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Abstract: The number of sensing data are often imbalanced across data classes, for which oversam-
pling on the minority class is an effective remedy. In this paper, an effective oversampling method
called evolutionary Mahalanobis distance oversampling (EMDO) is proposed for multi-class imbal-
anced data classification. EMDO utilizes a set of ellipsoids to approximate the decision regions of the
minority class. Furthermore, multi-objective particle swarm optimization (MOPSO) is integrated with
the Gustafson–Kessel algorithm in EMDO to learn the size, center, and orientation of every ellipsoid.
Synthetic minority samples are generated based on Mahalanobis distance within every ellipsoid. The
number of synthetic minority samples generated by EMDO in every ellipsoid is determined based
on the density of minority samples in every ellipsoid. The results of computer simulations conducted
herein indicate that EMDO outperforms most of the widely used oversampling schemes.

Keywords: oversampling; mahalanobis distance; MOPSO; classification; minority class; ellipsoid

1. Introduction

With advancements in sensor technology and the Internet of things (IoT), vast quan-
tities of sensing data have been collected and analyzed for different applications. Cost-
effective sensors are widely used in our everyday lives to collect various types of data for
further online or offline analyses and applications. The classification of real-world sensing
data is a highly important research topic in the field of data mining and machine learning.
However, the data sets collected using sensors or other sensing techniques usually have a
skewed class distribution because the number of data points vary greatly between classes.
Such data are called imbalanced data. The data utilized in applications, such as anomaly
detection in high-speed trains [1–3], fault diagnosis of motors [4–6], fault detection and
diagnosis in manufacturing processes [7–9], and medical diagnosis [10–12], are usually
imbalanced. In imbalanced data sets, at least one class of data has significantly more
data points compared with other classes. Learning on imbalanced data results in poor
performance, and this problem has thus attracted considerable research attention in recent
years. It is mainly because the performance of many conventional learning algorithms is
degraded on the skewed class distribution of imbalanced data sets [13].

Balanced class distribution [14] or equal weighting of classification errors for every
class [13] is generally assumed in most conventional machine learning algorithms. For
instance, 95% and 5% of imbalanced data sets can comprise majority and minority class
samples, respectively. With the equal weighting of the classification errors, traditional
classification approaches tend to overlook several or most of the minority class samples
in the attempt to minimize the overall classification error. Consequently, although the
overall classification error rate is low, the classification error rate for the minority class is
high. Minority class samples are important in classification in certain applications, such
as medical diagnosis, anomaly detection, and fault detection and diagnosis. Majority
class samples usually represent normal conditions, and minority class samples represent
abnormal conditions, which can be key in such applications. The learning approaches for
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imbalanced data are designed to increase learning accuracy with respect to minority classes
without trading off learning accuracy with respect to majority classes.

The learning approaches for imbalanced data can generally be categorized into three
types: cost-sensitive learning, data-level learning, and ensemble learning, which are com-
prehensively reviewed in [15,16]. Cost-sensitive learning assigns higher misclassification
costs to minority class samples than to majority class samples. Studies have proposed
various learning approaches that adjust the misclassification cost using kernel functions;
these approaches involve the radial basis function [17], matrix-based kernel regression [18],
support vector machine [19,20], and deep learning [21,22].

Data-level learning approaches essentially rebalance the skewed data distribution of
different classes by removing several majority class samples or by adding new minority
class samples, and they can generally be divided into undersampling and oversampling
learning approaches. The main advantage of data-level learning approaches is that they are
independent of classifiers. They can be considered a type of data preprocessing approach.
Therefore, data-level learning approaches can be easily integrated with other imbalanced
learning approaches. Undersampling involves removing the majority class samples to
ensure that the learning results are not overly biased toward the majority class [23–26].
Undersampling reduces both the number of samples in and the computational cost of
machine learning. However, it tends to reduce the model’s capability to recognize majority
classes. By contrast, oversampling involves increasing the number of minority class samples
by resampling them or by generating synthetic samples. However, resampling by simply
replicating the minority class samples does not improve learning of the decision region
of minority classes. The synthetic minority oversampling technique (SMOTE) proposed
in [27] selects several samples from a minority class. Searching in the vicinity of the
selected samples, it identifies other samples of the minority class to generate new synthetic
samples linearly between the two points. SMOTE is the most widely used oversampling
technique because of its computational inexpensiveness. However, SMOTE is prone to
overgeneralization because it synthesizes new samples through the random selection
of minority class samples. Various adaptive sampling methods based on SMOTE have
been proposed to overcome its limitation. The adaptive synthetic sampling approach
for imbalanced learning algorithm (ADASYN) [28], SMOTEBoost [29], and Borderline
SMOTE [30] are effective modified versions of SMOTE. In contrast to SMOTE, other
algorithms, such as those in [31–33], have been proposed; these algorithms generate
synthetic samples by learning the structure underlying the minority samples.

Ensemble learning for incomplete data integrates traditional machine learning ap-
proaches, such as boosting [34], bagging [35], and stacking [36], with other cost-sensitive
or data resampling imbalanced learning approaches. In [37], SMOTE was integrated with
Adaboost [38] to increase the number of minority samples and to assign higher weights to
misclassified minority samples. A similar integration of Adaboost with a novel synthetic
sampling method was proposed in [39]. The performance of boosting, bagging, and other
hybrid techniques applied to imbalanced data has been compared in [40] and [41].

In the methods proposed in [31–33], synthetic samples are generated based not on
individual minority samples as proposed in SMOTE [30] but on the underlying structure
of the minority samples. Recently, a similar oversampling approach called Mahalanobis
distance-based oversampling (MDO) was proposed in [42]. MDO generates synthetic
samples based on the structure of the principal component space of minority samples. The
synthetic samples generated by MDO have the same Mahalanobis distance as that of the
considered minority sample. Because the class mean of the synthetic samples generated
by MDO is the same as that of the minority class samples, the covariance structure of
the minority class samples is preserved. In [43], a scheme called adaptive Mahalanobis
distance oversampling (AMDO) was proposed. AMDO integrates generalized singular
value decomposition with MDO to solve the oversampling problem encountered in mixed-
type imbalanced data sets. Either MDO or AMDO can be utilized as a direct learning
approach for solving problems with multi-class imbalanced problems.
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The oversampling results obtained from MDO or AMDO are equivalent to those
obtained by placing minority class samples and generated synthetic samples into the
principal component space. The minority class samples and the synthetic samples can
be considered to be included in an ellipsoid centered at the class mean. The orientation
of the ellipsoid depends on the covariance structure of the minority class samples. The
synthetic samples do not change the covariance structure of the minority class because all
the synthetic samples are generated within the ellipsoid. However, both MDO and AMDO
use only one ellipsoid to include the minority class samples and synthetic samples. If the
decision regions of the minority class are separated, the decision region approximated
using only one ellipsoid may overlap with the decision regions of other classes. This is
especially true for imbalanced multi-class data. Samples from different classes may be
included in a single ellipsoid structure depending on the target minority class samples.
The synthetic samples generated by MDO or AMDO are randomly assigned in the single
ellipsoid only if they have the same Mahalanobis distance as that of the associated minority
sample. When synthetic samples are generated within a single ellipsoid, the generated
synthetic samples tend to be placed in the cluster of samples belonging to other classes.
This reduces the effectiveness of oversampling. Moreover, certain decision regions (e.g.,
those that are ring- or belt-shaped) are difficult to approximate with only one ellipsoid.

