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Abstract: Plant diseases must be identified at the earliest stage for pursuing appropriate treatment
procedures and reducing economic and quality losses. There is an indispensable need for low-cost
and highly accurate approaches for diagnosing plant diseases. Deep neural networks have achieved
state-of-the-art performance in numerous aspects of human life including the agriculture sector.
The current state of the literature indicates that there are a limited number of datasets available for
autonomous strawberry disease and pest detection that allow fine-grained instance segmentation. To
this end, we introduce a novel dataset comprised of 2500 images of seven kinds of strawberry diseases,
which allows developing deep learning-based autonomous detection systems to segment strawberry
diseases under complex background conditions. As a baseline for future works, we propose a model
based on the Mask R-CNN architecture that effectively performs instance segmentation for these
seven diseases. We use a ResNet backbone along with following a systematic approach to data
augmentation that allows for segmentation of the target diseases under complex environmental
conditions, achieving a final mean average precision of 82.43%.

Keywords: instance segmentation; smart farming; convolutional neural network; strawberry disease
detection; Mask R-CNN

1. Introduction

Crops are vulnerable to a variety of diseases leading to major production losses
in the agriculture sector around the globe [1]. To increase crop quality, it is of prime
importance for plants to be protected against any potential diseases. This also has the
effect of reducing the cost of food production. To achieve these goals, the options available
include traditional methods of identifying and diagnosing plant diseases. These include
inspections carried out by a professional farmer or the examination of an affected sample
in the laboratory. It is however clear that such a manual inspection-based approach is not
only time consuming and expensive but also requires a high level of domain knowledge
by an expert. Furthermore, not all such methods are particularly accurate and therefore
may fail to successfully diagnose the plant disease at hand [2]. Another solution is the use
of pesticides during food production, but the use of potentially harmful chemicals leads
to lower food quality. Moreover, it also increases the labor cost. In summary, there is a
need for plant disease diagnosis that is effective yet practical considering the deployment
costs. To that end, an automatic disease detection system that can not only identify the
type of plant disease but is also able to identify the exact location of the lesion would be
most suitable.

With recent advances in deep learning, many reliable automatic systems have surfaced
that excel at accurately diagnosing various types of crop diseases [3]. These systems can
help reduce the time and effort required in crop disease identification when compared
with a manual diagnosis wherein an individual with certain expertise is required to inspect
a suspected area. There also exist multiple visual challenges in properly analyzing the
suspected area, for example, varying illumination conditions, multiple object sizes and
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variations in background, etc. Moreover, even if a successful identification is made, there
is another task of properly classifying that disease. Thus, vision-based deep learning
systems will be best suited to this problem. At present, two types of protocols are followed
when using these systems: (1) A person is required to go around a greenhouse and take
pictures of the suspected areas manually using a handheld camera device. Next, the images
taken are processed using automatic detection systems. (2) Robots perform surveillance
in the entirety of the greenhouse and collect required photos autonomously, which are
subsequently processed by an automatic disease detection system [4].

With this, we understand that deep learning-based systems are a superior choice over
traditional methods for crop disease diagnosis as they are economical, feasible and accurate
under variable conditions. In this paper, we specifically focus on autonomous disease
detection for strawberries. We propose a deep learning algorithm for locating, classifying
and determining the precise location of the diseases in strawberries. It is understood that
deep learning requires a large amount of data for properly training the algorithm such
that the problem of overfitting is avoided. Since gathering an adequately large amount of
data can be difficult, various data augmentation techniques are available for developing
powerful models even with limited data [5]. Our model is based on the widely used Mask
R-CNN approach [6] which allows efficient fine-grained instance segmentation of multiple
strawberry diseases. We report results for two different backbones for our experiments, the
ResNet50 and ResNet101 [7]. Without using any augmentation techniques, we achieve a
mAP of 79.84% and 80.24% for ResNet50 and ResNet101, respectively. We then instrument
a number of augmentation techniques and select the highest performing augmentation
methods for our dataset. With an improved learning strategy, we achieve a final mAP of
82.43% on the ResNet101 architecture.

Contribution

Our main contributions are three-fold.

1. We introduce a new dataset towards advancing the current state of research in instance
segmentation systems for predicting strawberry diseases.

2. We then propose an optimized model based on the Mask R-CNN architecture to effectively
perform instance segmentation for seven different categories of strawberry diseases.

3. We investigate a range of augmentation techniques to determine the most suitable
augmentations for our novel dataset.

The rest of this paper is organized as follows: In Section 2, a thorough review of
related methods available in the literature applied to the plant disease detection problem is
arranged. In Section 3, expansive information on our dataset and the network architecture
utilized is provided. Next, in Section 4, the experimentation methodology employed and
the results obtained thereof along with the conclusion drawn are presented. The paper
concludes with a brief review of the conducted study in Section 5.

