps). When STA2 arrives within the
HaLow range of STA1, the abstraction layer triggers bootstrapping. Once the HaLow
link has been established, MPTCP detects the new path and starts using it to get more
throughput overall (cca. 1.5 Mbps), without breaking the TCP connection. This enables
vessels in the vicinity of each other to exchange more data or use more services. Further,
when STA2 arrives within the mesh range of STA1, the abstraction layer bootstraps the
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mesh communication as well, enabling the third link and providing even more throughput
(cca. 2.8 Mbps). MPTCP iperf server was run on STA2, and client on STA1. Figure 8 shows
how the overall throughput of the mobile vessel STA2 changes with the distance in the
described scenario. The throughput and distance values are sampled once per second.

Table 2. Default parameters used in communication bootstrapping evaluation.

Parameter Value
Wi-Fi Mode Managed Mesh HaLow

Propagation loss
model Log distance, exp = 3

Coverage radius [m] 1578 340 1057
Max TX bitrate

[Mbps] 1 2 1

Wi-Fi channel 1 6 and 7 11
TX power of vessel

[dBm] 35 15 30
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Figure 8. MPTCP throughput of mobile vessel STA2 using all available wireless links.

To realize the JSON message exchange for centralized discovery, we used the Apache
Kafka event streaming platform. A Kafka client was implemented in Click using the librdkafka
C/C++ library, and we used Kafka cluster in the cloud (https://www.cloudkarafka.com/
accessed on 27 September 2021). Bootstrapping the mesh communication via Kafka cluster
took 1.97 s on average over 10 runs, with an update interval of 1 s. Bootstrapping time
distribution over 10 runs is shown in Figure 9. To establish a new link, nodes need to
publish the most recent location information to the central server, consume the update
from the peers and reconfigure their (TX mesh) interfaces (i.e., change the channel and
reset the radio). Bootstrapping time is always less than 2.5 s which is sufficiently quick for
mostly inert maritime vessels.

Figure 9. Distribution of time to bootstrap communication with centralized discovery using message
update interval of 1 s.

https://www.cloudkarafka.com/
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For the decentralized bootstrapping case, bootstrapping information is exchanged
using periodic beacons sent by LoRa radios. As LoRa does not need any connection setup,
it is a suitable technology for broadcasting bootstrapping information in a decentralized
fashion. The only limitation will be the Maximum Transmission Unit (MTU) allowed and
the data rate used. The MTU is subject to the data rate used and region. For EU863-870 MHz
bands the MTU ranges from 59 B for DR0-DR2, 123 B for DR3 and 250 B for DR4 and
DR5 [28].

The minimal settings that one vessel needs to broadcast are its receiver interface
capabilities. As such, we have shrunk the JSON data structure from Listing 1 to include
only the receiver interface capabilities and configuration, and Concise Binary Object
Representation (CBOR) encoded it in order to fit to one 230 B LoRa MTU. We have
calculated the transmission time for the different bands and regions and the results are
shown in Table 3, where only the data rates that can support 230 B MTU are considered.
We see that the largest beacon period is 64.5 s when lower data rates are used. Still such
beacon periods will be acceptable considering the coverage areas that can be covered with
lower data rates that can go up to several kilometers.

Table 3. Bootstrapping information transmission time and their minimal periodicity for different
regions and channel bands.

Region/Bands DR MTU Modulation TX Time [s] Beacon
Period [s] *

EU863-870 MHz
EU433 MHz

CN779-787 MHz
CN470-510 MHz

AS923 MHz
KR920-923 MHz
IN865-867 MHz
RU864-870 MHz

DR4
DR5
DR6
DR7

250
250
250
250

SF8
SF7
SF7
FSK

0.65
0.36
0.18
0.05

64.56
36.37
18.2
5.12

US902-928

DR3
DR4
DR10
DR11
DR12
DR13

250
250
250
250
250
250

SF8
SF7
SF7
FSK

0.63
0.16
0.52
0.29
0.16
0.09

63.68
16.14
52.27
28.69
16.14
0.09

AU915-928

DR4
DR5
DR6
DR10
DR11
DR12
DR13

250
250
250
250
250
250
250

SF8
SF7
SF7
FSK

0.65
0.64
0.16
0.52
0.29
0.16
0.09

64.56
63.68
16.14
52.27
28.69
16.14
0.09

* The beacon period is calculated based on the duty cycle rule. For bands where no duty cycle rule; applies,
transmission can happen more often applying listen before talk (LBT) rule only.

