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Abstract: With the emergence of virtualization technology, Network Function Virtualization (NFV)
and Software Defined Networking (SDN) make the network function abstract from the hardware
and allow it to be run on virtual machines. These technologies can help to provide more efficient
services to users by Service Function Chaining (SFC). The sequence of multiple VNFs required by
network operators to perform traffic steering is called SFC. Mapping and deploying SFC on the
physical network can enable users to obtain customized services in time. At present, a key problem
in deploying SFC is how to reduce network resource consumption and load pressure while ensuring
the corresponding services for users. In this paper, we first introduce an NFV architecture for SFC
deployment, and illustrate the SFC orchestration process which is based on SRv6 in multi-domain
scenario. Then, we propose an effective SFC dynamic orchestration algorithm. First, we use Breadth-
First Search algorithm to traverse network and find the shortest path for deploying VNFs. Next, we
use the improved Ant Colony Optimization algorithm to generate the optimal deployment scheme.
Finally, we conduct a series of experiments to verify the performance of our algorithm. Compared
with other deployment algorithms, the results show that our solution effectively optimizes end-to-end
delay, bandwidth resource consumption and load balancing.

Keywords: Network Function Virtualization; Service Function Chaining; SRv6; dynamic deployment;
end-to-end delay; bandwidth resource consumption; load balancing

1. Introduction

In traditional networks, network functions are provided by different hardware de-
vices. Network service providers (NSPs) need to deploy a large number of devices when
deploying new services, which are expensive and inflexible. When services change or
requests increase, corresponding devices need to be added, which increases the capital
expenditure (CAPEX) and operating expenses (OPEX) [1]. Therefore, NFV/SDN technol-
ogy has emerged to respond the above challenges. Software Defined Networking (SDN)
technology makes the separation of control and user planes come true, bringing indepen-
dent scalability and service agility [2]. The NFV/SDN architecture decouples hardware
and software, and Virtual Network Functions (VNFs) make the network function virtual
and migratable. All these technologies are designed to provide more efficient services to
users. The service provided by NSP is usually realized by a service function chain (SFC).
SFC refers to the process of steering traffic through a set of functions in order to deliver
an end-to-end service [3]. Although SFC can provide customized services and improve
network performance, it also brings new obstacles, namely how to orchestrate and deploy
SFC efficiently.

The reshaping of the 5G core network (5GC) upgrades traditional networks. Using
NFV architecture, which is similar to Service-Based Architecture, to solve SFC scheduling
and deployment problems is a common method currently. Therefore, the SFC orchestration
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scheme in this article can be well applied to the 5G environment. The 5G core network
is mainly composed of different Network Functions (NFs). In the NFV framework, NFs
can be regraded as VNFs to use for SFC orchestration. Therefore, the orchestration of SFC
can be transformed into a problem of VNF placement. Placing the VNF on the physical
network node and mapping the virtual link to the physical link represent the orchestration
and deployment of SFC.

In the existing research, several problems can be identified in the orchestration and
deployment of SFC. First, most researches are focused on the static deployment of SFC.
However, in real network, users’ requests for services are dynamically changing, then static
SFC orchestration will lead to waste of resources and delay in services. Second, the current
SFC does not combine with other emerging network technologies to optimize network
performance and reduce network load, such as SRv6. Third, the existing research is mostly
about SFC orchestration in a single domain, but now there are more and more services that
need to be orchestrated across domains.

To overcome these difficulties, we first introduce an NFV architecture based on the
5GC SBA, then we investigate the cross-domain dynamic SFC deployment problem. It
has been confirmed that this problem is an NP-Hard problem. Next, we combine the SFC
deployment with the SRv6 mechanism, and design an SFC dynamic orchestration (SFCDO)
algorithm. The algorithm consists of two steps. First, we use the Breadth-First Search (BFS)
algorithm to traverse network topology and find the shortest path to deploy VNFs. Then,
we select an Improved Ant Colony Optimization (IACO) algorithm to get the best SFC
deployment scheme and to adjust the deployment scheme dynamically.

In this paper, our research objective is to dynamically deploy SFC based on the SRv6
in multi-domain scenarios, while considering the lowest bandwidth resource consump-
tion and minimizing the end-to-end delay, and, at the same time ensuring network load
balancing and service provision. In order to achieve these aims, our work makes the
following contributions:

• We describe an ETSI NFV architecture that can be used in a 5G environment. Using
this architecture, we can arrange the deployment of SFC, and provide customized
services to different users.

• We build a mechanism for deploying SFC based on SRv6. We can use the scalability
of SRv6 to deploy SFC flexibly without adding any other hardware or network equip-
ment. Later, we explain the specific process of SFC orchestration based on SRv6. We
also propose a multi-domain orchestration scenario.

• For the orchestration and deployment of SFC, we construct a joint optimization
problem of end-to-end delay, resource consumption, and network load balancing,
which can be proved as an NP-Hard problem.

• To solve the joint optimization problem, we propose an algorithm to achieve the opti-
mization goals. We first adopt BFS algorithm to find the shortest physical path.Then
we use IACO algorithm to deploy VNFs to physical nodes in order, which is an im-
proved heuristic algorithm that can be used based on dynamically changing scenarios.
We first adopt the BFS algorithm to find the shortest physical path for SFC deployment.
Then we use the IACO algorithm to deploy VNFs to physical nodes in order. IACO
is an improved heuristic algorithm that can deploy solutions based on dynamically
changing scenarios.

• Finally, we compare the performance of our approach with state-of-the-art SFC dy-
namic deployment algorithms through a series of simulation experiments. Simulation
results show that our algorithm can reduce the average end-to-end delay by 22%,
average bandwidth resources consumption by 18%, and get better load balancing.
Therefore, the deployment scheme proposed in this paper is a feasible solution to SFC
orchestration problem.

The rest of this paper is organized as follows. In Section 2, we summarize the related
work done by the previous researchers. In Section 3, we introduce the network architecture,
including the multi-domain SFC orchestration and SFC deployment’s working mechanism
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based on SRv6. We describe the deployment problem and set up the system model in
Section 4. We propose a dynamic SFC deployment algorithm in Section 5. We introduce the
simulation experiments and performance evaluation of this algorithm in Section 6. Finally,
we give a conclusion of this work and mention the future work in Section 7.