2. Related Work

In this section, we provide a basic overview of the classical and modern deep learning-
based techniques for image analysis in the context of plant disease recognition. Note
that a comparison with related work is also reported at the end of Section 4.6 after the
presentation of our results.

2.1. Classical vs. Deep Learning-Based Approaches

Classical computer vision techniques are well established and optimized. These
involve feature exploration of an image where an expert-designed feature descriptor is
used. Various hand-crafted feature descriptors that are able to provide semantic and robust
representations of the input images along with a number of visual feature classifiers have
been developed for a number of problem domains [8]. Regardless, extracting very deep and
complex features is difficult using these traditional approaches [9]. In the context of plant
disease detection, several characteristics of the plant diseases are used to design the imaging
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scheme and to capture images with uniform illumination. This reduces complications at
the expense of increased application cost.

Nonetheless, it is still not possible for conventional algorithms to satisfactorily elimi-
nate the effects of scene variations including, but not limited to, noise, background clutter
and scale variations, all of which adversely affect system performance [3]. Typical examples
of visual feature extractors include the Scale Invariant Feature Transform (SIFT) [10], the
Histogram of Oriented Gradients (HOG) [11] and the Haar [12]. Machine learning algo-
rithms are used on top of such features to make the representations more hierarchical and
informative and to develop classifiers for visual detection. Examples of such algorithms
include Support Vector Machine (SVM) [13], AdaBoost [14] and Deformable Part-based
Model (DPM) [15].

On the contrary, deep learning-based approaches achieve much higher performance
compared to traditional computer vision in the problems of classification and detection.
Deep learning brings forward the concept of end-to-end learning in which an algorithm is
fed a large number of images that are annotated with the object classes [16]. The need to
design customized features is eliminated as the neural network automatically discovers the
underlying patterns in the classes present and works out the most expressive and important
features for each category. These features are extracted using the multiple hidden layers in a
deep neural network where high-level features can be obtained by the combination of low-
level features extracted by each layer. The classifier is learned jointly while training the same
network using these extracted representations which now contain the global and contextual
features of the input images [3]. However, the superior performance of deep learning models
comes at the cost of increased training time in addition to increased computing and data
requirements. We opted for a deep learning-based approach for our experiments.

2.2. The Problem of Detection

It is vital to correctly identify and localize symptoms of the disease. There are a number
of vision-based approaches that can be used to detect plant diseases. These approaches can
be based on image classification, object detection or image segmentation.

2.2.1. Classification Approaches

Classification means determining the category information of an input image without
specifying the location of the object detected. An algorithm trained to recognize certain
plant diseases is fed images of affected plants after manual inspection for possible symp-
toms. The model then predicts the category of the disease present. Although the symptoms
can be classified without the need of an expert, the localization of the diseased part still
requires human intervention. As regards the imaging scheme, object-centric images were
focused in earlier applications for classification [17].

Table 1 summarizes deep learning-based classification approaches that have been used
to solve similar problems. A Convolutional Neural Network (CNN), such as AlexNet [18],
ResNet [7], ResNeXt [19], Inception V4 [20], EfficientNet [21] and HRNet [22], is commonly
used as the feature extractor for such purposes. For most applications, the deep neural
network is initially trained on the ImageNet dataset of the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) [23], and these pre-trained weights are then later fine-
tuned for the given application since training a neural network from scratch is often not
feasible. Fang et al. [24] designed a network based upon ResNet50 for plant diseases and
pest detection. Traditional classifiers can also be used on top of features obtained via CNNs
for classification [25,26]. Yalcin et al. [27] used SVM classifiers with different kernels and
feature descriptors like LBP and GIST on features extracted using a CNN. Other than the
prediction of image level labels, a classification network can also be used to obtain location
of the disease via pixel-by-pixel classification. For the problem of maize disease detection,
Dechant et al. [28] trained a CNN to generate a heatmap that shows the probabilities of
infection for each region. These heatmaps were finally used to classify complete images
into regions containing and not containing infection leaves.
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Table 1. Classification-based approaches for plant disease identification.

Authors Network
Architecture

Disease
Category

Pre-Training
Dataset Fine-Tuning Dataset No. of

Classes
Accuracy

(%)

Liu et al. [29] AlexNet Apple ImageNet Field Collected 4 97.62
Fang et al. [24] ResNet50 Leaf - PlantVillage 27 95.61

Hasan et al. [26] InceptionV3+SVM Rice ImageNet Field Collected, Online 9 97.5
Dechant et al. [28] Custom CNNs Maize - Field Collected 2 96.7
Barbedo et al. [30] GoogLeNet 12 plant species ImageNet - 12 87

Ramcharan et al. [31] InceptionV3 Cassava ImageNet Field Collected 5 -
Kawasaki et al. [32] Modified LeNet Cucumber - Laboratory Collected 3 94.9