A novel approach called evolutionary Mahalanobis distance oversampling (EMDO) is
proposed in this paper to overcome the limitations of MDO and AMDO. EMDO utilizes
multiple ellipsoids to learn the distribution and orientation of minority class samples in
parallel. Gustafson and Kessel proposed a clustering algorithm called the Gustafson–Kessel
algorithm (GKA) [44], which is similar to the widely used fuzzy c-means [45] clustering
approach with Mahalanobis norms. The advantage of the GKA over fuzzy c-means is that
it utilizes the Mahalanobis norm instead of the Euclidean norm to learn the underlying
sample distribution. However, the GKA assumes a fixed volume before learning the
center and orientation of every ellipsoid. The GKA is an effective clustering approach
for learning the centers and orientations of data clusters, but it is unsuitable for learning
the decision regions of data due to its assumption of a fixed ellipsoid size. The GKA was
modified in [46,47] to adaptively learn ellipsoid sizes for pattern recognition problems
by using the genetic algorithm with a single objective function. In the proposed EMDO,
the GKA is integrated with multi-objective particle swarm optimization (MOPSO) [48,49]
to ensure that the centers, orientations, and sizes of multiple ellipsoids, along with the
overall misclassification error, are learned in parallel. The misclassification error is defined
as the total number of misclassified samples included in a union of multiple ellipsoids.
Therefore, EMDO can learn a set of ellipsoids to approximate connected or disconnected
complex decision regions with reasonable accuracy. Because multiple ellipsoids are learned
in parallel in EMDO, an effective approach is designed to adaptively determine the number
of synthetic samples to be generated in every ellipsoid. Similar ideas that design suitable
algorithms to search for model parameters for specific applications are shown in [50–52].

The technical novelty and main contribution of this paper are summarized as follows.

1) An effective novel oversampling approach called EMDO is proposed for multi-class
imbalanced data problems. Different from the MDO and AMDO approaches that use
only one ellipsoid, EMDO learns multiple ellipsoids in parallel to approximate the
decision region of the target minority class samples.

2) MOPSO is utilized along with GKA in EMDO to optimize the parameters, including
the centers, orientations, and sizes of multiple ellipsoids approximating the target
class of decision regions with reasonable accuracy.

3) Synthetic minority samples are generated based on the Mahalanobis distance within
every ellipsoid learned by EMDO. A novel adaptive approach is proposed to deter-
mine the number of synthetic minority samples to be generated based on the density
of minority samples in every ellipsoid.

4) EMDO was evaluated and found to perform better than other widely used oversam-
pling schemes.
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The remainder of this paper is organized as follows. Section 2 presents the problem
formulation of oversampling for imbalanced data. The GKA is introduced in this section,
and it shows that the GKA is suitable to solve the problem formulated herein. Section 3
introduces the proposed multi-objective optimization scheme designed in the EMDO,
which uses MOPSO. Section 4 details the method for calculating the number of ellipsoids
required to approximate the decision regions of every class. Section 5 describes performance
evaluation of EMDO against other widely used oversampling schemes. Finally, Section 6
concludes the study.

2. Problem Statement and GKA

Given a data set S =
{
(xi, yi) |xi ∈ Rd, yi ∈ {1 . . . p}, i = 1 . . . N

}
, every ith sample

xi ∈ S belongs to some class yi among p classes. Let Sj ⊂ S be the set containing the
samples belonging to class j, j = 1 . . . p. Denote Nj ≡

∣∣Sj
∣∣ as the number of samples in Sj,

where Nmin = min
j=1...p

(Nj), Nmax = max
j=1...p

(Nj). The data set S is imbalanced if (Nj/Nmax) is

less than a preset imbalance ratio, IR. The value of IR is determined based on the size of
S and on the characteristics of the classification problem. Typically, IR ≥ 1.5. Sj is called
a minority set if (

∣∣Sj
∣∣/Nmax) < IR, j = 1 . . . p. An oversampling technique is applied in

this study to overcome the skewed distribution of samples in S. If Sj is a minority set, the
synthetic samples belonging to the same jth class are generated in Sj to form an enlarged

set S̃j such that
∣∣∣S̃j

∣∣∣ = Nmax/IR. Denote Ñj as the total number of extra synthetic samples
generated to balance the minority set Sj,

Ñj = (Nmax/IR−
∣∣Sj
∣∣). (1)

Note that there can be more than one minority set in a multi-class problem. An over-
sampling technique is proposed herein to improve classification accuracy on an imbalanced
data set. To generate an adequate number of synthetic samples and place them in the
minority sets, the distribution of decision regions of every minority set in the d-dimensional
feature space must be located. Multiple ellipsoids are utilized in this study to approximate
the decision regions of minority sets. EMDO is proposed to learn these ellipsoids and
generate synthetic samples in these ellipsoids for oversampling.

