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Abstract: Virtual and augmented reality technologies have known an impressive market evolution
due to their potential to provide immersive experiences. However, they still have significant diffi-
culties to enable fully fledged, consumer-ready applications that can handle complex tasks such as
multi-user collaboration or time-persistent experiences. In this context, CultReal is a rapid creation
and deployment platform for augmented reality (AR), aiming to revitalize cultural spaces. The
platform’s content management system stores a representation of the environment, together with a
database of multimedia objects that can be associated with a location. The localization component
fuses data from beacons and from video cameras, providing an accurate estimation of the position
and orientation of the visitor’s smartphone. A mobile application running the localization component
displays the augmented content, which is seamlessly integrated with the real world. The paper
focuses on the series of steps required to compute the position and orientation of the user’s mobile
device, providing a comprehensive evaluation with both virtual and real data. Pilot implementations
of the system are also described in the paper, revealing the potential of the platform to enable rapid
deployment in new cultural spaces. Offering these functionalities, CultReal will allow for the fast
development of AR solutions in any location.

Keywords: augmented reality; localization; beacons; computer vision

1. Introduction

Due to their pervasiveness and their capacity to display 3D content, smartphones have
become very popular tools for augmented reality applications. Although other devices
such as smart glasses are emerging [1], their price range and user interaction features still
represent impediments to mass adoption. The AR domain has grown in popularity, as evi-
denced by the large number of AR platforms that offer a seamless integration of augmented
content into the physical world. This perfect blending of the augmented and real worlds
depends on the correct localization of the smartphone relative to the 3D coordinate system
of the physical space. Even though many AR development platforms provide localization
functionalities, it is still difficult to enable a time-persistent augmented reality experience,
where all the visitors’ devices are localized relative to the same coordinate system, which is
defined by a location manager. Such a platform is presented in this paper, which provides
intuitive configuration and content definition functionalities covering multiple use cases,
such as the rendering of 2D and 3D multimedia objects, guidelines, and quests. All these
scenarios are enabled by the accurate, time-persistent localization of the visitor’s device.
We used ARCore [2] technology, as well as a new localization method based on beacons
and computer vision.

The paper is organized as follows. The second section presents a short overview of
recent developments in the augmented reality field, with a focus on localization strategies
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and cultural experiences. The third section offers an overview of the CultReal architecture
and a detailed description of the system, centered on our fused localization approach. Next,
the evaluation of the system’s localization solution is presented. The fifth section describes
pilot implementations in four cultural locations, covering various use cases. The final
section presents several conclusions and discusses the potential of deploying the CultReal
system in new cultural spaces.

2. Related Work

The augmented reality domain has grown in popularity, as evidenced by the huge
number of commercial platforms [2–9] that provide 2D and 3D image recognition, tracking,
position estimation, and the integration of augmented content to be overlaid on real
scenes. Even though these platforms provide multiple and complex functionalities, there
is no turnkey solution that covers all the use cases of augmenting a location with virtual
content. Such a scenario is the localization of all the visitors in a common global coordinate
system, defined by a location manager. Therefore, the augmented reality domain has also
been explored by researchers who have adapted existing solutions or designed new ones
depending on the various targeted use cases. This section briefly covers recent surveys and
applications in the augmented reality field.

A very recent work [10] investigates the integration of the AR technology in different
fields, such as education and culture, and analyzes future research directions. Another
survey [11] also presents a historical overview of the augmented reality domain, illus-
trating the requirements and challenges of typical AR systems and identifying research
opportunities in this area. These papers emphasize several challenges of the augmented
reality domain that are relevant for our system. One of them is the bulkiness and high cost
of specialized AR headsets, which represents an impediment for their wide adoption. An
affordable alternative, also selected for the CultReal system, is the use of smartphones. An-
other challenge is the seamless integration of the virtual content within the physical world.
The CultReal localization component provides an accurate estimation of the position and
orientation of the user’s device, ensuring this seamless integration. Ling [12] analyzes aca-
demic contributions to the AR commercial domain and offers advice on how startups can
take advantage of these developments when competing against senior companies. In [13],
a survey on collaborative augmented reality is provided, identifying accomplishments,
limitations, and future trends. The CultReal system addresses the multi-user challenge
by rendering the same virtual content on multiple devices located in a common space.
Grubert et al. [14] claim that most of the AR applications are used for one particular task
and address the need for a continuous and multi-purpose user experience. They introduce
a taxonomy for pervasive AR and context-aware AR, classifying the context, sources, and
targets relevant for implementing a continuous AR experience. A very important purpose
of the CultReal system is to provide such a continuous AR experience by ensuring the
time-persistent localization of the users.

2.1. Localization in Augmented Reality Applications

Since one of the most important elements in the current work is the estimation of the
position and orientation of the user’s device, this sub-section focuses on the localization
problem in augmented reality applications.