2.2.2. Detection Approaches

Object detection approach aims at predicting the class information of the objects
present in an image together with the exact locations of the symptoms. This is accom-
plished by drawing a bounding box around the affected area which eliminates the need
for human intervention. Contrary to image classification, object detection provides more
flexibility with regards to the direction and the distance the input images are captured. The
basic framework of object detection models can be divided into two main types: one-stage
and two-stage methods. Two-stage models consist of a Region Proposal Network (RPN)
that generates a set of candidate regions which are classified into different object categories
by the later stage of the network. These regions used by the RPN are extracted using feature
maps generated by a CNN. One-stage networks treat object detection as a regression or
classification problem and output bounding boxes and classification results of the unified
network. The two-stage approach has been constantly improved to reduce the detection
time with the aim of increasing the practicality of the system, but the inference speed is still
slower compared to the single-stage detection systems as these networks are computation-
ally less expensive than their two-stage counterparts. Notable examples for the two-stage
approach include R-CNN [33], Spatial Pyramid Pooling (SPP) [34], Fast R-CNN [35], Faster
R-CNN [36], Feature Pyramid Network (FPN) [37] and DetectoRS [38]. On the other hand,
the one-stage approach includes EfficientDet [39], YOLO [40], CenterNet [41] and the recent
Transformer-based approach, Swin-Transformer [42].

Table 2 provides a detailed summary of plant disease recognition based upon object
detection models. Contrary to image classification, data annotation is more expensive for
detection because bounding box locations must be provided for each object instance for all
the images contained in the dataset. Due to the lack of large datasets for object detection
pre-training, the network backbone in detection is also pre-trained on the ImageNet Dataset
or in some cases, the Microsoft Common Objects in Context (MS-COCO) dataset [43]. The
multi-stage approach has been used in various detection models for plant diseases [1,44,45].
Ozguven et al. [46], for instance, proposed a model based on Faster R-CNN for the detection
of beet leaf spot disease. Moreover, Nie et al. [47] used attention mechanism with Faster
R-CNN for verticillium wilt detection in strawberries.

Table 2. Object detection-based approaches for plant disease detection.

Authors Network Architecture Disease
Category

Pre-Training
Dataset

Fine-Tuning
Dataset

No. of
Classes

Accuracy
(%)

Nie et al. [47] Faster R-CNN+Attention Strawberry ImageNet Field Collected 4 78.05
Byoungjun et al. [4] Cascaded Faster R-CNN Strawberry PlantCLEF Field Collected 7 91.62

Ramcharan et al. [48] SSD Cassava MS-COCO Field Collected 3 -
Ozguven et al. [46] Modified Faster R-CNN Sugar beet - Field Collected 4 95.48

Fuentes et al. [1] Faster R-CNN+Filterbank Tomato ImageNet Field Collected 10 96.25
Fuentes et al. [45] FPN + LSTM Tomato ImageNet Field Collected 10 92.5
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2.2.3. Segmentation Approaches

Segmentation is a high-level task which is considered one of the key problems in the
field of computer vision. Segmentation leads to a complete understanding of the scene. The
predictions produced by a segmentation model are much more fine-grained in comparison
to a classification or a detection network. This is because the goal of segmentation is to label
each pixel in an image with the corresponding class. A segmentation network can convert
the task of detection into semantic and instance segmentation. In semantic segmentation,
we do not differentiate between multiple instances of the same category, whereas in instance
segmentation, the model will make distinctions between different objects belonging to the
same category in case they are present together in a single image. Segmentation networks
can be broadly divided into Fully Convolutional Networks (FCN) [49] and Mask R-CNN.
FCN-based networks initially extract the features of the input images using CNNs and
then gradually restore the feature size to that of the input image using upsampling or
deconvolution layers. Traditional FCN and SegNet [50] are typical examples. On the other
hand, Mask R-CNN is a popular instance segmentation model in which multiple objects
of the same category can be differentiated and counted, even in the case of overlap. More
examples include TensorMask [51] and YOLACT [52].

Table 3 summarizes the different model designs for the segmentation of lesions and
normal areas in plants. In comparison to object detection, the process of data annotation for
segmentation is quite expensive because it requires providing the algorithm the exact shape
of the objects present, in addition to their location. Because of the inherent difficulty of
gathering pixel-level labeled datasets for segmentation, their scale is not comparable to that
of the classification datasets [53]. For this reason again, many algorithms are pre-trained on
the classification datasets or the MS-COCO dataset before being fine-tuned for the required
task. In practice, Stewart et al. [54] used Mask R-CNN to detect maize northern leaf
blight (NLB) disease using autonomous aerial vehicle images. Wang et al. [55] developed a
system based on Mask R-CNN to segment diseases in tomatoes. Similarly, in the field of
agriculture, Khan et al. [56] proposed a cascaded encoder–decoder (CED-Net) architecture
for detecting precise locations of weeds and crops on farmland [57].