Assume that ellipsoids approximate the decision region of the jth class samples.
Denote the center of every nth ellipsoid as vj

n ∈ Rd. The distance between every kth sample
xk and the ellipsoid center vj

n is defined in the Mahalanobis form as follows:

λ
j
nk = ((xk − vj

n)
T

Mj
n(xk − vj

n))
1/2

, (2)

where Mj
n ∈ Rd×d is a norm-inducing matrix. The ellipsoid Φj

n is defined as follows by
using the Mahalanobis distance defined in (2):

Φj
n(xk) = (xk − vj

n)
T

Mj
n(xk − vj

n) = 1. (3)

The sample xk is inside or on the ellipsoid if Φj
n(xk) ≤ 1, but it is outside the ellipsoid

if Φj
n(xk) > 1. Let the decision region of the jth class samples in the feature space be

denoted as <j; <j is approximated by the union of αj ellipsoids, that is,

<j ∼= ∪
n=1...αj

Φj
n. (4)
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The GKA is used for learning the αj ellipsoids in parallel, given that the size of each
ellipsoid is assigned. Denote the size of the ellipsoid Φj

n in (3) as ξ
j
n, n = 1 . . . αj. The

determinant of the norm-inducing matrix Mj
n is inversely proportional to ξ

j
n. Therefore,

det(Mj
n) = 1/ξ

j
n, n = 1 . . . αj. (5)

The GKA learns the norm-inducing matrices Mj
n and the ellipsoid centers vj

n through
iteratively calculating an auxiliary fuzzy partition matrix Uj ∈ Rαj×N j

by using all N j

samples belonging to the jth class. The element µ
j
nk ∈ Uj represents the membership value

of the kth sample xk associated with the nth ellipsoid Φj
n. The membership values sum to 1

for every xk, that is,
αj

∑
n=1

µ
j
nk = 1, k = 1 . . . N j. (6)

The GKA is a fast iterative learning algorithm that efficiently updates the membership
values in the fuzzy partition matrix Uj while learning both the norm-inducing matrix Mj

n

and the center vj
n of every nth ellipsoid. Note that the GKA learns all αj ellipsoids in parallel.

Denote the matrices containing the ellipsoid centers and the norm-inducing matrices as
Vj and Mj, respectively, that is, Vj = [vj

1, vj
2 . . . , vj

αj ] and Mj = [Mj
1, Mj

2, . . . , Mj
αj ]. All

elements in the triple
(

Uj, Vj, Mj) are learned by iteratively minimizing the distance in (2)

weighted with the membership values in Uj subject to the constraints in (5) and (6). Let ω
j
n,

n = 1 . . . αj and v
j
k, k = 1 . . . N j be the Lagrange multipliers of the constraints in (5) and (6),

respectively. The triple (Uj, Vj, Mj) is iteratively learned as follows:

(Uj, Vj, Mj) = argmin(
αj

∑
n=1

N j

∑
k=1

(µ
j
nk)

b
(λ

j
nk)

2
+

αj

∑
n=1

ω
j
n(det(Mj

n)− 1/ξ
j
n) +

N j

∑
k=1

v
j
k(

αj

∑
n=1

(µ
j
nk − 1)), (7)

where b is an adjusted weighting index. The optimization described in (7) is realized by
differentiating (7) with respect to µ

j
nk, vj

n, ω
j
n, and v

j
k,and by equating the result to 0.

The parameters are obtained as follows:

µ
j
nk =

1
αj

∑
i=1

(λ
j
nk/λ

j
ik)

2/(b−1)
, n = 1 . . . αj, k = 1 . . . N j; (8)

vj
n =

N j

∑
k=1

(µ
j
nk)

b
xk

N j

∑
k=1

(µ
j
nk)

b
, n = 1 . . . αj; (9)

Fj
n =

N j

∑
k=1

(µ
j
nk)

b
(xk − vj

n)(xk − vj
n)

T

N j

∑
k=1

(µ
j
nk)

b
, n = 1 . . . αj; (10)

andMj
n = (ζ

j
ndet(Mj

n))
1/d

(Mj
n)
−1

n = 1 . . . αj. (11)

The iteration in GKA is stopped when no significant improvement is made in the

fuzzy partition matrix Uj. Let (Uj)
(m)

be the fuzzy partition matrix learned in the mth

iteration, the norm of the difference between (Uj)
(m)

and (Uj)
(m+1)

can be defined as

δj =

∥∥∥∥(Uj)
(m+1) − (Uj)

(m)
∥∥∥∥ ≡ max

n,k

∣∣∣∣(µj
nk)

(m+1)
− (µ

j
nk)

(m)
∣∣∣∣. (12)
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The GKA iteratively learns Uj, Vj, and Mj until δj < εj, where εj is a small constant.
The flowchart of the GKA is illustrated in Figure 1.

Figure 1. Flow chart of GKA.

3. Multi-Objective Optimization in EMDO

As depicted in Figure 1 and described in Section 2, the GKA optimizes the centers
and norm-inducing matrices of multiple ellipsoids in parallel with a preset size of every
ellipsoid. If the ellipsoid size is set inappropriately, the ellipsoids learned by the GKA
cannot accurately include all minority class samples. According to (4), each jth-class
decision region <j is approximated by the union of αj ellipsoids Φj

n of size ξ
j
n, n = 1 . . . αj.

Consider the sets Φj =
{

Φj
1, Φj

2, . . . , Φj
αj

}
and Ξj =

{
ξ

j
1, ξ

j
2, . . . , ξ

j
αj

}
. The distance between

the kth sample xk and <j, denoted L(xk,<j), can be defined as the minimum distance
between xk and the center of each ellipsoid, as follows:

L(xk,<j) ∼= L(xk, Φj) = min
n=1...αj

λ
j
nk, (13)

where λ
j
nk is defined in (2). The sample xk is included in <j if L(xk,<j) ≤ 1 and the

corresponding class yk = j. Denote a binary function H(·) as follows:

H(o) =
{

1, if the logic statement o is true;
0, if the logic statement o is false.

(14)

The total number of jth-class samples included in the set Φj can be calculated as

Oj
included(Φ

j) =
N

∑
k=1

H(L(xk, Φj) ≤ 1 and yk = j). (15)

It is possible that several samples that do not belong to the jth class are included in the
set of ellipsoids Φj. The total number of samples not belonging to the jth class but included
in Φj can be calculated as

O\j
included(Φ

j) =
N

∑
k=1

H(L(xk, Φj) ≤ 1 and yk 6= j), (16)

where N\j
included(·) ≤ (N − N j).
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Referring to (5), the total size of the ellipsoids contained in Φj can be calculated as

F1(Ξ
j) =

αj

∑
n=1

ξ
j
n. (17)

The proposed EMDO not only minimizes the total ellipsoid sizes but also aims to
simultaneously maximize the number of jth class samples included in the set of ellipsoids
Φj and minimize the number of samples included in Φj but not belonging to jth class. The
misclassification error can be defined as the summation of the number of jth class samples
not included in Φj, calculated as (N j −Oj

included(Φj
∣∣
Ξj), and the number of samples that

are included in Φj but that do not belong to the jth class is calculated as O\j
included(Φ

j|Ξj).
Therefore, the misclassification error can be defined as

F2(Φ
j|Ξj) = N j −Oj

included(Φ
j|Ξj) + O\j

included(Φ
j|Ξj). (18)

The misclassification error can be utilized as an objective function to optimize the
ellipsoid sizes. The set of ellipsoid sizes Ξj = [ξ

j
1, ξ

j
2, . . . , ξ

j
αj ] can be optimized using a

multi-objective optimization scheme that minimizes both (17) and (18).
MOPSO is utilized to perform this multi-objective optimization by searching for the

best set of ellipsoid sizes Ξj by minimizing the objective functions F1(·) and F2(·). Assume
that G particles are utilized in the MOPSO. Denote Ξj(k, g) as the gth particle in the kth
iteration and Ξ

j
(g) as the non-dominated solution subject to the following multi-objective

optimization. Note that the multi-objective optimization searches for the non-dominated
solution of every particle.