As evident from Table 3, message periodicity is limited by the beacon period. For the
largest beacon period of 64.56 s, message TX time is 650 ms which means that the nodes
can get the information needed for bootstrapping in time ranging from 0.65 s to 64.56 s.
Although 64.56 s seems like a long time, note that this beacon period is used with DR4 that
can cover the range of several kilometers, so that nodes quite far from each other would be
able to discover each other and exchange the bootstrapping data (e.g., for Wi-Fi mesh) well
before they arrive into each other’s Wi-Fi range.

5.3. Evaluation of Application-Network Integration

Application-network integration is evaluated in two scenarios, network-aware application
scenario in Section 5.3.1, and application-aware network scenario in Section 5.3.2. In the
former, network-aware application adjusts to the network conditions in real-time, based
on end-to-end network measurements collected via INT. In the latter, the network adjusts
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to the applications’ requirements using ANA and the time-aware scheduling mechanism.
Evaluation is done in an ad hoc Wi-Fi network (IEEE 802.11g) emulated in Mininet-WiFi [26].
Default wireless properties of the nodes are listed in Table 4.

Table 4. Default parameters used in application-network integration evaluation.

Parameter Value

Mode ad hoc
Frequency 2412 MHz
Channel 1

Channel width 20 MHz
TX power 15 dBm

Bitrate 5.5 Mbps

5.3.1. Network-Aware Application Scenario

To demonstrate the performance of a network-aware application, we emulated an
IEEE 802.11g ad hoc network consisting of 3 nodes: A, B, and C. Node A represents a
sensor on a vessel that samples every x ms and shares the measurement with node B on
another vessel. The sampling rate, and thus the number of packets being generated by
node A is adjusted to the network so that node B can receive all packets in a timely fashion,
eventually process them and reply to node A. To model this, we used User Datagram
Protocol (UDP) echo applications where node A periodically sends UDP packets to B, and
B echoes every received packet to A. However, we limited the data rate of node B to half
the value of A’s data rate. This means that if A samples too frequently and sends too much
traffic out to B, B will not be able to receive, process, and reply to every packet in a timely
fashion. Table 5 summarizes the parameters used in the emulation.

Table 5. Default parameters used in network-aware UDP application evaluation.

Parameter Value
Node A B C

INT-enabled yes no no
INT period 100 ms - -

Max data rate [kbps] 750.4 375.2 -
Payload size [B] 938 938 938

TX interval adjustable echoed A 30 ms

In order to adjust to the network (i.e., capabilities of the destination), node A’s
application is INT-enabled, i.e., it receives and processes INT measurements from the
network. From an INT report, node A’s application learns about the queue length status of
the other end (node B) and can adjust its sampling rate in order to maximize the throughput,
while making sure all transmitted packets are echoed by the endpoint. Initially, node A’s
application starts sending data with TX interval of 200 ms and reduces it by 10% whenever
an empty queue is detected on the other end in the received INT report, whereas it increases
it for 10%, 20% and 40% when 1, 2 through 5, and 6 and more packets are indicated in the
queue length field of the INT report, respectively. As shown in Figure 10, the TX interval of
node A quickly converges to the value of 20 ms (i.e., max data rate of node B). At time 60 s,
node B starts another UDP client application that sends 938 B every 30 ms to node C. This
new application also fills node B’s outgoing queue, which is reflected in a peak in detected
queue length in INT reports at node A (cf. Figure 10b), and in turn motivates node A to
reduce its sampling rate, hence transmit less frequently. At time 90 s, the other application
at node B is stopped, which is detected by node A via INT and node A again maximizes
the throughput by increasing the sampling rate.
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Figure 10. Network-aware UDP application’s (a) data rate, (b) queue length on the other end as
indicated in received INT report and (c) transmission interval.