From the three available vision-based recognition methods, we have selected the
instance segmentation approach for our problem because of its ability to provide more fine-
grained predictions compared to the other two methods. This is in addition to its ability
to differentiate between multiple instances of the same class. The proposed strawberry
disease detection system is based on the two-stage Mask R-CNN architecture.

Table 3. Summary of visual segmentation-based models for monitoring plant diseases.

Authors Network
Architecture Disease Category Pre-Training

Dataset Fine-Tuning Dataset No. of
Classes

Accuracy
(%)

Stewart et al. [54] Mask R-CNN Northern Leaf Blight MS-COCO Field Collected 1 96
Lin et al. [58] Modified U-Net Cucumber Powdery Mildew - Laboratory Collected 1 96.08

Wang et al. [59] FCN Maize Leaf Disease - Field Collected 6 96.26

3. Materials and Methods

We used Matterport’s public Tensorflow implementation of the feature pyramid
network-based Mask R-CNN for our experiments with appropriate hyperparameter mod-
ifications [60]. The design flow of our approach is shown in Figure 1. The first step is
to arrange a suitable dataset. We annotated our dataset with Labelme, an open-source
image annotation tool. The dataset was augmented with different kinds of augmentation
techniques using the python library Imgaug which allows data augmentation by altering
properties of the images such as geometry, color, arithmetics, etc. An optimized augmenta-
tion graph was used to train the Mask R-CNN model to obtain the final mask predictions.
Detailed descriptions of each module will be provided in their respective sections below.
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Pre-trained weights
(MS COCO)

Data Acquisition

Data Annotation

Experimental Dataset
Split

Mask R-CNN System

Training Final Model

Trained Weights

Prediction on Test Set

Test Set Results

Backbone Selection

Data Preparation Training Testing

Evaluating Different
Augmentations

Selecting Valid
Augmentations

Figure 1. Flowchart for developing a system to detect strawberry diseases.

3.1. Dataset

The literature indicates a scarcity of datasets pertaining to the instance segmentation
of different kinds of strawberry diseases. Although various models have been developed
to perform object detection for multiple diseases in strawberries [4,47], there is much
to be desired when it comes to datasets allowing fine-grained instance segmentation of
multiple diseases and pests in strawberries. In an attempt to fill that void, we introduce
a new dataset that allows users to segment seven different kinds of strawberry diseases.
Since our dataset consists of images that are collected in real fields/green houses instead
of a laboratory, it introduces multiple challenges such as having background variations,
complex field conditions, different illumination settings, etc. As a result, these variations
allows us to design models that have a higher capacity to be more robust and generalizable.

The dataset contains 2500 images for strawberry diseases collected from various green-
houses using camera-equipped mobile phones. The data was collected from multiple
greenhouses under natural illumination conditions in South Korea to ensure a diversity
of environmental factors. The diseases were verified by experts in the field. Note that
approximately 20% of the images contained in the dataset were collected from online
sources (Università di Bologna, Bugwood.org (accessed on 22 July 2021); Ontario Ministry
of Agriculture, Food and Rural Affairs (OMAFRA); Nicole Ward Gauthier, University of
Kentucky; Gerald Holmes, Strawberry Center, Cal Poly San Luis Obispo, Bugwood.org;
William W. Turechek USDA ARS; Frank J. Louws, NC State University; Steven Koike,
Plant Pathology Farm Advisor, University of California Agriculture and Natural resources
blogs; Garrett Ridge, NC State University; Cornell University; College of Agriculture
and Life Science blogs; Madeline Dowling, phytographics.com (accessed on 22 July 2021);
Jonas Janner Hamann, Universidade Federal de Santa Maria (UFSM), Bugwood.org; Clem-
son University—USDA Cooperative Extension Slide Series, Bugwood.org; University of
Georgia Plant Pathology, University of Georgia, Bugwood.org; Paul Bachi, University of
Kentucky Research and Education Center, Bugwood.org; Scott Bauer, USDA Agricultural
Research Service, Bugwood.org; John Hartman, University of Kentucky, Bugwood.org;
more details in dataset.txt.) [61–66]. The images in the dataset are processed to be of resolu-
tion 419 × 419. With regards to imaging distance, the dataset provides both close-up and
distant views of the diseases. The dataset is composed of seven different types of straw-
berry diseases, with images ranging from initial, middle and final stages of the diseases.
An example case for all seven strawberry diseases is visualized in Figure 2. The dataset
is split into 1450, 307 and 743 images for training, validation and test sets, respectively.
Table 4 provides a brief summary of our dataset. Online augmentation methods are used
and as a result, the final number of images depends on the number of epochs the model is

Bugwood.org
Bugwood.org
phytographics.com
Bugwood.org
Bugwood.org
Bugwood.org
Bugwood.org
Bugwood.org
Bugwood.org
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trained on the dataset. The image augmentation used here is described in more detail in
Section 4. The dataset will be made publicly available for further experimentation.