Ξ
j
(g) = Argmin

Ξj(k,g), ∀xk∈S, g=1...G
(F1(Ξ

j(k, g)),F2(Φ
j|Ξj(k,g))). (19)

Ξj(k, g) is defined to be a non-dominated solution, as given by (19), if it is not domi-
nated by any other particle, that is, if both F1(Ξ

j(k, g)) ≤ F1(Ξ
j(k, i)) and F2(Φ

j|Ξj(k,g)) ≤
F2(Φ

j|Ξj(k,i)), i=1 . . . G, i 6= g. Let

ai(Ξ
j(k, g)) = H(F1(Ξ

j(k, g)) > F1(Ξ
j(k, i)) or F2(Φ

j|Ξj(k,g)) > F2(Φ
j|Ξj(k,i))) (20)

A(Ξj(k, g)) = ∑
i=1...G,i 6=g

ai(Ξ
j(k, g)). (21)

The non-dominated solution obtained using the gth particle, denoted as Ξ
j
(g), is

updated as Ξj(k, g) if A(Ξj(k, g))=0. However, Ξ
j
(g) remains unchanged if A(Ξj(k, g))>0.

Ξ
j
(g) =

{
Ξj(k, g), if A(Ξj(k, g)) = 0;

Ξ
j
(g), otherwise.

(22)

Only if Ξj(k, g) is the non-dominated solution of (19) will it be included in the repos-
itory Sj

rep, which is the set of all of non-dominated solutions of (19). The best solution

achieved by the gth particle, denoted Ξ
j
p_best(g), is updated using this non-dominated

solution generated by the gth particle, that is, Ξ
j
p_best(g) = Ξ

j
(g). With reference to (22), if

Ξ
j
(g) is not generated in the current kth iteration, Ξ

j
p_best(g) remains unchanged.

It is possible that several original non-dominated solutions stored in Sj
rep become

dominated after a new non-dominated solution is included in Sj
rep. A process for filtering

out non-dominated solutions, similar to the one proposed in (20) and (21), is executed for
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all of the non-dominated solutions in Sj
rep. Assume a total of mrep non-dominated solutions

are in the repository, including the newly generated one. Each of the mrep non-dominated
solutions is compared with all of the other solutions to evaluate whether they are being
dominated. Denote Ξ

j
m as the mth non-dominated solution. Let

ai(Ξ
j
m) = H(F1(Ξ

j
m) > F1(Ξ

j
i) or F2(Φ

j|
Ξ

j
m)
) > F2(Φ

j|
Ξ

j
i
)) (23)

A(Ξ
j
m) = ∑

i=1...mrep ,i 6=m
ai(Ξ

j
m). (24)

Ξ
j
m is no longer a non-dominated solution and is excluded from Sj

rep if A(Ξ
j
m) > 0.

An adaptive grid algorithm [53] is applied to Sj
rep after the filtering process is com-

pleted, as given in (23) and (24), to place all the non-dominated solutions into several grids.
The global best particle Ξ

j
g_best is randomly selected from among the grids in Sj

rep by using

the roulette wheel selection scheme. After both Ξ
j
p_best(g) and Ξ

j
g_best are determined, each

particle is updated as follows:

τ(k, g) = τ(k− 1, g) + c1γ1(Ξ
j
p_best(g)− Ξj(k, g)) + c2γ2(Ξ

j
g_best − Ξj(k, g)), (25)

Ξj(k, g) = Ξj(k− 1, g) + τ(k, g), g = 1 . . . G, (26)

where c1 and c2 are preset constants and γ1, γ2 ∈ [0, 1] are randomly generated real
numbers. If no new non-dominated solution can be successfully included in Sj

rep after the
filtering process for certain preset Kthr iterations, MOPSO is saturated, and the iterative
learning of particles given by (19)–(26) is stopped.

The optimal solution of the multi-objective optimization problem in (19) is searched

from Sj
rep after the iterative learning process is stopped. Let Ξ

j
m =

{
ξ

j
m1, ξ

j
m2, . . . , ξ

j
mαj

}
be

the mth non-dominated solution in Sj
rep. The average density of the ellipsoids associated

with Ξ
j
m is defined as

d(Φj|
Ξ

j
m
) =

Oj
included(Φ

j|
Ξ

j
m
)

αj

∑
n=1

ξ
j
mn

. (27)

The optimal solution (Ξj)
∗ can be selected based on the average density of the non-

dominated solutions because the ellipsoids associated with the optimal solution tend to
have a small size but a large number of samples. However, the average density in (27)
cannot be directly utilized as the optimization index for selecting the optimal solution.
It is modified as the ratio of the total number of jth class samples included in the set Φj

multiplied with the ratio of the total number of samples not belonging to the jth class but
included in Φj. Let the evaluation index for the mth non-dominated solution Ξ

j
m be σj(Ξ

j
m),

which is defined based on (27) as follows:

σj(Ξ
j
m) = d(Φj|

Ξ
j
m
)×

Oj
included(Φ

j|
Ξ

j
m
)

N j ×
(N − N j −O\j

included(Φ
j|

Ξ
j
m
))

N − N j , (28)

where N\j(Φj|
Ξ

j
m
) denotes the number of samples not belonging to the jth class but in-

cluded in Φj. The optimal solution (Ξj)
∗ can be defined as the set of ellipsoid sizes that

maximize the index σj(·), that is,

(Ξj)
∗
= Argmax

Ξ
j
m, m=1...mrep

σj(Ξ
j
m). (29)
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After the optimal ellipsoid sizes are determined by MOPSO according to (19) and (29),
the GKA is applied based on the optimal ellipsoid sizes (Ξj)

∗ to calculate the other optimal
ellipsoid parameters such as the norm-inducing matrix (Mj)

∗
and the ellipsoid centers

(Vj)
∗
. Note that the orientations of all the ellipsoids approximating the jth class decision

are determined by the norm-inducing matrix (Mj)
∗
. The proposed MOPSO integrated

with the GKA is illustrated in Figure 2.