2. Related Work

In recent years, research on SFC deployment has become a hot topic. Researchers have
undertaken a lot of research on the SFC deployment scheme.

In the existing research, most studies that have focused on the static SFC orchestration
and deployment did not take into account that service requests are constantly changing
dynamically. Sun, G et al. [4] considered an SFC orchestration of multi-domain scenarios
which chose the full mesh aggregation approach to build an abstracted network. They
adopted a heuristic algorithm to deploy sub-chains in multiple domains. Huin et al. [5]
proposed an integer linear programming (ILP) formulation for SFC deployment problem,
and they construct a decomposition model that relies on joint routing and placement
configuration to deploy SFC. Savi et al. [6] put forward another ILP model to solve the SFC
orchestration problem. The authors considered the impact of the network function position
on the deployment costs. Gupta et al. [7,8] considered the joint problem of VNF placement
and traffic routing in order to minimize network bandwidth consumption.

Some researchers have studied SFC’s deployment in different network environments,
or combined its deployment with other 5G-related technologies, which have advanced to
the orchestration of SFC. Paolucci et al. [9] proposed effective service chaining enforcement
along traffic engineering paths combined with the SR-MPLS technique. Sebastian Troia
et al. [10] proposed a mathematical model that can dynamically provide network slices on
a physical network. There are a group of SFC and network resources on each network slice
and they can be dynamicly deployed. The method in this article has two steps. One is to
solve the VNF placement problem, and the other is to minimize the total network power
consumption when considering the RWA problem. Dab et al. [11] chose to arrange the SFC
in a cloud-native environment and tested its performance in the container. Sun et al. [12]
proposed a DMRT-SL algorithm to map the SRs in edge computing efficiently. They
proposed a novel workflow-like service request, showing an outstanding performance
in terms of time delay but without considering the energy consumption. In [13], the
authors investigated the application of Reinforcement Learning for performing dynamic
SFC resources allocation in NFV-SDN enabled metro-core optical networks. The RL agent
decides if and when to reconfigure the SFCs, which is an effective SFC resource allocation
solution. Xiaoli Zhang et al. [14] proposed a verification scheme that can verify the
execution of SFC in arbitrary cloud architectures. However, the above authors did not
consider combining with the SRv6 mechanism that can naturally support SFC orchestration.

Some studies optimized network performance by deploying algorithms. When de-
signing the SFC deployment optimization algorithm, other scholars considered different
optimization objectives. Kuo et al. [15] considered the path length and the virtual machine
reuse factor. Then they proposed a DC-LaS algorithm to find a solution whose path length
and reuse factor can be improved in the SFC deployment. However, they only considered
resource consumption. Liu et al. [16] proposed a two-step algorithm G-SA for SFC deploy-
ment. They first used the greedy algorithm to deploy VNFs. Then, they computed the
shortest path from the source node to the destination node by simulated annealing algo-
rithm. However, they only considered bandwidth consumption and latency. Hu and Li [17]
proposed an SFC runtime framework NFCompass and ultimately reduced the length and
complexity of the processing SFC, achieving better load balancing. The authors of Ref. [18]
proposed three heuristic algorithms for SFC deployment: ER, ER_CS, and ER_CS_ADJ.
The ER algorithm considered the reliability requirements when deploying SFC, ER_CS
optimized the network load based on the above algorithm, and the ER_CS_ADJ algorithm
further considered the deployment paths’ bandwidth resource consumption in the orches-



Sensors 2021, 21, 6563 4 of 21

tration processing. The above researchers did not consider multiple metrics when they
deployed SFC dynamically.

Some researchers have focused on multi-domain SFC orchestration. In [3], Toumi, N
et al. developed a multi-domain SFC orchestration architecture, which utilizes the ETSI
MANO standard and the principles of SDN and hierarchical SFC. Yan, Boyuan et al. [19]
proposed an SFC-Oriented Topology Aggregation (SOTA) method to enable abstraction
for SFs in multi-domain optical networks, then they put forward two cross-domain ser-
vice function path provisioning algorithms which can reduce the blocking probability.
In [20], Joshi, K.D. et al. proposed pSMART for efficient multi-domain SFC mapping,
which is a lightweight, privacy-aware service function chain orchestration in a multi-
domain NFV/SDN scenario. This approach efficiently optimizes the SFC orchestration
response time.

Compared with the existing literature, we comprehensively consider dynamic SFC
orchestration and deployment, and combine it with SRv6 technology in a multi-domain.
Then we propose an algorithm specifically for SFC orchestration and deployment that can
be also used in 5G mobile networks, which can effectively reduce the delay and bandwidth
resource consumption of service transmission while considering network load balancing.

3. Network Architecture

The NFV architecture is illustrated in Figure 1. There are multiple modules in this ar-
chitecture, such as NFV-MANO and NFVI [21]. Most of the components of this architecture
are the same as Service-Based Architecture in 5GC.

SF3

OSS/BSS

SF1 SF2

VNF1 VNF2 VNF3

NVFI

Virtual

Compute

Virtual

Storage

Virtual

Network

Virtualization Layer

Compute

hardware

Storage

hardware

Network

hardware

Hardware resources

VIM

VNFM

NFVO

NFV-MANO

Figure 1. The ETSI NFV architecture.

The NFV Orchestrator (NFVO) component is responsible for managing the VNFs
operations such as instantiation, deletion, and extension by using Virtualized Infrastructure
Manager (VIM) [22]. The Virtual Network Function Manager (VNFM) is accountable for
managing VNF instances [23]. In the traditional NFV architecture, the SDN controller uses
the global view of the whole network to provide flow rules in the flow table of switches.
In this architecture, we use the SDN controller to deliver the segment, which represents
an ordered list of instructions [24]. According to the source routing mechanism of SR,
the controller only needs to send all the information to the source node. This reduces the
controller load, and other nodes do not need to maintain the state of each flow. 3GPP
has introduced Network Function in 3GPP release 15 [25]. Each Network Function (NF)
exposes a set of services [26]. In this paper, we assume that an NF provides a specific
service. In this figure, we use VNF to represent NF, so we can say that a VNF provides a
service in this deployment scheme.
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In recent years, most of the research focuses on the orchestration of service function
chains in a single domain, but the Internet is composed of multiple domains, which are
owned and managed by different NSPs. This causes research on NFV and SFC multi-
domain orchestration become essential and critical. Users also have service requirements
between different domains, so cross-domain service requests are gradually increasing,
and NSPs need to provide required services to users by cross-domain service function
chain orchestration.