Figure 2. The seven types of strawberry diseases that our model is trained to detect.

Table 4. A summary of our dataset.

Category of Disease Images for Training Images for
Validation Images for Testing

Angular Leafspot 245 43 147
Anthracnose Fruit Rot 52 12 33

Blossom Blight 117 29 62
Gray Mold 255 77 145
Leaf Spot 382 71 162

Powdery Mildew Fruit 80 12 43
Powdery Mildew Leaf 319 63 151

Total 1450 307 743

3.2. Mask R-CNN Architecture

As mentioned above, we based our detector on the widely used Mask R-CNN model.
Mask R-CNN is a natural update to the previous Faster R-CNN system. It is a simple yet
efficient algorithm. It enables instance segmentation for a multitude of applications.

Mask R-CNN brings together Faster R-CNN and FCN for both object detection and
instance segmentation. The overall architecture is presented in Figure 3. For our final
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model, we first use a ResNet101 MS-COCO pre-trained backbone for extracting the feature
maps from an input image. Treating the extracted features as the bottom-up pyramid, the
top-down feature pyramid is generated using lateral connections to obtain multi-scale,
high-level semantic feature maps. The extracted feature maps are then used by a Region
Proposal Network for generating Regions of Interest (ROIs) on an image. In the RPN, a
small network slides on the output feature map of the backbone, and each sliding window
is mapped to a lower-dimensional feature vector. This feature vector is the input to two
parallel fully-connected layers, one of which is responsible for outputting the locations
of the region proposals while the other one judges if there is a target object in the region
box or not. For k number of region proposals, these regression and classification layers are
realized though a 1 × 1 convolution filter resulting in 4 k and 2 k output values for the
regression and classification layer, respectively. These k region proposals are parameterized
relative to reference boxes known as anchors.

Conv-1

Image

Conv-2

Conv-4

Conv-3

Conv-5

P5

P4

P3

P2

P6

RPN

ROI Align

Classes
(Softmax)

Bounding Box
Regressor

Top-Down Pyramid
Mask Branch

Fully Connected

Convolution

28 x 28

Figure 3. ResNet and Feature Pyramid Network (FPN)-based disease detection model.

In Mask R-CNN, an anchor is centered at the sliding window and has five different
scales, one for each of the five levels in the feature pyramid. It also has multiple aspect
ratios for every scale. We used the default values for the scales and the aspect ratios as rec-
ommended in the original paper [6]. The anchor scales are {322, 642, 1282, 2562, 5122} pixels
on the {P2, P3, P4, P5, P6} feature maps in the top down pyramid, respectively, whereas
the aspect ratios for the anchors are {1:2, 1:1, 2:1}. The RPN generates a huge amount of
region proposals which may overlap for the same objects. Therefore, to reduce the number
of generated region proposals, Non-Maximum Suppression [67] was utilized. In the end,
the remaining region proposals were sorted according to their classification scores and a
subset was selected for further processing.

According to the size and position of the region proposals, these ROIs are then assigned
to different scales in the pyramid of the features. In essence, these ROIs are clipped from
the feature maps and are passed into an ROI Align layer. Using ROI Align, a small feature
vector of a fixed size (7 × 7 in this work) was extracted from each ROI and sent into the
heads of the network. The first head predicts the classification result of the boxes while
the second one provides the regression output which gives the coordinates of the region
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proposals. These results were realized by passing the fixed-length vector into two parallel
fully-connected layers. The third and the final branch of the network predicts segmentation
masks of the detected objects. These masks were acquired by an FCN-based architecture
using an ROI pool size of 14 × 14 instead of 7 × 7. It is later upsampled to a size of 28 × 28
for generating the final predicted masks.

3.3. Evaluation Metrics

The proposed model is evaluated using the metric of mean average precision (mAP)
introduced by the PASCAL VOC Challenge [68]. For mAP, the precision and recall are
computed, leading to a precision-recall curve. The Average Precision (AP) is the area under
the precision and recall curve for detection. The equation for precision and AP is as follows:

Precision =
True Positives

True Positives + False Positives
(1)

AP =
1

11 ∑
rε{0.0,...,1.0}

Pinterp(r) (2)

where,
Pinterp(r) = max

r̃≥r
p(r̃) (3)

Here, Pinterp(r) represents the maximum precision value for any recall value greater
than r, whereas P(r̃) is the actual precision at recall r̃. True Positives (TP), False Positives
(FP), True Negatives (TN) and False Negatives (FN) are determined using a parameter
called Intersection over Union (IoU). IoU is based upon the overlap of a predicted mask
with the ground truth mask. Following PASCAL VOC, a prediction in our case is positive
if IoU ≥ 0.5. The equation for IoU is:

IoU =
Area o f Intersection

Area o f Union
(4)

We first computed the average precision for each image and then computed the mean
of all the values to obtain the final mAP.