Figure 2. Flow chart of MOPSO.

4. Determining Number of Ellipsoids

The ellipsoid parameters, such as size, centers, and orientation, are optimized using
MOPSO integrated with the GKA, as described in Sections 2 and 3. These ellipsoid
parameters are calculated under the condition that the total number of ellipsoids αj used to
approximate the jth class decision region is assigned in advance j = 1 . . . p. If αj is too small,
the jth class samples might be included in an insufficient number of ellipsoids, resulting in
several ellipsoids having large sizes. It is possible that certain samples that do not belong
to the jth class are included in these large ellipsoids. Moreover, samples other than those
belonging to the jth class might be included because an insufficient number of ellipsoids
is assigned to model the jth class samples. A binary-class dataset with 1000 samples in
each class is illustrated in Figure 3. The samples in either class 1 or class 2 are randomly
generated within the range [0, 3] on X and Y axis, respectively. The problem caused by a
small αj is illustrated in Figure 3a. Conversely, the jth class samples might be included in too
many ellipsoids if αj is too large. This results in a scenario where several ellipsoids overlap
with each another, resulting in the ellipsoids being learned inefficiently, as illustrated in
Figure 3b. If a suitable αj is assigned, as illustrated in Figure 3c, the learning result leads to
a set of ellipsoids with of the appropriate size, center, and orientation.
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Figure 3. Learning results with different number of ellipsoids αj. (a) αj = 3; (b) αj = 9; (c) αj = 6.

To determine the suitable number of ellipsoids, the ellipsoid parameters are optimized
using MOPSO integrated with the GKA by setting αj from 1 to an appropriate number
q. Denote

(
Ξj)
∗
∣∣∣
αj=i

as the optimal ellipsoid sizes calculated using MOPSO, according

to (29), with αj set to i ellipsoids, i = 1 . . . q. The index σj(
(
Ξj)
∗∣∣∣

αj=i
) in (28) is utilized to

evaluate the effectiveness and efficiency for different numbers of ellipsoids αj. The suitable
number of ellipsoids αj can be determined at the value corresponding to the corner of the
curve σj(

(
Ξj)
∗∣∣∣

αj=i
) with respect to αj. Figure 4 shows a typical curve σj(

(
Ξj)
∗∣∣∣

αj=i
) with

respect to αj. According to this figure, αj = 6 is a suitable choice because the curve corner
appears at αj = 6.

Figure 4. The typical curve of σj( (Ξj)
∗∣∣∣

αj=i
) vs. αj.

5. Generating Synthetic Samples

Any set of jth class samples with (
∣∣Sj
∣∣/Nmax) < IR, j = 1 . . . p, is considered a minority

set. With reference to (1), Ñj synthetic samples are to be generated and added into the
minority set. Recall that the minority set of the jth class samples is approximated by αj

ellipsoids. The Ñj synthetic samples must be proportionally added into each of the αj

ellipsoids based on the density dj
n of every nth ellipsoid, n = 1 . . . αj. The number of jth

class samples in the nth ellipsoid Φj
n is defined in a manner similar to (15) as

Oj
included(Φ

j
n) =

N

∑
k=1

H(λ
j
nk ≤ 1 and yk = j) (30)

The number of samples included in the nth ellipsoid but not belonging to the jth
class is

O\j
included(Φ

j
n) =

N

∑
k=1

H(λ
j
nk ≤ 1 and yk 6= j). (31)
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The density of ellipsoid Φj
n is defined as

d(Φj
n) =

Oj
included(Φ

j
n)

ξ
j
n

. (32)

The weight of the ellipsoid Φj
n for sharing the generated synthetic samples is defined

as the reciprocal of the density d(Φj
n) modified by the ratio of Oj

included(Φ
j
n) to the total

number samples in Φj
n:

β
j
n =

1

d(Φj
n)
×

Oj
included(Φ

j
n)

Oj
included(Φ

j
n) + O\j

included(Φ
j
n)

. (33)

Denote the number of synthetic samples added to Φj
n as Ñ j

n, which is determined
based on the weight β

j
n given in (33)

Ñ j
n = Ñ j × β

j
n

αj

∑
i=1

β
j
i

, n = 1 . . . αj. (34)

The scheme for generating synthetic samples for every ellipsoid Φj
n is designed to

resolve the oversampling problem for the following two scenarios:
(A) Oj

included(Φ
j
n)/(O

j
included(Φ

j
n) + O\j

included(Φ
j
n)) ≥ 0.9

In this case, more than 90% of the samples in Φj
n belong to the minority class. The

samples other than those belonging to the jth class can be considered noise. The generated
synthetic jth class samples do not affect the classification accuracy if they are randomly

included in the ellipsoid Φj
n. According to (2), ∆j

n = (λ
j
nk)

2
= (xk − vj

n)
T

Mj
n(xk − vj

n).

Denote zj
ni as the ith eigenvector of Mj

n corresponding to the ith eigenvalue ψ
j
ni, i = 1 . . . d.

Let Zj
n = [zj

n1, . . . , zj
nd], Ψ

j
n = diag(ψj

n1, . . . , ψ
j
nd). Because Mj

n is a positive-definite matrix,

∆j
n = (λ

j
nk)

2
= (xk − vj

n)
T

Mj
n(xk − vj

n), n = 1 . . . αj. (35)

Let pj
ni = (zj

ni)
T
(xk − vj

n), i =1 . . . d; then, (35) can be rewritten as

∆j
n =

d

∑
i=1

(pj
ni)

2
ψ

j
ni, n = 1 . . . αj. (36)

Note that the sample xk is considered to be included in the ellipsoid if ∆j
n ≤ 1. The

ellipsoid has the center vj
n, and all the eigenvectors zj

ni, i = 1 . . . d, are orthogonal to one
another. According to (36), every ith orthogonal eigenvector intersects the ellipsoid’s

boundary sphere, where ∆j
n = 1 at 1/

√
ψ

j
ni and −1/

√
ψ

j
ni.