In Figure 2, we describe how an SFC is deployed across domains. First, we map each
VNF in an SFC to a physical node. Secondly, we consider the source node and destination
node, and then send the segment list to the source node through the SDN controller. The
source node will route on the physical network routers according to these instructions, and
perform the same operation when encountering a cross-domain node. When the traffic
finishes through the mapping nodes in order, the deployment of an SFC is completed.
Consequently, the service function chain orchestration and deployment scheme proposed
in this article also can be applied to multi-domain scenarios to provide users with a wider
range of orchestration schemes.

The proposed solution in Figure 2 is compliant to ETSI architecture as follows. First,
the VNFM in each NFV-MANO is connected to the VNF in the virtual network and manage
the VNF lifecycle; secondly, the VNF is connected to the NFVI which can provides the
computing resources of the physical nodes and the bandwidth resources of the physical
links. The physical node has computing/storage/network resources, which can be used
for virtual node mapping. The VIM in NFV-MANO controls and manages the resources
in NFVI. In addition, NFVO can directly connect to VIM for resource allocation and
reservation, and collect virtualized resource configuration and status information.

Domain NFV-MANO/Controller 

Main Orchestrator/Controller

Src

Dst

Domain 1  

Domain 2  

Domain 3  

Domain 4  

Domain NFV-MANO/Controller 

Domain NFV-MANO/Controller 

Domain NFV-MANO/Controller 

Figure 2. Multi-domain SFC Orchestration.

Next, in Figure 3, we will illustrate the SFC orchestration based on the SRv6 mecha-
nism in a single domain, which can be extended to multi-domain. The SRv6 architecture
is a promising solution to support services like Traffic Engineering and Service Function
Chaining [27]. In the SR domain, the different VNFs are hosted by NFV nodes. The
packets associated with VNF chains are classified in ingress nodes, while the SR encap-
sulation is added [28]. The flow will pass through the VNFs on different NFV nodes in
sequence. If the VNF is an SR-aware VNF, it will directly match the Segment Identifier
(SID) of this VNF. Otherwise, it will match the SID of the NFV node hosting the VNF. As
shown in Figure 3, after the flow leaves from the Egress node, we can get a segment list
<NFV1:VNF1, NV2:VNF4, NFV3:VNF6, End>, while the SR Header (SRH) is reversed as
(End, NFV3:VNF6, NFV2:VNF4, NFV1:VNF1).
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Figure 3. The SFC deployment based on SRv6.

As for how data packets travel in SRv6-aware network, we describe the process in
Figure 4. The unit “Head” acts as a service classifier, guarantees that these packets can
travel through an SFC (VNF1 -> VNF4 -> VNF6) in order by corresponding SR policy [29].
That is why the packet is encapsulated with an IPv6 header and an SRH containing the
segment list <NFV1:VNF1, NFV2:VNF4, NFV3:VNF6, En>.

NFV node 1 NFV node 2 NFV node 3

VNF 1 VNF 4 VNF 6

Head End

SRH(E,

N3:VNF6,

N2:VNF4,

N1:VNF1;

SL=3)

Inner Packet

IP6(H,N1)

SRH(E,

N3:VNF6,

N2:VNF4,

N1:VNF1;

SL=2)

Inner Packet

IP6(H,N2)

SRH(E,

N3:VNF6,

N2:VNF4,

N1:VNF1;

SL=1)

Inner Packet

IP6(H,N3)

SRH(E,

N3:VNF6,

N2:VNF4,

N1:VNF1;

SL=0)

Inner Packet

IP6(H,E)

Figure 4. The workflow of SFC based on SRv6.

When NFV node 1 receives the encapsulated packet, according to the active segment,
it knows how to send the packet to the VNF. If VNF1 is SR-aware, it can process an IPv6
encapsulated packet under the guidance of SRH. So the packet is sent to VNF1 by the IP
and SR headers (H, NFV2:VNF4) (E, NFV3:VNF6, NFV2:VNF4, NFV1:VNF1; SL = 2). VNF1
performs the required service function on the received packet. After the packet return from
VNF1, NFV node 1 will send it to NFV node 2 according to the IPv6 destination address.

If VNF1 is SR-unaware it cannot process IPv6 encapsulated packets with an SRH, so
the encapsulation headers must be stripped from the packet before it is sent to VNF1. When
the packet returns from VNF1, the NFV node 1 would re-encapsulate the packet header
that had been previously stripped and then send the packet to NFV node 2 according to
the IPv6 destination address.

When the encapsulated packet arrives at NFV node 2, the NFV node 2 will perform a
similar action to that described above.

4. System Model
4.1. Physical Network

We set the underlying physical network as an undirected graph G=(V, E) , where
V =

{
v1, v2, v3, · · · , v|M|

}
represents the set of physical network nodes, and E ={

e1, e2, e3, · · · , e|N|
}

denotes the set of physical network links , |M| and |N| repre-
sent the number of network nodes and links, respectively. vi represents a physical node,
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e.g., switch or server, which has certain computing resources c(vi) . We use r(vi) to
represent the remaining computing resources on physical node. L(vi) denotes the node
load rate. We define the calculation of node load rate L(vi) in Formula (1).

L(vi) =
c(vi)− r(vi)

c(vi)
, ∀vi ∈ V (1)

For a physical link ei , it can be described as a node pair which is shown in Formula (2),
where ei

va and ei
vb represent the two nodes connected by link ei .

ei = (ei
va , ei

vb), ∀ei ∈ E (2)

Like the computing resources of physical nodes, the physical links also has certain
bandwidth resources represented by b(ei) , and r(ei) denotes the remaining bandwidth
resources. We use L(ei) to represent the link load rate. The calculation of link load rate
L(ei) is defined in Formula (3).