3.4. Multi-Task Loss

A multi-task loss function is defined on each sampled RoI during training as:

L = Lclass + Lbox + Lmask (5)

The class and the box loss can be calculated as follows:

L(p, u, tu, v) = Lclass(p, u) + λ[u ≥ 1]Lbox(tu, v) (6)

where Lclass(p, u) = −logpu is the log loss for the true class u and p = (p0, . . . , pk) is the
discrete probability distribution (per ROI) over K + 1 categories, which is computed using
softmax. The smooth L1 loss is used for Lbox, which can be ignored by the indicator function,
is defined as:

λ[u ≥ 1] =
{

1 i f u ≥ 1
0 otherwise

}
(7)

The mask head has a Km2 dimensional output as it generates a mask of size mxm for
every ROI and each of the K classes. For this, a per-pixel sigmoid and a binary cross-entropy
loss is used. For an ROI associated with a ground-truth class, Lmask is only defined on the
mask of that particular class.
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4. Experimental Results and Discussion
4.1. Implementation Details

The initial experiments were performed without augmenting the dataset. For com-
prehensive evaluation, we performed experiments on two backbones, the ResNet50 and
ResNet101. Both of the backbones were initialized with pre-trained MS-COCO ResNet101
weights. Since ResNet50 has fewer layers than ResNet101, for ResNet50 we only took
weights of the corresponding layers from the pre-trained ResNet101 weights. We chose
Stochastic Gradient Descent (SGD) as the optimizer with the learning rate set to 0.0001, a
momentum of 0.9 and a weight decay of 0.0001. Batch size was set to 2 and the training
was conducted on an Nvidia Titan XP GPU.

For the settings related to image size, we selected a value of 512 and 960 as the
minimum and maximum image dimensions, respectively. Here, the maximum dimension
value ensures that the longer side of an image does not exceed it. We resized and padded
an input image with zeros to obtain a square final image of the aforementioned size. The
number of validation steps and iterations in each epoch were set at 200 and 725, respectively.
For both the experiments, all of the network layers were fine-tuned. In Table 5, we present
the results of our preliminary experiments.

Table 5. Results on our dataset for ResNet50/101 without using any augmentation technique.

Network mAP (%)

ResNet50 72.06
ResNet101 71.69

It is clear from Table 5 that at the same hyperparameter values, ResNet50 outperforms
ResNet101 despite having a lesser depth and a weaker feature representation capability.
We can conclude that it is due to ResNet101 slightly overfitting the training dataset.

4.2. Augmentation Graph

We picked ResNet101 model from Table 5 as the baseline for performing further
experiments in order to select the most optimal augmentation graph for our final model.
We followed a systematic approach to determine what types and combinations of aug-
mentations work best for the given dataset. The baseline model was trained on a number
of different image augmentation techniques one by one, and the final results for each
augmentation were noted. Each augmentation was applied on the training dataset with
a probability of 0.5 in each iteration. We used the online image augmentation method.
As a result, the final number of training images depends on the training period of the
model. The final results are reported in Table 6. In the table, the Specifications column
lists the hyperparameter choice as allowed by the augmentation library Imgaug. The
baseline refers to the model with no augmentation. Some of the augmentations applied are
a combination of the one applied previously. This time, they were applied simultaneously
on each image. It can be observed that a number of augmentations improved the mAP of
the model, whereas some also resulted in a decrease in the mAP. Such augmentations are
considered unsuitable for our problem. A few augmentations led to minor improvements
over the baseline.

4.3. Selection of Best Performers

From Table 6, we observe that the high-performing augmentations when applied in
a simultaneous fashion do not lead to substantial improvements over the baseline. Hence,
for the final augmentation graph, most augmentations are picked from those that led to
an improvement in mAP over the baseline. These are highlighted in bold text in Table 6.
We applied the selected augmentations in each iteration individually with an application
probability of 85% compared to 15% for no image augmentation. In addition, with each
augmentation we used horizontal and vertical flipping with an application probability of 50%.
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Figure 4 illustrates the final augmentation approach. The best-performing augmentations for
select images can be visualized in Figure 5 for each class.

4.4. Results on the Improved Dataset

We performed final experiments after applying the augmentation techniques selected
above. The same protocols and hyperparameters as discussed in Section 4.1 were used
except that an improved training strategy for further increasing the performance was also
utilized. Training was performed using two GPUs with a batch size of 2 images per GPU,
resulting in an effective batch size of 4. The model was trained for 50 epochs in total with
an initial learning rate of 0.001 for 20 epochs, which was then decreased by a factor of 10 at
the 21st and 41st epoch mark. During this period, every layer in the whole network was
fine-tuned. After that, we further decrease the learning rate by a factor of 10, freeze the
whole network and only fine-tune the heads of the network for five more epochs leading
to a final mAP of 82.43% on our dataset.