The main algorithms of visual simultaneous localization and mapping (SLAM) [15],
and their applications in augmented reality are investigated in [16]. The “AR Cross-center
Interactive Device” solution [17] applies SLAM-based AR to interactive cultural exhibi-
tions. Gao and Yang [18] introduce a 3D object recognition method in augmented reality
applications using an improved Canny Edge detector, local feature descriptors, and the
SLAM technology. Guido [19] is another AR system for indoor navigation, incorporating
marker-based localization, SLAM, and inertial data. It uses the Unity’s AR Foundation
Framework, a unified platform that includes core features from ARKit [3], ARCore, Magic
Leap [9], and HoloLens [20]. An AR remote collaboration system with dense scene re-
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construction [21] is used for remote guidance. This system generates a 3D mesh of the
scene which can be explored and enriched with text and image annotations to provide
instructions. Puigvert et al. [22] use the 3D feature points acquired by ARCore to obtain
a sparse representation of a scene and provide a localization service based on the bags
of binary words technique [23]. The time-persistence and collaboration requirements of
AR systems, especially in complex industrial environments, are addressed in [24]. A map
recovery and fusion strategy using visual-inertial SLAM have been proposed for the col-
laborative AR on multiple mobile devices. Ng et al. [25] use inertial sensors embedded
in mobile devices and the IndoorAtlas technology [26], enabling indoor positioning and
offering guidance to users through ARCore. A comprehensive survey on vision-based
indoor localization, which also discusses the AR domain, is provided by Morar et al. [27].
An important component of the CultReal system is the ARCore localization technology,
which fuses data from the smartphone camera and sensors though a visual-inertial SLAM.
Recently, the combination of visual and inertial sensors has been successfully used for
other high-granularity data processing environments, such as mobile X-ray detector track-
ing [28], indoor parking [29], and guidelines for indoor pedestrian navigation [30–32]. The
validation of such approaches was possible due to a thorough analysis of synchronous
multi-sensor datasets. We plan to construct a similar dataset for future versions of our
work in order to verify the efficiency of our proposed localization.

An outdoor AR system that provides pose estimation of a mobile device relative
to a 3D model of the environment, is proposed in [33]. The 3D model is reconstructed
with the Structure from Motion technology [34], using images acquired by an unmanned
aerial vehicle. Another outdoor AR system [35] applies position tracking based on a real-
time kinematic global navigation satellite system (RTK GNSS) to register multiple maps
from an existing SLAM system. A vehicle localization solution for AR-based assisted
driving [36] uses odometry, camera recognized landmarks, and a map obtained with an
extended Kalman Filter. Future versions of the CultReal system will also provide outdoor
localization using GPS technology and other techniques identified in this paragraph.

Visual data can be fused with information from sensors to provide the accurate and fast
localization of users or sensors in IoT environments. Baskaran et al. [37] introduce an AR
interface for IoT devices using relational localization methods and metadata information
acquired with the sensors. LESAR [38] is another localization system for environmental
sensors which uses a smartphone camera with AR capabilities to measure the distances
between sensors and the information provided by each sensor via Bluetooth signals. The
current research uses beacons for an initial estimate of the user’s position and then provides
accurate localization based on visual data.

2.2. Augmented Reality in the Cultural Domain

Even though augmented reality can be applied to various fields, the current research
targets cultural spaces. Therefore, recent developments in the cultural domain are analyzed.

Intangible cultural heritage has recently become a popular topic [39] which comprises
both inherited and living practices, which are inclusive, representative, and community-
based. Zhao [40] proposes a digital protection method of intangible cultural heritage
through AR, by fusing cultural digital content with realistic scene videos. The same
problem is addressed in [41], where a natural user interface for engineers and scene
reconstruction based on frames acquired with a mobile camera and through object tracking,
are provided. GoFind! [42] is an AR system that allows the exploration of cultural heritage,
providing location-based querying in historic multimedia collections, and an AR user
interface that enables the overlay of photos onto the video stream of a mobile device. The
CultReal system also provides an intuitive workflow to place virtual content into a cultural
space and accurate localization functionalities to provide an immersive user experience.

A mobile AR teaching system that enables users to obtain information about historic
buildings in the context of the Mackay culture is described in [43]. Silva and Teixeira [44]
discuss the potential of developing an extended reality platform for immersive and inter-



Sensors 2021, 21, 6618 4 of 24

active experiences, and propose new ways of exploring cultural heritage in the Serralves
Museum and Coa Archeological Park. The “distant augmented reality concept” is in-
troduced in [45], where a geo-based AR application for exploring cultural heritage in
the Roman Baths of Ankara, using drones as video acquisition devices, is presented. A
top-view rendering of the cultural site acquired by a drone, is displayed on the visitor’s
mobile device. Alakhtar [46] provides an exploratory interview study regarding the use of
AR in enhancing the tourism experience at heritage sites and proposes an intuitive user
interface for exploring museum artifacts. A Microsoft HoloLens application for a small-
scale exhibition at a café which provides an interactive experience on top of a collection of
historic physical items demonstrates the usefulness of mixed reality [47]. Venigalla and
Chimalakonda [48] describe the design and development of an augmented reality museum
that provides relevant information and 3D views of artifacts. They also present a case study
of the Online British Museum. The functionalities of the CultReal system are inspired from
this analysis of existing AR solutions in the cultural domain. To cover a multitude of use
cases, the system allows location managers to define various types of multimedia elements
such as images, videos, or 3D objects, and to establish different event triggers (e.g., a video
is played when the visitor approaches a beacon, a 3D object is displayed when the system
detects a certain image in the real scene, a message is displayed after the user finishes
the quest of identifying several items in the real scene). All these use cases are detailed
in Section 5.