L(ei) =
b(ei)− r(ei)

b(ei)
, ∀ei ∈ E (3)

After the above definition, we use p
(
vi, vj

)
to denote a path between nodes vi and

vj . p
(
vi, vj

)
is a set which contains all physical links on this path. This can be defined in

Formula (4).

p
(
vi, vj

)
={em, · · · , en} ⊆ E, ∀vi, vj ∈ V (4)

We use D
[
p
(
vi, vj

)]
to represent end-to-end delay of p

(
vi, vj

)
. D

[
p
(
vi, vj

)]
consists

of three parts: dprop , dproc , and dtrans , which can be represented in Formula (5). dprop
means the propagation delay. Although we consider a multi-domain scenario, we assume
that the distance between the domains is negligible, so we can regard dprop as 0. dproc
means the packets process delay, which is not change so we can not consider it. So that the
end-to-end delay equals to the transmission delay dtrans , which can also be denoted in
Formula (6).

D
[
p
(
vi, vj

)]
= dprop + dproc + dtrans (5)

D
[
p
(
vi, vj

)]
= ∑ ek∈p(vi ,vj)

d(ek), ∀vi, vj ∈ V (6)

The above is for the modeling of the physical network, then we describe the modeling
of SFC request.

4.2. SFC Request

In order to better describe SFC quantitatively, we can denote an SFC request as
SFC = (VS, ES, S, D, F) . In which, VS =

{
vn f1, vn f2, vn f3, · · · , vn f|VS|

}
represents the

set of all the VNFs in SFC, similarly, ES =
{

vl1, vl2, vl3, · · · , vl|ES|

}
represents the set of all

the virtual links in SFC. |VS| represent the number of VNFs, |ES| represent the number
of virtual links.

The computing resources a VNF request is denoted by c(vn fi) . V(vn fi) repre-
sents the physical node where the VNF vn fi is deployed. We introduce a new variable
M
(
vn fi, vj

)
which is a binary variable. If vn fi is successfully deployed on the node vj ,

M
(
vn fi, vj

)
= 1 ; otherwise, M

(
vn fi, vj

)
= 0 . We indicate it in Formula (7).

M
(
vn fi, vj

)
∈ {0, 1}, ∀vn fi ∈ VS, ∀vj ∈ V (7)



Sensors 2021, 21, 6563 8 of 21

Similarly, we use b(vli) to represent the bandwidth resources a virtual link vli need
to deploy on the physical link. We use vli

vn fa and vli
vn fb to represent the two VNFs

connected by the virtual link vli . It can be represented by Formula (8)

vli =
(

vli
vn fa , vli

vn fb
)

, ∀vli ∈ ES (8)

We use a binary variable N
(
vli, ej

)
to describe the virtual link’s deployment situation.

If virtual link vli is successful deployed on the physical link ej , N
(
vli, ej

)
= 1; otherwise,

N
(
vli, ej

)
= 0 . This can be summarized in Formula (9).

N
(
vli, ej

)
∈ {0, 1}, ∀vli ∈ ES, ∀ej ∈ E (9)

p(vli) denotes the physical link where the virtual link vli deployed on. E(vli)
represents the path which the virtual link vli deployed on. D(vli) represents the latency
of vli , B(vli) represents the bandwidth consumption of deploying the path of virtual
link vli . Formulas (10)–(12) have shown the definition of the above variables, in which
NUM[E(vli)] represents the number of links on path E(vli) .

E(vli) = p
[
V
(

vli
vn fa
)

, V
(

vli
vn fb

)]
, ∀vli ∈ ES (10)

D(vli) = d[E(vli)] = ∑ ek∈E(vli)d(ek),∀vli ∈ ES (11)

B(vli) = b[E(vli)] = b(vli) ∗ NUM[E(vli)] (12)

4.3. Dynamic SFC Deployment

The source node S and destination node D of the SFC represent the location of the
network service provider and the user, respectively. Besides, in the RFC7665 [30], an SFC
service function chain defines an ordered set of abstract service functions and ordering
constraints that must be applied to packets and/or frames and/or flows selected as a result
of classification. Thus, we use F to describe the ordered flows in Formula (13).

F =

{
vn f1

vl1−→ vn f2
vl2−→ vn f3

vl3−→ · · ·
vl|ES|−→ vn f|VS|

}
(13)

During the deployment process of dynamic SFC, we will define some variables to
measure the deployment situation and network performance. In the process of deployment,
for an SFC SFCi , we use Ta(SFCi) to represent the arrival time internal of the current
SFC SFCi and the previous one SFCi−1 . Fs(SFCi) denotes the service time of SFCi . In
addition, TR(SFCi) represents the required time to respond to an SFC SFCi .

In a complete SFC deployment process, we use SSFC to represent the set of all the SFC
requests. For an SFC SFCi , we use DL(SFCi) to represent end-to-end delay, BW(SFCi)
to represent the bandwidth consumption of deploying an SFC SFCi . The calculation of
DL(SFCi) and BW(SFCi) are shown in Formulas (14) and (15).

DL(SFCi) = ∑ vlk∈ES D(vlk), ∀SFCi ∈ SSFC (14)

BW(SFCi) = ∑ vlk∈ES B(vlk), ∀SFCi ∈ SSFC (15)

We set a binary variable P(SFCi) to describe the SFC deployment situation. If the
SFC SFCi is deployed successfully, P(SFCi) = 1, otherwise, P(SFCi) = 0. We can use
Formula (16) to represent it.

P(SFCi) ∈ {0, 1}, ∀SFCi ∈ SSFC (16)
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In the whole process of dynamic SFC deployment process, all SFC requests can be
represented by SSFC =

{
SFC1, SFC2, SFC3, · · · , SFC|SSFC |

}
, |SSFC| is the number of SFC

requests. NUMsuss(SSFC) is used to denote the number of SFCs successfully deployed.
DLall(SSFC) represents all the delay, whereas BWall(SSFC) represents all the bandwidth
consumption, respectively. TRall(SSFC) denotes the response time of SSFC . In the above
definitions, we only consider SFCs that have been deployed successfully. These parameters
can calculate by Formulas (17)–(20).