The synthetic samples x̂j
k are randomly generated in ellipsoid Φj

n. The generated

synthetic sample x̂j
k is expressed as a linear combination of eigenvectors because all eigen-

vectors zj
ni are orthogonal axes of the ellipsoid, that is,

x̂j
k =

d

∑
i=1

zj
nibni, (37)
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where bni is the projection of the vector (x̂k − vj
n) onto the eigenvector zj

ni. To ensure

random generation of the synthetic samples inside Φj
n, bni is set to be a random number

within the range.

− 1/
√

ψ
j
ni ≤ bj

ni ≤ 1/
√

ψ
j
ni (38)

because each of the eigenvectors intersects the boundary sphere at 1/
√

ψ
j
ni and −1/

√
ψ

j
ni.

However, the approach to randomly generate synthetic samples, as expressed in in (37) and
(38), does not guarantee that the generated synthetic sample x̂j

k is always in the ellipsoid Φj
n.

For every randomly generated x̂j
k, calculate the Mahalanobis distance according to (2) as

λ̂
j
nk = ((x̂j

k − vj
n)

T
Mj

n(x̂
j
k − vj

n))
1/2

. (39)

The generated x̂j
k is in Φj

n if λ̂
j
nk ≤ 1. No additional processing is required if x̂j

k is in Φj
n.

The generated x̂j
k is outside Φj

n if λ̂
j
nk > 1. Further processing is required if x̂j

k is outside

Φj
n. The multiplication of x̂j

k with a random number κ, where 0 < κ ≤ (1/λ̂
j
nk), leads to the

multiplicative product κx̂j
k in Φj

n. Denote the finally determined synthetic samples as x̃j
k

x̃j
k =

{
x̂j

k, if λ̂
j
nk ≤ 1;

κ1x̂j
k, if λ̂

j
nk > 1;

, (40)

where κ1 is a random number and κ1 ∈ (0, 1/ λ̂
j
nk].(B) Oj

included(Φ
j
n)/(O

j
included(Φ

j
n) +

O\j
included(Φ

j
n)) < 0.9

In this case, more samples not belonging to the jth class are in Φj
n. The random

placement of synthetic samples in Φj
n, as in the previous case, cannot effectively improve the

classification accuracy. Borderline SMOTE [30] is modified to generate synthetic samples
in this case. The samples located at the borderline between the clusters belonging and not
belonging to the jth class must be first identified using Borderline SMOTE. For every jth
class sample xj

k ∈ Φj
n, define the set Sj

k containing all m-nearest neighbors. The m-nearest

neighbors of xj
k are defined as the samples with the m-shortest Mahalanobis distances from

xj
k. Note that the Mahalanobis distance is calculated using the same norm-inducing matrix

Mj
n as in the case of Φj

n, that is,

λ̃
j
ki = ((xj

k − xi)
T

Mj
n(x

j
k − xi))

1/2
, ∀xi ∈ Φj

n, but xi 6= xj
k. (41)

The sample with all the m-nearest neighbors belonging to jth class is the sample not
on the borderline. Conversely, the borderline sample contains at least one sample among
the m-nearest neighbors not belonging to the jth class. Therefore, a sample is a borderline
sample if at least one sample in the set of m-nearest neighbors Sj

k does not belong to the jth

class for every xj
k ∈ Φj

n.
After the borderline samples are identified, the synthetic samples are generated

through random interpolation between the borderline sample xj
k and any other xj

l ∈ Sj
k;

that is, the synthetic sample is generated as follows:

x̃j
k = xj

k + κ2(x
j
k − xj

l), ∀xj
l ∈ Sj

k, (42)

where κ2 is a random number and κ2 ∈ [0, 1].

6. Simulation

The proposed EMDO was evaluated against other multi-class imbalanced data learn-
ing algorithms on different numerical data sets. The classifier C4.5 is usually utilized
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as the classifier to verify the oversampling results for various oversampling approaches.
For instance, the oversampling approaches in [30,32,39], and [40–43] all used C4.5 as the
classifier to verify the proposed oversampling schemes. This is mainly due to the fact that
the classification results with C4.5 do not change as long as the parameter setting and
datasets are fixed. No randomness exists in the classification results with C4.5 for the same
parameter setting and dataset. Note that the number of ellipsoids utilized for the minority
class is determined using the scheme proposed in Section 4 and is listed in the rightmost
column of Table 1 and Table 6. The five nearest neighbors are considered for synthetic
sample generation in case (B) of Section 5.

Table 1. Characteristics of the data sets for simulations in Example 1.

Data Set Size Attributes Classes Class Distribution IRmax
No. of

Ellipsoids

Balance 625 4 3 288/49/288 5.88 NA/4/NA
Hayes-Roth 132 4 3 51/51/30 1.7 NA/NA/3
New-Thyroid 215 5 3 150/35/30 5 NA/3/3
Page-Blocks 5472 10 5 4913/329/28/87/115 175.46 NA/9/4/6/9
Dermatology 358 34 6 111/60/71/48/48/20 5.55 NA/4/4/3/3/3

Breast-Tissue 106 9 6 21/15/18/16/14/22 1.57 NA/NA/NA/
NA/4/NA

User-Knowledge-Modelling
(UKM) 403 5 5 50/102/129/122 2.58 4/NA/NA/NA

Vertebral-Column 310 6 3 60/150/100 2.5 6/NA/NA
Ecoli 327 7 5 143/77/52/35/20 7.15 NA/6/4/3/3

NA: not available.

The simulations in this study were conducted using five-fold cross-validation with
10 independent runs. Every data set was tested using different oversampling schemes
and compared with the proposed EMDO. The minority class with the minimum size was
selected to validate the effectiveness and efficiency of the proposed EMDO.

Several evaluation metrics were designed to evaluate the effectiveness and efficiency
of the proposed EMDO. The classification accuracy for the jth class is defined as follows:

Pj =
TPj

TPj + FPj
, (43)

where TPj is the number of true-positive classified samples, that is, the samples that are
correctly classified as belonging to the jth class. FPj is the number of false-positive classified
samples, that is, the samples that are incorrectly classified as belonging to the jth class. The
metric Pavg is defined as the average classification accuracy over all p classes, that is,

Pavg =
1
p

p

∑
j=1

Pj. (44)

The metric Pmin refers to the classification accuracy defined in (43) for the minority
class with the minimum size. To measure the capability of EMDO to separate any pair of
classes, the area under curve (AUC) [54,55] is widely used in [56,57]. Denote Am,n as the
AUC between class m and class n. The metric AUCm is defined as follows for measuring
the capability of EMDO to separate the smallest minority class with the minimum size
from the other classes.