3. Proposed Method

Figure 1 illustrates the architecture of the CultReal system as a server-based content
management system (CMS) that stores multimedia content consisting of images, text,
videos, and 3D objects. The multimedia content is defined by a location manager through
the content definition component, which runs either on mobile or on desktop.

Figure 1. Deployment diagram of the CultReal System.

The proposed localization method requires a previous configuration of the space,
which is accomplished by the location manager, following a simple workflow. The location
configuration component produces image-based localization information for each room
or area of interest in a cultural space. This information is stored in the CMS, along with
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information about the beacons that are placed in those spaces. The image based-localization
data and the beacon information are further used by the computer vision-based localiza-
tion component and the beacon-based localization component, which run on the visitor’s
device. The augmented content display component renders the multimedia objects, super-
imposing them on the video flow acquired with the visitor’s smartphone camera based
on the estimated position and orientation provided by the localization components. The
computer vision-based localization service is intended for indoor use, but the beacons
can be employed in both indoor and outdoor scenarios as long as their range capabilities
are kept.

The accuracy of the ARCore localization technology was tested, considering HTC
Vive [49] as a reference, obtaining promising results, as described in the Evaluation section
and detailed in [50]. The main problem with this localization technology is the lack of a
persistent global reference over time. The ARCore coordinate system is always set according
to the position of the phone when starting the application (it practically resets when starting
the application). This issue has been partially addressed in the ARCore SDK by introducing
persistent cloud anchors [51]. Such an anchor is a 3D point in space which can be associated
with a 3D object for viewing. When restarting the application using the same or another
device, after a brief scan of the environment, that persistent anchor is positioned in the
place where it was created. Thus, these anchors can be seen as persistent landmarks over
time. The problem with these ARCore anchors is their short lifespan (24 h in older versions
of ARCore, up to one year in newer versions). For this reason, they cannot be used in a
system that aims to define multimedia content that is persistent over a very long period
(several years). Also, the ARCore localization technology requires an initialization step of
several seconds, when the user is tasked with performing scanning motions, to identify the
most important planes in the scene and a set of feature points. This does not pose a problem
for the location manager, but it would have a negative impact on the user experience of
the visitors. In conclusion, the only solution was to implement a custom localization
method which performs the initialization task for the ARCore technology, as detailed in
Section 3.2.2. In a configuration step, the location manager defines a persistent coordinate
system for each room or area of interest in the cultural space. The augmented content
associated with a room is defined relative to the room’s coordinate system, as specified by
the location manager. When a visitor enters a new room or area of interest in the cultural
space, the beacon-based localization service identifies the closest beacon to the phone and
downloads the image-based localization information associated with that beacon acquired
in the configuration stage. In the computer vision-based initialization step, an image
obtained from the visitor’s smartphone camera is matched with an image acquired in the
configuration stage. Based on corresponding pairs of feature points in the two matched
images, the position and orientation of the mobile device relative to the coordinate system
of that room is estimated. The computed position and orientation information are then
used as initialization data for the ARCore localization technology, acting as persistent cloud
anchors. In this manner, the augmented content is always displayed relative to the same
physical location, offering a time-persistent augmented reality experience.

The computer vision-based initialization method is based on the OpenCV library [52],
which provides a number of functions that can be used in extracting feature points, mapping
images, and estimating transformation matrices between images. We used the Perspective
n-Point (PnP) algorithm [53] to compute the position and orientation of the visitor’s device
relative to a coordinate system defined by a location manager. This algorithm requires a set
of 3D points acquired in the configuration stage, and their matching 2D points detected in
the localization stage, as further explained in Sections 3.1 and 3.2.2.

The CultReal system contains two mobile applications. The first one is intended to be
used by the location manager in the configuration stage. The second application runs on
the visitor’s device, performs the localization task and displays the augmented content.
The workflows of these applications are illustrated in Figure 2.
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Figure 2. Workflows of the CultReal applications: location manager application (top) and visitor
application (bottom).

3.1. The Location Manager’s Application

In the configuration step, for each room or area of interest in a cultural building, the
CMS is populated with localization information. The ARCore localization is applied to
obtain the position and orientation of the location manager’s device. The ARCore technol-
ogy uses simultaneous localization and mapping, as well as inertial data, to estimate the
position and orientation of the phone’s camera relative to a coordinate system which is de-
termined by the phone’s position when the application starts. To initialize the localization,
the manager is required to navigate the space, making scanning motions to determine the
most important planes of the room (floor, walls). For time-persistence and repeatability of
the localization, regardless of the position of the phone when starting the application, the
user (location manager) is asked to define a coordinate system for the room. The axes of
this system are computed based on three user-defined points. The first point represents
the origin of the coordinate system, while the second and the third points are used to
determine the Ox and Oz axes, respectively. The application builds an orthogonal system
whose xOz plane is superimposed on the floor.