NUMsuss(SSFC)=∑ SFCk∈SSFC P(SFCk) (17)

DLall(SSFC) = ∑ SFCk∈SSFC DL(SFCk) ∗ P(SFCk) (18)

BWall(SSFC) = ∑ SFCk∈SSFC BW(SFCk) ∗ P(SFCk) (19)

TRall(SSFC) = ∑ SFCk∈SSFC TR(SFCk) ∗ P(SFCk) (20)

Because we mainly focus on the dynamic deployment of SFC, the service requests’
arrival and departure need to be taken into account. We assume that the dynamic arrival
and departure of a service request is following the Poisson distribution. Therefore, the
interval of arrival time and the length of service time are independently and identically
distributed, and both of them obey an exponential distribution. The process of the above
two parameters is shown in (21) and (22).

Ta(SFCi)− Ta(SFCi+1) =
logu

λ
, u ∈ (0, 1) (21)

Fs(SFCi)− Fs(SFCi+1) =
logv

µ
, v ∈ (0, 1) (22)

In the whole process of SFC deployment, we use LB(SFCi) to represent the load
balance rate of the physical network. It can be calculated by Formula (23), in which α
(0 < α < 1) is a weighted factor.

LB(SFCi) = α ∗ L(vi) + (1− α) ∗ L(ei) (23)

4.4. Network Resource Constraints

When deploying the VNF vn fi on a physical network node V(vn fi) , we need to
ensure that the computing resources required by vn fi should be less than the remaining
computing resources r[V(vn fi)] on the physical node. This limitation is reflected in
Formula (24). The consumed computing resources of node vj need to be less than the total
computing resources of itself which is shown in Formula (25).

r[V(vn fi)] ≥ c(vn fi), ∀vn fi ∈ V (24)

c
(
vj
)
≥∑ SFCk∈SSFC ∑ vn fi∈VS M

(
vn fi, vj

)
× c(vn fi), ∀vj ∈ V (25)

During the deployment process, each VNF in an SFC and physical node will be
mapped one-to-one. This can simplify the SFC deployment scheme and reduce the prob-
lem of excessive load on one node, achieving better load balancing. This is shown is
Formulas (26) and (27)

0 ≤∑ vj∈V M
(
vn fi, vj

)
≤ 1, ∀vn fi ∈ VS (26)

0 ≤∑ vn fi∈VS M
(
vn fi, vj

)
≤ 1, ∀vj ∈ V (27)
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In the process of mapping virtual links, there are also some constrains need to be
taken into account. For a virtual link vli and the physical path E(vli) it deployed on,
we need to ensure that the bandwidth consumption of a virtual link vli should be less
than the remaining bandwidth resources r[E(vli)] of the physical path E(vli) . This
constrain is described in Formula (28). For the physical link ej , the consumed bandwidth
resources need to be less than the total bandwidth resources of itself. This can be shown in
Formula (29). During the deployment of an SFC, one physical link ej only can deploy one
virtual link vli , which can be shown in Formula (30).

r[E(vli)] ≥ b(vli), ∀vli ∈ ES (28)

b
(
ej
)
≥∑ SFCk∈SSFC ∑ vli∈ES N

(
vli, ej

)
× b(vli), ∀ej ∈ E (29)

0 ≤∑ vli∈ES N
(
vli, ej

)
≤ 1,∀ej ∈ E (30)

5. Algorithm Design

In this section, we describe our proposed algorithm SFCDO for the dynamic SFC
deployment. This algorithm has two purposes: (a) to find the shortest physical path for
orchestration, (b) to get the best SFC deployment scheme based on the result of the previous
step, so the algorithm we designed includes two algorithms: (a) the sequential traversal
of the network topology based on Breadth-First Search, and (b) the determination of the
deployment plan based on the Improved Ant Colony Optimization algorithm.

5.1. Breadth-First Search

The algorithm of the first step is the BFS algorithm, which is to find the shortest road
between the source node and the destination node. The service terminal and the user are
located on the nodes, respectively. BFS utilize the sequence traversal between the source
node and the destination node to find the length of the shortest path between two nodes.
In Algorithm 1, we describe the steps of this algorithm.

The input of Algorithm 1 is the physical network topology. We use an adjacency list to
store the location information of nodes and links. Besides, we already know the start node
and end nodes of an SFC request. This algorithm will output the length of the shortest path
between the start node and the end node as a result.

Before starting, we need to perform initialization operations. We use queue for network
traversal and path finding. The queue follows the first in first out principle, and we set it to
empty at the beginning. In addition, we set some parameters for recording. The queue is
the node currently arriving, list1 records the node to be checked, list2 records the node had
been checked, hop records the path length when reaching the node, and path records the
path topology information of the current node, length is the shortest path between node S
and D.

In line 2, we push the source node S into the queue. When the queue is not empty, then
we start to traverse all the nodes of the next hop, at the same time add them to list1 (line3–4).
Next, in line 5–8, we can mark the nodes have been visited and put them into list2, let hop
= hop + 1. We continue to traverse the unvisited nodes. In the following process, if the
destination node D is visited, then the traversal is ended. All nodes are marked as visited
and put into list2, making list1 empty. Then they return the result, including the length of
the shortest path between two nodes, and the topology information of the shortest path.

Through the Breadth-First Search algorithm, we can get the length and topology
information of the shortest path we need in the physical network. This result will serve as
an important basis for SFC deployment. We will deploy VNFs and virtual links based on
the shortest physical path, including physical nodes and physical links. In addition, we
use the output results to illustrate the strategy of SFC deployment in Algorithm 2.
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Algorithm 1 Breadth-First Search Algorithm

Require: Physical network G = (V, E); The source node S; The destination node D;
Ensure: The length of the shortest path between two nodes; The topology information of

the shortest path.
1: Initialization: queue = ∅ ;
2: Push S into the queue;
3: while queue 6= ∅ do
4: Add the next node into list1;
5: Mark S as already checked;
6: Add S into list2;
7: hop = hop + 1;
8: if D in the queue then
9: Put all nodes into list2 ;

10: Make list1 empty;
11: length = hop;
12: return length and path;
13: end if
14: end while

As for the complexity of BFS algorithm, first we assume that the underlying physical
network has m nodes and n links. Each node goes in and out a queue at most once, so that
the total time of operating the queue is O( |M| ). The network topology is stored in the
adjacent list, and BFS only scans the adjacency list of the node when it pops a queue. Each
adjacency list is scanned at most once. Therefore, the total time for scanning the adjacent
lists is O( |N| ). So the time complexity of Algorithm 1 is O( |M| + |N| ).