5.3.2. Application-Aware Network Scenario

In this scenario, two ad hoc IEEE 802.11g nodes placed 30 m far from each other communicate
via UDP. One node runs simple UDP client applications, whereas the other runs UDP server
applications. TX bitrates of both nodes are limited to 5.5 Mbps. Client node publishes application
requirements to the ANA for 2 UDP applications, one transmitting 938 B of data every 50 ms, and
the other transmitting 938 B every 100 ms. In the application requirements, each client application
specifies its data period and payload, as well as required application-layer latency equal to its
data period. This means that every packet in the outgoing queue should be dequeued (i.e.,
transmitted) before the application enqueues the next packet. The abstraction layer employs the
time-aware scheduler (cf. Section 4.2) in order to satisfy the application requirements. The client
node also runs a best-effort logging application that attempts to use all available bandwidth.
Figure 11 shows the inter-packet delays at the server side with and without the presence of the
time-aware scheduler that handles the application requirements.
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As evident from Figure 11, the application-requirements enabled time-aware scheduler
manages to schedule all outgoing packets in the required time, hence causing a timely
reception at the destination. Some additional delay may be present at the beginning of the
emulation (for the first few packets) until the time-aware scheduler learns about the traffic
patterns in the network and reconfigures itself according to the requirements and current
traffic patterns. Moreover, in the scenario without ANA, all three applications (i.e., two
applications with ANA and the best-effort logging application) experienced about 20% of
packet loss. In the scenario with ANA where two applications require their needs to be met,
they experience no packet loss, whereas the best-effort logging application experiences 30%
of packet loss.
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Figure 11. Performance of two simultaneously running UDP applications that require transmission
delay less than (a) 100 ms (i.e., inter-packet delay <200 ms) and (b) 50 ms (i.e., inter-packet delay
<100 ms) from a saturated IEEE 802.11g network.

6. Conclusions

This paper presents the first multimodal and modular communication solution for
enhancing situational awareness between vessels in the maritime domain. The solution
proposed is not dependent on any particular communication technology, and can make use
of all available communication interfaces present on a vessel. We designed, implemented
and evaluated an abstraction layer located between layers 2 and 3 of the communication
stack. The abstraction layer handles multimodal communications, including fully distributed
communication bootstrapping, and improves the quality of service, transparently to the
higher layer applications. This solution is modular enough to incorporate both existing
and upcoming new communication technologies when they appear on the market. Finally,
the proposed solution utilizes the state of the art INT [19] and ANA [4] frameworks to
provide relevant network metrics to the applications as feedback, and to communicate
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application requirements to the network, without introducing additional management
traffic and keeping the overhead limited.

The proposed solution is evaluated in terms of architecture performance as compared
to Linux stack, communication bootstrapping, and application-network interaction scenario.
The proposed architecture introduces virtually no additional delays as compared to the
Linux stack. Automatic communication bootstrapping in a centralized scenario takes
around 2 s, assuming the location updates to the central server of 1 s. In a decentralized
scenario using LoRa radios to exchange the bootstrapping information, communication
bootstrapping time is limited by the beacon period, but this limitation should not be
crippling for the majority of use cases. Automatic communication bootstrapping enables
the applications to make use of more bandwidth in a transparent fashion, without the need
to explicitly reconnect and reroute the traffic over a better link once it becomes available.
Finally, application-network integration enables the network to adjust to the application
requirements as shown in the application-aware network scenario. On the other hand, INT
enables the applications to adjust the applications’ behavior based on real-time network
performance (e.g., data compression, filtering, enabling/disabling new streams, etc.), as
shown in the network-aware application scenario.
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