Once the application has been initialized and a room coordinate system has been
defined, the location manager moves the phone’s camera around the room and points it
at all the walls and important elements, acquiring images of the space. During scanning,
the AR technology detects 3D feature points which represent prominent points located,
for example, at corners or in textured areas. The projections on these feature points on the
acquired images will be matched against 2D key points in the computer-vision localization
stage, as explained in Section 3.2.2. The algorithm for detecting 3D feature points using
the ARCore technology is not public. Therefore, we tested several 2D feature detectors, in-
cluding SIFT [54], SURF [55], and ORB [56], and observed that a relatively large percentage
of points obtained by projecting the ARCore 3D feature points (approximately 50%) had
similar coordinates with points produced with the SIFT algorithm. In comparison, the ORB
and SURF algorithms led to considerable smaller percentages (17 and 31%, respectively) of
common feature points. Therefore, for a consistent localization between the configuration
and the localization stages, the SIFT key points and descriptors for each acquired image
are also stored in the CMS.

During configuration, the beacons are also placed in the rooms or areas of interest,
and their IDs are stored in the CMS along with the image-based localization information.
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The steps of the location configuration workflow (with screenshots from a phone
running the configuration application at the Badea Cârt,an Museum [57], in Figure 3) are
summarized below:

1. The ARCore technology is initialized while the location manager performs scanning
motions. In this step, ARCore identifies a series of important planes, such as the floor
and the walls. The intrinsic parameters of the user’s phone are stored in the CMS.

2. A room coordinate system is computed based on three user-defined points located on
the floor plane.

3. During the scanning, 3D feature points are determined by ARCore. The location
manager acquires images of the space. For each image, the position and orientation
of the user’s phone, as determined by ARCore, are saved in the CMS.

4. When the scanning is finalized, each image is processed with the SIFT algorithm to
produce key points and descriptors, which are saved in the CMS.

5. A beacon is placed in the room/area of interest, and its ID is stored in the CMS.

Figure 3. Workflow of the location manager application displaying the guidelines and several
prominent planes: the floor and several planar surfaces of a bed (a), displaying detected feature
points (b), displaying the user-defined coordinate system (c), and displaying a message that a photo
has been taken (d).

3.2. The Visitor’s Application

The visitor’s application runs two localization services, one that computes an approx-
imate location based on beacons, and one that employs computer vision to accurately
estimate the position and orientation of the visitor’s phone. When the visitor changes
rooms, the new room’s beacon is identified, the CMS content associated with the beacon is
downloaded, and the computer vision-based localization initialization step is performed.
The aim of this step is to initialize the ARCore localization system with the origin of the coor-
dinate system associated with the room. After that, the computer vision-based localization
component can use the phone’s position and orientation given by ARCore. The workflow
of this application, illustrated in the bottom image of Figure 2, is summarized below:

1. The beacon-based localization component identifies the beacon which is closest to
the visitor’s phone. This approximate localization greatly reduces the search space of
the computer vision component. Only the images associated with the position of the
current beacon are sent from the CMS to the computer vision component.

2. In the computer-vision based initialization step, the SIFT feature points and descrip-
tors from the current image acquired with the visitor’s phone are extracted. Then, the
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image processing module matches the current frame of the phone’s video camera with
the most similar image from the CMS based on the corresponding feature points and
descriptors in the two images. Using the information associated with the matching
image, the current position and orientation of the visitor’s phone are estimated. This
information is then used to initialize the ARCore localization.

3. The multimedia content is displayed, superimposed naturally over the video stream
of the phone, and associated with the phone’s position and orientation.

3.2.1. Beacon-Based Localization

The beacon-based localization component uses an Android library that returns a list
of nearby beacons. Within the CultReal system, iB004N beacons (Figure 4) were used,
configured to send information via the Eddystone protocol [58]. Beacons are identified by
a namespaceId and an instanceId. In practice, the namespaceId is the same for all sensors—so
that the beacons can be differentiated from those exposed by other entities. The instanceId
is unique for each beacon. Other settings that can be made are related to broadcast power,
range, broadcast interval and received signal strength.

Figure 4. iB004N beacons used for beacon-based localization.

The beacon-based localization library scans, at certain time intervals, the signals
sent by the nearby beacons and returns a list of those detected, in ascending order of
distance from the smartphone. The core of the library is a service, an Android component
that runs in the background. The beacon-based localization library exposes two main
methods: startService() and stopService(). The result of the scan is sent to the computer
vision component using the broadcast mechanism through which messages are sent or
received from the operating system or between Android applications.

The beacon-based localization component is implemented using the Android Beacon
Library [59], version 2.16.2. The library’s application programming interface (API) provides
approximate information about the distance to the beacons (in meters) based on the power
of the Bluetooth signal detected by the smartphone. These values are influenced by other
factors and may vary at different times. The purpose of the application is to detect the
nearest beacon and not the exact distance to it. At the end of each scan, the component
outputs a list of beacons identified by namespaceId, instanceId and distance. In addition to
this information, image-based localization data regarding the room in which each beacon
is located is also required. This data, stored in the CultReal CMS, is exposed through a web
service that the library calls at a given time, and then is saved locally on the visitor’s mobile
device to avoid multiple calls. For a reliable end result, a mechanism is implemented that
keeps a history of the closest beacons scanned in the last seconds and the distance to them.
If the result of a scan returned by the Android Beacon Library is null or does not contain
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the beacons that were in very close proximity the previous seconds (not even at a great
distance), the local history is used.