5.2. Improved Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic algorithm. It is inspired by the
collaborative behavior of a group of ants when they find the shortest path between their
nest to the source of food [31]. The ant colony algorithm is a kind of swarm intelligence
algorithm. It is a group of individuals that show intelligent behavior through mutual
cooperation, thus providing a new possibility for solving complex problems. It is also a
probabilistic algorithm used to find optimal paths. In our scenario, we can use the ACO
algorithm to get the best SFC deployment scheme.

We will briefly explain the working principle of this algorithm as follows. Ants
start from the specified source node S and release a specific concentration of pheromone
every time they pass through a link. The shorter the path, the more ants will pass, so
the pheromone concentration on these paths will be higher than others. After a specified
number of iterations, we finally obtain an optimal path.

ACO relies on pheromone, which leads to the local optimal solutions. Therefore, we
will use IACO (Improved Ant Colony Algorithm) algorithm, which is combined with
genetic algorithm (GA). This algorithm is based on the cross mutation factor of GA, which
improves the pheromone concentration setting and enhances the global search ability of
traditional ACO.

The principle of the IACO is: in the early stage of the algorithm, we use GA to initialize
the population. Because it has a fast initial convergence speed, it is easy to get a better
solution. Next, the better solution will be input as the initial pheromone of the ACO,
and then run the ACO algorithm. Because we use GA for preprocessing before, it is not
easy to fall into the local optimum, and the optimal solution we get is closer to the actual
optimal solution.



Sensors 2021, 21, 6563 12 of 21

In IACO, the steps to generate the initial input of the ACO are as follows:
Step 1: Encoding. For a physical network with n nodes, we use an array of length n

to represent an SFC deployment path of the network, and use random key encoding and
decoding methods to encode it.

Step 2: Parameter initialization. Set the GA maximum iteration number to Gmax , the
population size is the same as the number of physical nodes m, pc represents the crossover
probability, pm represents the mutation probability, and set the appropriate value function,
which is the reciprocal of the shortest distance between two nodes.

Step 3: Calculate the appropriate value and use the roulette rule to select. For N
chromosomes in the current population, the probability of the i-th chromosome being
selected is

Pi =

1
f (xi)

N
∑
j

1
f (xj)

(31)

Among them, f (·) represents the objective function, which is the path length corre-
sponding to the solution xi .

Step 4: Adopt linear crossover. For two chromosomes xi and xj(i = j) , linear
crossover is implemented as follows:

xid = λ · xid + (1− λ) · xjd, i = 1, 2, · · · , N; d = 1, 2, · · · , D (32)

Among them, λ represents a random number in the interval of [0,1].
Step 5: Gaussian mutation of the GA algorithm. For a chromosome xi , its variant is

x′ id ← G
(

xid,
1
n

)
, d = 1, 2, · · · , D (33)

Step 6: Start iteration, if the maximum iteration number is reached, then run the ACO
section, otherwise, skip to Step 3.

After getting the optimized solution by the above steps, we can execute the ACO
algorithm. The algorithm procedure is as follows:

Algorithm 2 Ant Colony Optimization Algorithm

Require: Physical network G = (V, E); The source node S; The destination node D;
Ensure: The best deployment path Bestscheme;

1: Initialization: t = 0, Bestlength→ ∞, Besttour = 0, Delta = 0, Tabu = 0, Allowed = 0;
2: for each link do
3: set initial pheromone p from GA algorithm;
4: end for
5: Add all the nodes intoAllowed;
6: for each ant k do
7: randomly choose an initial city;
8: Add source node S into Tabu;
9: Delete S in the Allowed;

10: for i = 1 to n do
11: Search for the next node T by Formula (34);
12: Add T into Tabu;
13: Delete T in the Allowed;
14: end for
15: end for
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16: Add source node S into Tabu;
17: Calculate the heuristic factor Delta by Formula (35);
18: Calculate the Tourlength;
19: if Tourlength < Bestlength then
20: Bestlength = Tourlength;
21: Besttour = Tabu;
22: else
23: continue;
24: end if
25: NUM = NUM+1;
26: t = t + nt;
27: Update the matrix P by Formula (36);
28: if NUM = MAX-GEN then
29: return Bestscheme;
30: else
31: Reinitialization;
32: end if

Just like Algorithm 1, we need to perform initialization operations before starting
to execute it. We have specified some parameter variables as follows. m denotes the
number of ants, the pheromone between all nodes is represented by the matrix P, Bestlength
denotes the shortest path, Bestscheme denotes the best deployment path. Tabu is a table to
store all the nodes have been visited, Allowed is another table to store the nodes unvisited.
Matrix Delta stores the pheromone in a loop. The cost of the whole path is represented
by Tourlength. We assume that the algorithm runs times is NUM, the total runs times is
MAX-GEN, and the running time is t.

As shown in Algorithm 2, this algorithm starts at the source node S in the physical
network. Line1–4 represents the initialization of all parameters and the processing of
the source node S. Then we search the next node and calculate the heuristic factors. The
probability of the next node we choose is calculated by Formula (34). The heuristic factor is
calculated by Formula (35).

pk
ij(t) =


[τij(t)]α ·[ηij(t)]β

∑
s∈Jk(i)

[τij(t)]α ·[ηij(t)]β
if j ∈ Jk(i);

0 otherwise.
(34)

ηij =
1

dij
(35)

In the Formula (34), τij(t) represents the pheromone concentration of node i and
j at time t , whereas ηij(t) represents the visibility from node i and j . α and β
represent the weight of pheromone concentration and heuristic factor, respectively. In the
Formula (35), dij is the distance from node i to node j . Therefore, the smaller the dij ,
the larger the ηij .