Both ResNet101 and ResNet50 were trained using the updated training scheme. In the
case of ResNet101 network, the augmentations alone are responsible for an increment of
approximately 8.5% in the mAP. The final results are listed in Tables 7 and 8.

Table 6. Details of the various augmentation techniques tested on our dataset.

Augmentation Specifications mAP (%)

Baseline - 71.69
Change Color Temperature (7000, 12000) 68.92

Dropout p = (0, 0.2) 71.74
Edge Detect alpha = (0.0, 1.0) 72.37

Enhance Color - 72.02
Filter Edge Enhance - 68.34

Gamma Contrast (0.5, 2.0) 71.90
Gaussian Blur sigma = (0.0, 2.0) 68.70

Histogram Equalization (All Channels) - 71.02
Multiply (0.4, 1.4) 70.58

Multiply and Add to Brightness mul = (0.5, 1.5), add = (−30, 30) 72.26
Multiply Hue and Saturation (0.3, 1.3), per_channel = True 73.79

Perspective Transform scale = (0.01, 0.15) 68.90
Rotate (−45, 45) 72.91

Rotate + Edge Detect copied from individual application 73.63
Rotate + Enhance Color + Sharpen copied from individual application 75.88

Sharpen alpha = (0.0, 1.0), lightness = (0.75, 2.0) 70.72

Image

Augmented (One Of)

Sharpen

Original

Edge DetectRotate Enhance Color

Horizontal Flip Vertical Flip

85% 15%

50% 50%

Figure 4. The selected augmentation graph.
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Figure 5. Visualization of the final augmentations selected for the dataset. (a) Original, (b) rotated,
(c) sharpened, (d) enhanced color, (e) edge detect.

Table 7. Final results on ResNet50 and ResNet101 with updated learning rate schedule.

Network Augmentation Improved Training Strategy mAP (%)

ResNet50 X 79.84
ResNet50 X X 81.37

ResNet101 X 80.24
ResNet101 X X 82.43



Sensors 2021, 21, 6565 13 of 19

Table 8. Per-class Average Precicion for ResNet50/101.

Class AP for ResNet50 (%) AP for ResNet101 (%)

Angular Leafspot 79.93 81.16
Anthracnose Fruit Rot 71.46 63.63

Blossom Blight 87.90 82.25
Gray Mold 92.29 93.90
Leaf Spot 71.93 73.33

Powdery Mildew Fruit 68.02 70.91
Powdery Mildew Leaf 85.66 89.87

4.5. Analysis of Model Predictions

We visualize some of the final predicted masks by our model in Figure 6. Examples
for both satisfactory predictions along with some misclassifications are presented. In
Figure 7, we plot the confusion matrix for our final ResNet101 model to visually evaluate
the performance of the detector. The matrix allows us to determine at what classes and
features the neurons in the network mostly activate on. This enables us to identify inter-
class confusions and to design rectifying procedures for the future. The x-axis in the
matrix represents the ground truth class for each image, whereas the predictions done
by the model on those images are shown on the y-axis. For instance, out of 158 instances
of Gray Mold from the ground truth, 150 have been correctly detected by the model
which is equivalent to 8.31% of the total predictions made by the model, while the model
misclassifies 1 and 7 instances for Powdery Mildew Fruit and Background, respectively.
To expand, the numbers on the edges denote the row and column-wise sum. For Gray
Mold, the row and column-wise sum is 189 and 158, respectively. For the y-axis edge, 150
predicted True positives is equivalent to 79.37% of the total 189 Gray Mold predictions
done by the network, leaving 20.63% as the error in this case. On the other hand, for the
x-axis edge, out of total 158 Ground Truths objects for Gray Mold, 94.94%, or in other
words, 150, have been correctly classified, leaving behind 5.06% or 8 as misclassifications.
The bottom-right block is the sum of the row and column-wise totals, leading to a final
value of 1806 objects. The sum of the True Positives is 1154, which equates to 63.90% of the
total 1806 predictions.

Due to the complex patterns in each class, we observe that the system tends to be
confused in various classes. Above all, the complicated background conditions seem to
confuse the model, for the most part resulting in increased number of False Positives and
False Negatives. Moreover, the network seems to slightly confuse the Leaf Spot class
with Angular Leafspot, whereas a few Powdery Mildew Fruit instances are predicted as
Gray Mold.