3.2.2. Computer Vision-Based Initialization Step

In the initialization step, the computer vision-based localization component matches
an image acquired with the visitor’s phone against the most similar image in the CMS. It
also computes the corresponding feature points between the matched images and applies
the PnP algorithm to estimate the position and orientation of the visitor’s device relative to
the coordinate system defined by the location manager.

As previously mentioned, in the location configuration stage, 3D ARCore feature
points are stored in the CMS. For all the images acquired by the location manager, SIFT key
points and descriptors are also saved in the CMS. In the actual initialization stage, the SIFT
detector is applied on the current frame acquired with the visitor’s phone, producing SIFT
key points and descriptors.

The image mapping algorithm determines the image in the CMS that most closely
resembles the image corresponding to the current frame acquired from the visitor’s phone,
based on the previously computed descriptors. For each image in the CMS, the mapping
algorithm identifies the two best matches for each descriptor from the visitor’s image,
with a k-nearest neighbor strategy and the fast library for approximate nearest neighbors
(FLANN) descriptor matcher [60]. We performed a Lowe’s test [61] on these matches, using
a ratio threshold of 0.75. This value was chosen as to find a balance between eliminating
false matches while not discarding correct matches, following the guidelines from the
OpenCV documentation and from Lowe’s work. The image from the CMS with the most
passed tests represents the match for the image acquired with the visitor’s phone.

Next, the PnP algorithm [53] estimates the position and orientation of the visitor’s
camera relative to the coordinate system of the image from the CMS that most closely
resembles the image acquired with the visitor’s phone. The PnP algorithm calculates a
transformation matrix for the video camera Cb of an image Ib (Figure 5) relative to the
coordinate system of the video camera Ca of another image Ia, if the following elements
are known:

• The intrinsic parameters of the two cameras, Ca and Cb.
• A series of 3D points in the coordinate system of camera Ca.
• Aheir corresponding 2D points in image Ib.

Figure 5. Estimation of transformation matrices between images Ib and Ia.

Thus, after identifying in the CMS the image (Ia) that most closely resembles the
image acquired with the visitor’s phone (Ib), 3D points corresponding to image Ia and
the matching 2D feature points corresponding to image Ib need to be identified. When
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running the PnP algorithm, only the feature points that are detected both by ARCore
and SIFT are considered. Therefore, after identifying the image from the CMS that has
the most similarities with the visitor’s image, the set of SIFT key points is filtered. Only
the points that correspond to the feature points that were detected both by ARCore and
SIFT are selected. To identify these correspondences, the ARCore 3D feature points are
projected on the image from the CMS, producing 2D feature points (henceforth, ARCore
2D feature points).

The projections are computed based on the 3D coordinates of the points, the position
and orientation of the phone’s camera for the image, and the intrinsic parameters of
the camera. A maximum distance threshold of 10 pixels in the image space is applied
to consider a match between a 2D ARCore feature point and a SIFT key point (SIFT
plus ARCore).

The PnP localization algorithm is sensitive to correspondence errors. For this reason, it
is very important that the pairs of matching feature points in the two images, Ia and Ib, are
detected correctly. We experimented with two matching algorithms provided by OpenCV,
FLANN [62], and brute force matcher (BFMatcher) [63]. These algorithms were compared
regarding accuracy and computing time, as detailed in Section 4.3. The BFMatcher detects
fewer pairs of feature points, but also fewer erroneous correspondences, as illustrated
in Figure 6. Even though FLANN algorithm is considerably faster than BFMatcher, the
accuracy of the localization represents a more important metric. Therefore, the BFMatcher
algorithm was selected, and to further increase the accuracy of the localization method,
the results were filtered as explained below. Running the BFMatcher on two images, a
set of corresponding feature points is obtained. For the two images placed side by side
(as in Figure 6), for each pair of corresponding feature points, the direction of the vector
connecting the two feature points is computed in image space. We also determined the
average direction of the vectors connecting pairs of feature points and we eliminated the
outliers, i.e., the pairs whose direction differed significantly from the average direction. A
threshold of approximately 30 degrees was used for the direction error, corresponding to a
cosine of 0.85, to identify the outliers.

Figure 6. Correspondences detected with matching algorithms: results of the FLANN algorithm
(top) and of the BFMatcher (bottom).

The PnP algorithm can determine the position and orientation of the visitor’s camera
(Cb) relative to the coordinate system of the video camera (Ca) used to acquire the image
in the CMS. Since all images in the CMS are labeled with position and orientation data
relative to the coordinate system of the current room or area (as defined by the location
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manager in the configuration stage), the position and orientation of the visitor’s camera in
that coordinate system can also be determined.

The steps of the computer vision-based initialization workflow, when the visitor enters
a new room, are summarized below:

1. An image Ib is acquired with the visitor’s smartphone camera.
2. The SIFT detector is applied on image Ib, identifying a set of key points, Pb_SIFT, and a

set of descriptors, Db_SIFT.
3. The image matching step identifies, in the CMS, the most similar image to Ib, namely Ia,

by running the OpenCV FLANN-based descriptor matcher with a k-nearest neighbor
strategy on the descriptors from Db_SIFT and all the sets of descriptors from the images
in the CMS.