The cost of the whole path used to compare with the Bestlength in order to get the
result of the shortest path. Next, we will continue to iterate, at the same time, we update
the matrix P by Formula (36). τij(t + n) represents the pheromone concentration between
node i and j at time t + n . The calculation of parameters ∆τij and ∆τij

k are shown in
Formulas (37) and (38). ∆τij

k represents the pheromone left by ant k between node i
and j . Lk represents the total distance of the path traveled by ant k through a iteration,
namely Tourlength.
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τij(t + n) = (1− ρ) · τij(t) + ∆τij (36)

∆τij=
m

∑
k=1

∆τij
k (37)

∆τk
ij =

{
Q
Lk

if ant k passes link (i, j) in this tour;

0 otherwise.
(38)

Next, we repeat the above algorithm steps until the number of iterations reaches the
maximum number of runs and output the best deployment path Besttour.

Note that while the above formulation and algorithms focus on initial deployment,
they can also be used for dynamic adjustment of deployment. In particular, the SR controller
in the system regularly collects network-related information, such as link delay, bandwidth
resource utilization, and so on, in order to re-run the above procedures to obtain the latest
and best deployment scheme.

5.3. Algorithm Performance Discussion

Next, we will discuss the scalability, running time and computational complexity of
our algorithm. In terms of scalability, our algorithm has been verified in the simulation
part that it reduces end-to-end delay in both small topology and large topology networks,
and has good scalability. At the same time, if a large number of SFC requests arrive, the
IACO heuristic algorithm can also dynamically adjust the deployment plan according to
the request, ensuring the effectiveness of the algorithm.

In terms of running time, in order to simplify the analysis and eliminate the influence
of the external environment, the time complexity of the algorithm is generally discussed
to demonstrate the pros and cons of the running time. In the two-step algorithm in this
paper, the time complexity of BFS algorithm is O

(
m2) , the time complexity of IACO is

O(m · (m− 1) · n · T/2) . The highest order item is n2 , so the time complexity is within
the acceptable range.

Another measure of computational complexity is space complexity. The space com-
plexity of BFS algorithm is O(m + l) , the space complexity of IACO is O

(
m2 + m · n

)
, in

which m is the number of physical nodes, l is the number of physical links, n is the number
of ants, T is iteration numbers.

6. Performance Evaluation

In this section, we perform many simulation experiments to evaluate the capability of
our proposed algorithm and compare its performance with the other three existing algo-
rithms: Greedy-Simulated Annealing (G-SA) algorithm [16], SFC deployment optimization
algorithm [32], and Bandwidth Optimization Algorithm ER_CS_ADJ [18]. The G-SA and
ER_CS_ADJ algorithm are introduced in Section 2. The SFC deployment optimization
algorithm adpoted BFS to search for the shortest path and deploy VNFs based on physical
resources constraints, so we regard it as the SFC-BFS algorithm.

The three comparison algorithms we chose are: G-SA, SFC-BFS, and ER_CS_ADJ. The
reason for choosing G-SA is that it and SFCDO are both two-step algorithms, and they
have part of the heuristic algorithm, which enables a better contrast. SFC-BFS is chosen
because it and SFCDO also have BFS but the SFC generation methods are different, which
can get the optimized result for IACO. ER_CS_ADJ considered the bandwidth resource
consumption and load balancing, which is similar to SFCDO. Thus, we chose these three
algorithms to undertake a complete comparison with the proposed algorithm according to
different aspects.
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Simulation Settings

In order to evaluate the performance of the deployment algorithm described in
Section 6, we use Java to implement a simulation environment. To prove the performance
of the proposed algorithm in the SFC deployment problem, similar to Ref. [18], we adopt
the Waxman 2 model from the GT-ITM [33] to randomly generate small and large network
instances as physical networks for SFC deployment. In this paper, we assume that the small
physical network contains 50 nodes and the large physical network includes 200 nodes,
respectively. We chose a machine with an Intel i7 CPU with 9.8 GB of RAM.

Similar to Ref. [34], we assume that each node contains 1500 units of computing
resources, and we set each link to include 1500 units of bandwidth resources. For a physical
link ei , the delay d(ei) obeys a uniform distribution U(10,20). For both small and large
network topologies, we set the arrival rate of service request λ to 0.04. For the small
topology, the service rate µ is set to 2× 10−4, whereas for the large topology, the service
rate µ is set to 5× 10−5. For a VNF vn fi , the computing resources requested by it c(vn fi)
follows the same uniform distribution U(10,20). For a virtual link vli , the bandwidth
resources to be requested follows the uniform distribution U(20,40).

In this paper, the optimization goals we choose are as follows: (i) average end-to-end
delay, (ii) average bandwidth resources consumption, (iii) maximum node load rate, (iv)
maximum link load rate. Calculation of these parameters are shown in Formulas (39)–(42).

(i) average end-to-end delay

Daverage =
DLall(SSFC)

NUMsuss(SSFC)
(39)

(ii) average bandwidth resources consumption

Baverage =
BWall(SSFC)

NUMsuss(SSFC)
(40)

(iii) maximum node load rate

VRmax = max
vk∈V
{L(vk)} (41)

(iv) maximum link load rate

ERmax = max
ek∈E
{L(ek)} (42)

The reasons why we chose the above four performance comparisons are as follows.
Deploying SFC is to provide users with end-to-end services efficiently since, especially for
multi-domain SFC orchestration, end-to-end delay must be considered. SFC deployment is
not only the mapping of virtual nodes to physical nodes, but also the mapping of virtual
links to physical links, so the bandwidth resource needs to be considered. The success of
SFC deployment is connected with the network load balancing, so we consider the load
rate of the nodes and links to obtain an effective conclusion of the optimization effect.