AUCm =
1

p− 1 ∑
n 6=n′

An,n′ + An′ ,n

2
(45)
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where n’ denotes the minority class with the minimum size. In addition to AUCm, the
average of AUC over all pairs of classes for a multi-class problem, denoted as MAUC, is
defined as

MAUC =
2

p(p− 1) ∑
m<n

Am,n + An,m

2
. (46)

In order to evaluate the imbalance condition of every data set, the maximum imbalance
ratio IRmax is defined as follows:

IRmax =
Nmax

Nmin
(47)

where Nmin = min
j=1...p

(Nj), Nmax = max
j=1...p

(Nj).

Example 1:
The data sets used in the simulation are the same as those used in [43] for comparing

the performance of the EMDO against AMDO and other learning algorithms. The data sets
used in [43] were mainly from data repositories such as the ones Knowledge Extraction
based on Evolutionary Learning (KEEL) [58] and UCI (University of California, Irvine)
Machine Learning Repository [59]. Table 1 describes these data sets. The performance
comparison based on different indices are made in Tables 2–5. Within Tables 2–5, the
algorithms such as SSMOTE refers to Static-SMOTE [60], GCS refers to RESCALE [61],
ABNC refers to AdaBoost.NC [62], and OSMOTE refers to OVOSMOTE [63]. The MDO
in [42], MDO+ and AMDO in [43] are also compared in Tables 2–5 with the proposed
EMDO. The Baseline algorithm is the classifier C4.5 without any oversampling technique.

Table 2. Comparison of Pmin (%) for every over sampling scheme on different data sets.

Data Set Baseline SSMOTE GCS ABNC OSMOTE MDO MDO+ AMDO EMDO

Balance 0.000.00 8.449.18 6.449.83 2.224.97 12.4413.41 2.004.47 0.000.00 10.220.50 20.4110.95
Hayes-Roth 100.000.00 100.000.00 100.000.00 100.000.00 100.000.00 100.000.00 100.000.00 100.000.00 100.000.00

New-Thyroid 83.3311.79 90.0014.91 93.339.13 93.339.13 90.009.13 83.3316.67 96.677.45 100.000.00 100.000.00
Page-Blocks 82.6711.88 78.676.91 93.3314.91 72.6724.99 93.339.13 75.3316.26 93.339.13 96.677.45 96.675.33

Dermatology 95.0011.18 95.0011.18 90.0013.69 100.000.00 90.0013.69 95.0011.18 95.0011.18 100.000.00 100.000.00
Breast-Tissue 60.0027.89 40.0036.51 46.6729.81 60.0027.89 53.3329.81 60.0027.89 53.3329.81 60.0027.89 73.3613.32

UKM 88.0013.04 92.0013.04 90.0010.00 94.008.94 88.0016.43 86.0013.42 86.0013.42 94.008.94 96.005.76
Vertebral-Column 65.0016.03 65.0019.00 60.0019.90 61.6718.26 66.675.89 68.3322.36 66.6728.87 86.679.50 90.676.02

Ecoli 65.0037.91 70.0027.39 55.0032.60 70.0027.39 55.0032.60 75.0030.62 90.0013.69 90.0013.69 90.0012.40
Average 71.00 71.01 70.53 72.65 72.09 71.67 75.67 81.95 85.23

Rank Avg. 6.33 5.89 6.39 5.11 5.78 5.89 5.28 2.56 1.78

The best result is in bold face.

Table 3. Comparison of Pavg (%) for every oversampling scheme on different data sets.

Data Set Baseline SSMOTE GCS ABNC OSMOTE MDO MDO+ AMDO EMDO

Balance 56.381.75 58.382.94 56.654.03 62.333.29 57.862.78 57.282.92 55.451.66 60.372.06 64.383.59
Hayes-Roth 84.916.71 84.675.06 85.335.58 83.527.08 84.976.74 84.916.71 84.976.74 84.976.74 85.612.39

New-Thyroid 88.866.02 91.083.02 93.144.55 93.591.45 92.546.61 89.816.84 94.983.59 96.542.99 96.602.05
Page-Blocks 84.302.14 84.571.88 88.774.49 79.705.57 89.612.98 81.241.79 86.132.48 88.771.92 90.151.87

Dermatology 95.672.05 95.731.83 93.502.71 97.100.75 95.312.45 95.672.05 96.061.62 96.880.26 97.130.20
Breast-Tissue 63.223.74 60.893.94 68.785.77 66.004.88 65.837.05 63.223.74 66.562.17 63.223.74 70.606.28

UKM 92.182.02 92.574.85 91.032.00 94.492.45 91.782.32 91.452.48 91.922.50 94.232.14 95.241.37
Vertebral-Column 76.442.65 77.224.66 75.675.86 76.673.12 77.004.71 78.225.55 76.567.41 81.892.38 85.771.53

Ecoli 74.647.88 72.8112.01 72.7311.35 76.237.14 73.128.72 77.247.03 82.305.21 82.445.08 85.311.62
Average 79.61 79.77 80.62 81.07 80.89 79.89 81.66 83.26 85.65

Rank Avg. 7.00 6.11 6.17 4.78 5.44 6.33 4.89 3.28 1.00

The best result is in bold face.
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Table 4. Comparison of AUCm (%) for every oversampling scheme on different data sets.

Data Set Base SSMOTE GCS ABNC OSMOTE MDO MDO+ AMDO EMDO

Balance 56.951.91 58.123.27 57.103.43 60.522.89 58.583.18 57.402.78 56.600.88 60.611.24 65.614.30
Hayes-Roth 94.342.52 94.251.90 94.502.09 93.822.65 94.362.53 94.342.52 94.362.53 94.362.53 94.672.81

New-Thyroid 91.405.33 93.904.45 95.433.76 95.762.37 94.045.11 91.856.74 97.042.94 98.371.41 98.551.23
Page-Blocks 90.753.57 89.842.16 94.814.66 86.827.87 94.963.16 87.904.66 93.972.91 95.512.07 96.072.24

Dermatology 97.323.46 97.393.27 95.554.17 99.050.28 96.094.09 97.323.46 97.483.23 98.980.26 99.060.22
Breast-Tissue 76.807.31 72.1810.10 75.809.99 78.308.92 76.929.75 76.807.31 77.308.09 76.807.31 82.373.77

UKM 94.143.65 94.945.27 94.193.04 96.412.61 94.014.64 93.333.88 93.553.92 96.453.02 97.262.49
Vertebral-Column 79.253.17 79.965.56 78.386.36 79.425.04 80.042.48 81.136.76 79.548.76 86.041.72 89.072.00

Ecoli 83.0711.54 83.4310.88 79.7811.44 84.789.21 79.7411.00 86.389.56 91.974.61 91.594.19 92.912.92
Average 84.89 84.89 85.06 86.10 85.42 85.16 86.87 88.75 90.62

Rank Avg. 7.00 6.22 6.33 4.89 5.44 6.33 4.89 2.89 1.00

The best result is in bold face.