4. The set of 3D feature points, PARCore, extracted with ARCore in the configuration
stage, is retrieved from the CMS. Next, these 3D points are projected on image Ia,
producing 2D ARCore feature points. For the next steps, only the 2D feature points
from Pa_SIFT, corresponding to the projections of the 3D points from PARCore on image
Ia, are considered (producing the set Pa_SIFT+ARCORE).

5. The BFMatcher is run, to determine the set of feature points from Ia, Pa_SIFT+ARCORE
corresponding to the feature points from Pb_SIFT. We filter the results and remove the
outliers, i.e., the matching pairs whose direction deviates from the average direction.
The best 20 matches are selected for the PnP algorithm. The final matched features are
stored in the following sets: the set of final feature points in image Ib, Pb = {Pxb}, the
set of equivalent feature points in image Ia, Pa = {Pxa}, and the set of 3D corresponding
feature points, P = {Px} (as illustrated in Figure 5).

6. The PnP algorithm is run with the following parameters: the intrinsic parameters
of the cameras Ca and Cb, the set of selected 3D feature points Px in the coordinate
system of camera Ca, and their corresponding 2D feature points Pxb, in image Ib.
The PnP algorithm outputs the transformation matrices of camera Cb relative to the
coordinate system of camera Ca.

7. The position and orientation of camera Cb are computed in the coordinate system of
the current room (defined by the location manager in the configuration stage). This
information is used as initialization data for ARCore localization.

The Evaluation section presents the accuracy of the PnP algorithm, with either FLANN
or BFMatcher in the image matching step. Also, computing times are given for various
tasks of the localization, with or without the proposed filtering method in the image
matching step.

The proposed computer vision-based initialization algorithm can be time consuming,
especially on medium-level smartphones. For quick response in the visitor’s application,
we exploit the speed and accuracy of the ARCore localization technology. Therefore, the
proposed fused localization is applied only once, when the visitor enters a new room.
The estimated position and orientation of the visitor’s smartphone, computed with the
PnP algorithm, acts like a persistent cloud anchor, being used as initialization data for
the ARCore localization technology. After this initialization step, the ARCore technology
performs the localization task, but relative to the room’s coordinate system defined by the
location manager, and not relative to the default ARCore coordinate system. The proposed
computer-vision based localization runs on a separate thread, without blocking the video
stream of the smartphone’s camera.

The computer-vision localization component is very useful when placing multimedia
content bound to the 3D coordinate system of a certain location, but not necessarily to a
real object in that location. Another use case, when a virtual object is, for example, bound
to a painting or a poster from the real world, can be better handled with the Augmented
Images API [64] provided by ARCore, which stores 2D features of an image provided by a
location manager, and, at runtime, searches for these features on flat surfaces in the user’s
environment. When identifying the features, it displays the augmented content that is
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bound to that image. This functionality was also integrated in the CultReal framework, to
cover all possible use cases when deploying the solution in a new cultural setting.

3.2.3. Augmented Content Display

The augmented content display component renders the multimedia objects in the 3D
coordinate system defined by the location manager and places the virtual camera according
to the estimated position and orientation of the visitor’s smartphone camera. Thus, the 3D
content is integrated seamlessly in the real world, being displayed over the video stream
provided by the visitor’s phone camera. Besides 3D models, texts, images, and videos
positioned relative to a room’s 3D coordinate system, the module can also render 2D text
and videos in the image space.

4. Evaluation

Several evaluation tasks were performed to assess the accuracy of the ARCore local-
ization technology and that of the proposed localization solution.

4.1. Beacon-Based Localization

The accuracy of beacon-based localization was evaluated in two scenarios: static and
dynamic one. We used a measuring tape to establish the positions of two beacons located
10 m apart. Also, on the distance between the two beacons, checkpoints were defined every
1 m, as illustrated in Figure 7.

Figure 7. Evaluation of the beacon-based localization: static scenario (top) and dynamic scenario (bottom).

In the static scenario, a mobile device running the beacon-based localization service
was placed by a user at each checkpoint, and the closest beacon identified by the localization
component was recorded. To ensure independent readings, the application was turned off
and on again at each checkpoint. The application behaved as expected for the 0, 1, 2, 3, 7, 8,
9 and 10 m checkpoints: for the checkpoints in the 0–3 m interval, the closest identified
beacon was Beacon 1, while for the checkpoints in the 7–10 m interval, the closest identified
beacon was Beacon 2. However, for the checkpoints 4, 5, and 6 m, the readings oscillated
between the two beacons.

In the dynamic scenario, the user holding the mobile device walked at different speeds
from Beacon 1 to Beacon 2, as depicted in Figure 7 (bottom). Continuously reading the
output of the localization service, we identified the distance from Beacon 1 when the output
representing the closest identified beacon was switched from Beacon 1 to Beacon 2. For a
slow user speed (0.17 m/s), the switch happened at 4.82 m distance from Beacon 1. For
a normal user speed (0.23 m/s), the switch happened at 5 m, and for a fast user speed
(0.33 m/s), the switch happened 6.48 m from Beacon 1.

These experiments reveal that the readings of the beacon-based localization service
have a relatively large localization error (several meters) and are influenced by the speed
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of the user, due to delays in the Bluetooth communication. However, the drawbacks
of beacon-based localization do not pose a problem for the current solution, since this
technology is used only to obtain an approximate position of the user’s device.