As shown in Figures 5 and 6, with the increase of the SFC length, the end-to-end delay
also increases. In general, for the proposed algorithm in this paper and the other three
algorithms, the growth rate of latency is almost the same as that of the underlying physical
links. The end-to-end delay of SFCDO is always less than that of comparison algorithms,
both in small topology and large topology. The reason for this is that in SFCDO, we often
choose the shorter path with fewer hops to deploy SFC, so that we can efficiently reduce
the end-to-end delay than other algorithms. Our algorithm optimizes this factor by 24% in
small topology and 20% in large topology.
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Figure 5. Average end-to-end delay of SFCs in small topology.
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Figure 6. Average end-to-end delay of SFCs in large topology.

In Figures 7 and 8, we compare the average bandwidth resources consumption of
SFCDO and other algorithms. In both small topology and large topology, with the length of
SFC increasing, the bandwidth consumption increases. In the four algorithms, the average
increase of this parameter is approximately equal to the average bandwidth resource re-
quired by a virtual link. However, It is not difficult to find that the bandwidth consumption
of SFCDO is always smaller than the other three algorithms. This is because, when we
select the physical links to deploy virtual links, the BFS algorithm we used will help choose
the path with the minor links so that the average bandwidth resource consumption of
deploying SFC will be reduced accordingly. SFC-BFS algorithm also uses BFS to obtain
the shortest path, but it deploys VNFs directly according to the bandwidth resources
constraints, which is less flexible than SFCDO, and therefore consumes bandwidth slightly
higher than SFCDO. Our algorithm optimizes this indicator by 21% in the small topology
and 15% in the large topology.
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Figure 7. Average bandwidth consumption of SFCs in small topology.
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Figure 8. Average bandwidth consumption of SFCs in large topology.

Next, we will introduce the performance of the four algorithms in terms of load rate.
The parameters include the maximum node load rate and the maximum link load rate.

As shown in Figures 9 and 10, the growth rate of SFCs maximum node load rate in two
different topologies is similar. In both small topology and large topology, the maximum
node load rate increases with the increase of the SFC length. When the SFC length remains
the same, the value of the maximum node load rate in SFCDO is always lower than that of
the three other algorithms. The reason for this is that neither SFC-BFS nor ER_CS_ADJ
dynamically adjust the next VNF deployment step based on the current node load. G-SA
can dynamically deploy SFC deployment based on the simulated annealing process, but its
performance is still worse than the SFCDO because its global search ability for the optimal
solution is not as good as the improved ACO algorithm.
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Figure 9. Maximum node load rate of SFCs in small topology.
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Figure 10. Maximum node load rate of SFCs in large topology.

In Figures 11 and 12 we show the results of maximum link load rate in two different
topologies. With the length of SFC increases, the maximum link load rate also increases. In
general, the other three algorithms’ curves are always higher than those of SFCDO, which
is more evident in large-scale topology. This is because, in our algorithm, when we deploy
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each VNF, we will consider preferential deployment on nodes with relatively low load rate
by IACO, so the links that pass through also have lower load rate. For other algorithms,
because the VNF will be deployed at the central node, the node and link load rates are
always higher than SFCDO.
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Figure 11. Maximum link load rate of SFCs in small topology.
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Figure 12. Maximum link load rate of SFCs in large topology.

It is mentioned in Ref. [35] that mapping is similar to embedding, so this article
considers mapping performance. Migration is a kind of mapping. This article uses virtual
network migration to save energy. Although it considers the reconfiguration cost incurred
during virtual routing migration, it is also a choice for a constrained mapping process,
which can be used for reference and partly applied to the scenarios mentioned in this
article. The second step of the algorithm proposed in this paper is a heuristic algorithm,
which can take the conditional constraints and state transition conditions of virtual node
migration as the initial state of the algorithm, and obtain the optimal mapping scheme for
virtual node migration after multiple iterations. According to the new optimal mapping
scheme, the VNF can be re-deployed on the physical node, the virtual link is mapped
to the physical link, and the reconfiguration cost can be recalculated. The original text
considers that traffic is directed through VNFs in order to form SFCs to provide services.
Ref. [35] considers minimizing the cost of virtual node migration to release more physical
resources. Therefore, the original text can set physical resources to be migrated to increase
the flexibility of large SFC deployment and the utilization of the physical network.

At the same time, there are many aspects that can be discussed about dynamic SFC
deployment, such as the allocation of bandwidth resources in the physical network after
a large number of SFCs are deployed, and the security of information in multi-domain
orchestration. The authors of [36] demonstrated the performance of resource allocation
for The Nash Bargaining Solution. This work has made a useful exploration of the solu-
tion to the resource allocation problem. The authors of [37] proposed a platform called
telecommunication network as a service (TaaS), analyzing an open platform for network
functions virtualization (OPNFV) activities and compared them with the TaaS concept to
find commonalities and see how well it addresses security concerns outlined for TaaS. This
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article mainly discusses the security issues of virtualized networks. Referring to the above
two related works, we will consider discussing these two problems in our future work.

7. Conclusions and Future Work

In this paper, we considered the dynamic orchestration and deployment of SFC
combined with the SRv6 mechanism. First, we described ETSI NFV architecture for SFC
orchestration. Then we illustrated the working process of the SFC orchestration and
deployment leveraging SRv6 in a multi-domain scenario. Next, we proposed a two-step
algorithm to improve the performance of the deployment process, including end-to-end
delay, bandwidth consumption, and its load balancing. The first step is to choose the
shortest path discovery algorithm Breadth-First Search to get the shortest path on the
physical network to prepare for the subsequent SFC deployment. In the second step, we
adopted the IACO algorithm to get the deployment scheme and iterated to get the best
results. Finally, we compared our proposed algorithm with three previous algorithms.
Experimental results demonstrated that the algorithm we proposed can reduce the end-to-
end delay, bandwidth consumption and improve the load balancing effect.

In the future study of SFC deployment problems, owing to the emergence and ap-
plication of new network communication architectures such as 5G, 6G, and intent-based
networks, advanced technologies such as machine learning and deep learning will be
integrated into SFC deployment problems to analyze users’ needs and translate users’
intent. In this paper, we do not take into account the intent translation of user service
requests. In the future, we will try to utilize deep reinforcement learning technology to
achieve the transformation of users’ intent and combined it with SFC orchestration and
deployment to optimize its overall performance under new network architectures.
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