4.6. Disease Severity Level Analysis

To evaluate the performance of the network for different degrees of infection, we divide
our test dataset into two splits of 206 and 537 images with each split representing a specific
level of disease severity. We name these splits: Level 1 and Level 2, where Level 1 denotes
low-mid degree infection and Level 2 denotes a higher degree of infection. The splits are made
after consulting with a domain expert on a number of features, including: (1) the severity of
the disease present, (2) the spread of the disease, (3) and the maturity level of the leaf/fruit. In
Figure 8, we visualize examples of both levels for two classes. Experiments are conducted
on these dataset splits with the final Mask R-CNN ResNet101 network and the results, as
reported in Table 9, show that the network is able to detect the diseases in each level with a
high accuracy.
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Figure 6. Predictions on the test dataset by the ResNet101 Network. The last two rows visualize
some of the misclassifications done by our network.
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Figure 7. Confusion matrix of the Strawberry Diseases segmentation results (including Background,
which covers the cases of model misses, i.e., detecting BG instead of an actual object or vice versa).
Green Boxes: True Positives; Peach Boxes: Misclassifications (False Negatives, False Positives).

Figure 8. Examples for the diseases present in Level 1 and Level 2 for Anthracnose Fruit Rot and
Powdery Mildew Leaf.

Table 9. Performance evaluation for variable disease severity.

Network Level Infection Status mAP IOU 0.50 (%) mAP IOU 0.50:0.95 (%)

Mask R-CNN Level 1 Low-Mid 86.10 64.76
Mask R-CNN Level 2 High 81.02 58.10

4.7. Comparison with Relevant Literature

Using the same dataset split as in the case of Mask R-CNN, we also report the results
on YOLACT, a fully-convolutional real-time instance segmentation focused method in
Table 10, with two different backbones, the ResNet101 and ResNet50. Every network is
initialized with pre-trained imagenet weights. For training, we use a multi-GPU strategy
where the maximum image dimension is set to 800 with an effective batch size of 8. SGD
was used as the optimizer with an initial learning rate set to 0.001, a momentum of 0.9 and
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a weight decay of 0.0005. The model was trained for 55 k iterations and 40 k iterations for
ResNet101 and ResNet50 backbones, respectively. The learning rate was decreased by a
factor of 10 at the 25 k, 35 k and 45 k iteration mark, with the last one being applicable
to the ResNet101 model only. A validation size of 200 images was used along with using
random photometric distortions, image resizing and random flipping/mirroring/rotating
as augmentations. COCO evaluation metrics are used to calculate the final mean average
precision for the segmentation masks.

Table 10. Comparison with other architectures.

Network Backbone mAP IOU 0.50 (%) mAP IOU 0.50:0.95 (%)

Mask R-CNN ResNet50 81.37 55.21
Mask R-CNN ResNet101 82.43 59.94

YOLACT ResNet50 79.71 55.19
YOLACT ResNet101 79.39 55.81

In Table 11, we compare results reported on other similar datasets. In their work, Ouyang
et al. [69] performed basic segmentation for three kinds of strawberry diseases. The diseased
strawberry fruit is first extracted using digital image processing and pattern recognition
techniques, and then a comparison is made for the recognition and classification results of
a neural network with SVM. No official accuracy is reported; rather, it is concluded that
SVM has a higher recognition rate than the neural network when used as a classifier. Next,
the dataset of Byoungjun et al. [4] report a basic mAP of 83.13% using Faster R-CNN with
pre-trained ImageNet weights. Improvement is made using a cascaded architecture and
pre-trained weights from PlantCLEF dataset. However, their dataset and thus the model
is designed to perform coarse-grained object detection compared to fine-grained instance
segmentation in this work. It is hoped that our model has the potential to match their final
accuracy if a similar cascaded structure is employed, which we intend to explore as part of
our future work.

Table 11. A comparison with relevant literature.

Authors Network
Architecture

Pre-Training
Dataset Fine-Tuning Dataset No. of

Classes
Accuracy

(%) Approach

Ouyang et al. [69] SVM - Field Collected 3 - Traditional Segmentation

Nie et al. [47] Faster R-
CNN+Attention ImageNet Field Collected 4 78.05 Object Detection

Byoungjun
et al. [4]

Cascaded Faster
R-CNN PlantCLEF Field Collected,

Online 7 91.62 Object Detection

This Work Mask R-CNN MS-COCO Field Collected,
Online 7 82.43 Fine-grained Instance

Segmentation

5. Conclusions

Protecting plants from harmful diseases is key to maximizing yield and improving
quality. Towards this goal, in this paper, we developed a deep learning-based model
to autonomously detect and segment seven kinds of strawberry diseases. The dataset
introduced in this work includes images taken under variable environmental conditions
including variations in illumination settings, background, etc. Through empirical studies,
we based our model on a superior feature extractor, suitable hyperparameter values, and
best-performing augmentation techniques for the given dataset. We finally achieved a mAP
of 82.43% on the test data. It is hoped that the dataset introduced herein along with the
Mask R-CNN architecture-based instance segmentation model will contribute to solving
the problems of plant disease detection. Future work will focus on improving the accuracy
of the model to make it more practical for deployment-grade performance.
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