4.2. ARCore Localization Technology Compared with HTC Vive

The HTC Vive system is very popular among virtual reality systems, partially due to
its tracking technology which provides accurate localization of the head mounted display
(HMD) device and of other components such as controllers and trackers [65–67]. HTC
Vive was used as a reference system for assessing the accuracy of the ARCore localization
technology. We paired a smartphone running an ARCore application and an HTC Vive
tracker. The evaluation system consists of four applications:

• An HTC Vive management application which sends data about the position and ori-
entation of the Vive tracker, as well as timestamp information, to a central application.

• An ARCore management application which sends data regarding the position and
orientation of the smartphone (estimated with the ARCore technology), as well as
timestamp information, to a central application.

• A Unity central application which receives position and orientation data for the Vive
tracker and for the smartphone, and displays them in a common coordinate system

• An evaluation application that displays graphics with the trajectories and orientations
provided by the HTC Vive and the ARCore applications, allowing the visualization of
the position and orientation errors of the ARCore localization technology, relative to
the HTC reference system.

The ARCore localization was tested on a Samsung Galaxy S7 Edge and on a Samsung
Galaxy S9 Plus, on recordings ranging from 16 s to a couple of minutes. Overall, we
obtained an average position error of 0.16 m and an average orientation error of 7.92 degrees,
demonstrating the high accuracy of the ARCore localization technology for small-scale
settings. More details about the experiments and the test results are presented in [50].

4.3. The Proposed Computer Vision-Based Localization in Virtual Environments

The image processing algorithms described in Section 3.2.2, i.e., the key points and
descriptors extraction with SIFT, the image matching, the feature matching, and the estima-
tion of the position and orientation with PnP, can introduce errors when integrated and
working with real data. Thus, we decided to evaluate the localization system in stages,
using synthetic data.

One possible identified problem was the accuracy of the OpenCV PnP algorithm, as
well as the provided input, i.e., the intrinsic parameters of the cameras, the 3D feature
points, and their projections on the images. To test the proposed localization algorithm, we
created a virtual environment in Unity that contained three video cameras and a series of 3D
feature points. The first virtual video camera, VCa, is the reference camera, corresponding
to the position and orientation from an annotated image in the CMS, in the real system.
The second video camera, VCb_gt, represents the ground truth camera, corresponding to the
actual position and orientation of the visitor’s device in the real system. The third video
camera, VCb, represents the camera for which we compute the transformation relative to
VCa. This camera corresponds to the estimated position and orientation of the visitor’s
device in the real system, computed with the PnP algorithm. Through a user interface, the
positions and orientations of the VCa and VCb_gt video cameras, as well as the positions of
the 3D feature points in the scene, can be modified.

For the VCa camera, the positions of the 3D feature points are given. The 3D points
are projected on the image corresponding to VCb_gt, based on the intrinsic parameters of
that camera, obtaining 2D feature points. The same 2D feature points are considered for
the VCb video camera. The PnP algorithm computes a transformation matrix of a camera,
VCb, relative to another camera, VCa, based on the 3D points associated with VCa and the
corresponding projected 2D feature points associated with VCb. The differences between
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the positions and orientations of cameras VCb and VCb_gt represent the estimation error of
our localization algorithm.

Table 1 shows the position and orientation of camera VCb_gt (ground truth) and the
position and orientation of camera VCb (the one calculated using the PnP algorithm) for
five configurations, as well as the localization error. The position error was computed as
the distance between the position of camera VCb_gt and the position of camera VCb. The
orientation error was computed as the angle (in degrees) between the orientation of camera
VCb_gt and the orientation of camera VCb, using Unity’s Quaternion.Angle function.

Table 1. Comparison between the ground truth (represented by the VCb_gt camera) and the positions and orientations
computed with PnP (VCb camera).

Entry Camera
Position (Meters) Orientation (Quaternions) Position

Error
(Meters)

Orientation
Error

(Degrees)x y z x y z w

1
VCb_gt 6.66 −1.31 4.8 −0.0563 −0.3555 −0.1061 0.9269 - -
VCb 6.6919 −1.3123 4.7744 −0.0559 −0.3556 −0.1061 0.9268 0.0409 0.0001

2
VCb_gt 7.3939 −2.6273 0.6442 −0.1546 0.9357 0.176 −0.263
VCb 7.4062 −2.6357 0.6588 −0.1547 0.9356 0.1766 −0.263 0.0208 0.0001

3
VCb_gt −5.5686 0.66349 2.3916 0.2158 −0.954 0.0632 −0.198
VCb −5.5721 0.6647 2.4197 −0.2157 0.9541 −0.0633 0.197 0.0283 0.0685

4
VCb_gt 0.7498 −1.0597 −6.2537 0.0731 0.4312 0.1274 −0.8902
VCb 0.7784 −1.0615 −6.2734 −0.0726 −0.4315 −0.1274 0.8901 0.0347 0.0884

5
VCb_gt −10.882 0.9963 −7.3946 0.0496 −0.3465 0.0976 −0.931
VCb −10.893 1.0065 −7.4233 −0.0486 0.3461 −0.0973 0.931 0.0323 0.1186

µ VCb - - - - - - - 0.0314 0.0551

Overall, an average position error of 0.0314 m and an average orientation error of
0.0551 degrees were obtained. Even though these results are very promising, they reflect
only partially the efficiency of the localization method, since the evaluation was performed
on virtual data. To further assess the accuracy of the proposed method, the localization
application was run on real data.