Table 5. Comparison of MAUC (%) for every over sampling scheme on different data sets.

Data Set Baseline SSMOTE GCS ABNC OSMOTE MDO MDO+ AMDO EMDO

Balance 67.291.31 68.792.20 67.493.02 71.752.47 68.392.09 67.962.19 66.591.25 70.271.54 73.132.77
Hayes-Roth 88.685.03 88.503.79 89.004.18 87.645.31 88.735.06 88.685.03 88.735.06 88.735.06 89.154.86

New-Thyroid 91.644.52 93.312.27 94.863.41 95.191.09 94.404.96 92.365.13 96.242.69 97.402.24 97.762.14
Page-Blocks 90.191.34 90.351.18 92.982.80 87.313.48 93.511.86 88.271.12 91.331.55 92.981.20 93.851.17

Dermatology 97.401.23 97.441.10 96.101.62 98.260.45 97.191.47 97.401.23 97.630.97 98.130.16 98.260.16
Breast-Tissue 77.932.24 76.532.36 81.273.46 79.602.93 79.504.23 77.932.24 79.931.30 77.932.24 84.075.16

UKM 94.791.34 95.053.23 94.021.33 96.321.64 94.521.54 94.301.65 94.611.67 96.151.42 96.911.05
Vertebral-Column 82.331.99 82.923.50 81.754.39 82.502.34 82.753.53 83.674.16 82.425.55 86.421.78 89.051.33

Ecoli 84.154.93 83.017.50 82.967.10 85.154.46 83.205.45 85.774.39 88.933.26 89.033.18 90.821.01
Average 86.04 86.21 86.71 87.08 86.91 86.26 87.38 88.56 90.33

Rank Avg. 7.00 6.11 6.17 4.72 5.44 6.33 4.89 3.28 1.06

The best result is in bold face.

To compare the performance of EMDO with those of the other schemes, the rank
average of every scheme was calculated. All oversampling schemes were tested on each of
the data sets listed in Table 1. The ranking of algorithm performance was based on each
of the metrics. For instance, the algorithm with the best performance is ranked first, the
algorithm with the second-to-best performance is ranked second, etc. The average rank
of every algorithm is then calculated. The schemes with the same metric values share
ranks. For instance, if two schemes are ranked second because they have the same metric
values, the two schemes share the second and third ranks. These two schemes are thus
ranked 2.5. The means and standard deviations of Pmin and Pavg are listed in Tables 2 and 3,
respectively, for every oversampling scheme, including the proposed EMDO, applied
to different data sets. According to Tables 2 and 3, EMDO outperforms all of the other
schemes on every data set. EMDO has the lowest average rank. The results shown in both
Tables 2 and 3 imply that the oversampling performed using EMDO significantly improves
the classification accuracy for the smallest minority class. Moreover, the synthetic samples
generated for the minority class samples improve the overall average classification accuracy.

For all schemes, the mean and standard deviation are listed in Table 4 and the AUCm
defined in (45) and MAUCm defined in (46) are also compared in Tables 4 and 5, respectively.
As indicated in Table 4, EMDO outperform the other schemes in separating the smallest
minority class from the other classes for every listed data set. Moreover, according to
Table 5, the capability of EMDO to separate all pairs of classes in the multi-class problem is
superior to that of the other schemes.

Example 2:
The performance of EMDO is evaluated on the sensory data in this example. Two data

sets, Statlog (Shuttle) from UCI and Mafalda [64] from Github are utilized in this example.
The data set Statlog (Shuttle) is the set of the recorded sensory data from NASA’s space
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shuttle while the data set Mafalda is the set of the recorded sensory data from different
brands of cars. The characteristics of these two data sets is shown in Table 6. Table 6 shows
that both data sets are extremely imbalanced because the maximum imbalance ratios IRmax
are as high as 5684.7 and 5.94, respectively. Four indices Pmin, Pavg, AUCm, and MAUC are
calculated and compared in Table 7 for both data sets with classifier C4.5. The classification
results are greatly improved with oversampling scheme EMDO compared with the results
without EMDO. EMDO helps improve classification results for both highly imbalanced
data sets according to the four evaluation indices listed in Table 7.

Table 6. Characteristics of the data sets for simulations in Example 2.

Data Set Size Attributes Classes Class Distribution IRmax No. of Ellipsoids

Statlog (Shuttle) 58000 9 7 45586/50/171/8903/
3267/10/13 5684.67 NA/3/4/5/5/

3/1
Mafalda 23762 14 3 17757/2990/3015 5.94 NA/11/11

NA: not available.

Table 7. Comparison of the performance with and without EMDO for imbalanced sensory data.

Data Set Pmin Pavg AUCm MAUC

Statlog (Shuttle) w/ EMDO 89.3313.73 96.601.95 99.660.47 99.320.94
w/o EMDO 6048.99 93.217.42 77.656.17 92.801.66

Mafalda
w/ EMDO 57.3818.33 72.349.33 76.399.31 78.198.22

w/o EMDO 33.1712.13 60.7710.53 65.257.88 67.806.99

7. Conclusions

EMDO was demonstrated to outperform competing oversampling approaches in
simulations. EMDO performed well because it approximates the decision region of the
target minority class with reasonable accuracy by using a set of ellipsoids. In problems
involving multi-class imbalanced data, EMDO performs exceptionally well if the decision
region of the minority class is separated in the feature space. EMDO can learn the sizes,
centers, and orientations of the ellipsoids that approximate the minority class decision
region by using the underlying distribution of minority class samples. IoT is a key emerging
technology, and imbalanced data will become an increasingly common problem as the
number of IoT sensors increases. The proposed EMDO is suitable for solving such multi-
class imbalanced data classification problems. One of the future works related to this
study involves applying EMDO to address the problem of imbalanced data encountered
in real-world IoT sensing data. Although EMDO is a data-level learning approach, it can
easily be integrated with other cost-sensitive methods to increase the effectiveness and
efficiency of learning. Further studies on variants of integration can be another direction
for future research.
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