4.4. The Proposed Computer Vision-Based Localization on Real Images

To test the proposed localization algorithm on real data, the ARCore localization
technology was chosen as reference, providing the ground truth information. The steps of
the evaluation methodology are presented below:

1. The location configuration application (described in Section 3.1) is run, and an im-
age RIa is acquired. The position and orientation of the camera, given by ARCore,
are saved.

2. An image RIb is then acquired, for which the position and orientation, computed with
the ARCore localization technology, are also saved (representing the ground truth).

3. The room is scanned to determine ARCore 3D feature points.
4. After completing the scan, the 3D feature points are projected on image RIa, obtaining

a series of 2D ARCore feature points.
5. The SIFT detector is run on image RIa, obtaining a set of SIFT key points and de-

scriptors. In the image matching step, we use all the SIFT descriptors extracted from
image RIa. For the PnP algorithm, we use only those points that are detected both by
ARCore (points that correspond to projections of the ARCore 3D feature points) and
by SIFT.

6. The SIFT detector is run on image RIb, obtaining a series of 2D feature points.
7. The image matching step (FLANN or BFMatcher) identifies pairs of 2D feature points

from images RIa and RIb.
8. The PnP algorithm computes the position and orientation of the video camera corre-

sponding to image RIb, based on the known position and orientation of RIa, the 3D
feature points associated with image RIa, and the corresponding 2D feature points
associated to RIb.
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9. The results of the PnP algorithm are compared with the ground truth provided
by ARCore.

The PnP-based localization algorithm was tested on a series of real images according
to the sequence of steps described above. While Table 2 presents the position and orien-
tation accuracy, Table 3 illustrates the running times for various steps of the computer
vision-based localization method, on the same images. Table 2 shows the positions and
orientations computed with the PnP algorithm compared to the ground truth, determined
with the ARCore localization technology. This table also presents a comparison between
the results of the localization, using different feature matching algorithms, i.e., FLANN and
BFMatcher. For the BFMatcher we show the results of the localization with and without
our proposed filtering.

Table 2. Differences between ground truth, provided by ARCore, and estimated positions and orientations, obtained by
running the PnP algorithm with FLANN, respectively with BFMatcher, with and without filtering.

Entry Localization Method
Position (Meters) Orientation (Quaternions) Position

Error
(Meters)

Orientation
Error

(Degrees)x y z x y z w

1

ARCore −0.1 −1 −0.8 −0.1 −0.1 0 1 - -
PnP + FLANN −0.08 −1 −0.79 0.05 −0.14 −0.01 0.98 0.01 10.15

PnP + BFMatcher −0.1 −1 −0.8 0.06 −0.14 −0.01 0.98 0 11.21
PnP + BFMatcher + filter −0.08 −1.01 −0.78 0.06 −0.14 −0.01 0.98 0.02 11.21

2

ARCore 1 1 2.8 0.9 0 −0.4 0 - -
PnP + FLANN 1.04 1.02 2.76 −0.88 0 0.4 −0.01 0.06 21.37

PnP + BFMatcher 1 1 2.8 −0.89 0 0.44 −0.01 0 20.54
PnP + BFMatcher + filter 1 1 2.81 −0.89 0 0.44 −0.01 0.03 20.54

3

ARCore 0.1 −1 −0.1 −0.2 −0.2 0 1 - -
PnP + FLANN 0.13 −1 −0.18 0.16 −0.26 −0.01 0.95 0.08 27.27

PnP + BFMatcher 0.1 −1 −0.1 0.15 −0.26 −0.01 0.95 0 26.68
PnP + BFMatcher + filter 0.1 −0.99 −0.11 0.15 −0.26 −0.01 0.95 0.01 26.68

4

ARCore −0.3 0.1 −1 −0.1 0.4 0 0.9 - -
PnP + FLANN 2.96 −0.51 2.26 −0.7 0.66 0.07 −0.21 4.65 163.5

PnP + BFMatcher −0.3 0.1 −1 0.09 0.4 0 0.9 0 27.91
PnP + BFMatcher + filter −0.3 0.1 −1 0.09 0.4 0 0.9 0.08 27.91

5

ARCore 0.1 −0.9 −1 −0.2 0 0 1 - -
PnP + FLANN 0.08 −0.9 −1.01 0.18 0 0 0.98 0.01 38.18

PnP + BFMatcher 0.1 −0.9 −1 0.17 0 −0.01 0.98 0 36.71
PnP + BFMatcher + filter 0.12 −0.88 −1.05 0.17 0 −0.01 0.98 0.06 36.71

6

ARCore 0.2 0.9 0.8 1 0 −0.3 0 - -
PnP + FLANN 0.16 0.8 0.78 −0.98 0 0.18 −0.01 0.05 0.001

PnP + BFMatcher 0.17 0.89 0.8 −0.98 0 0.19 0 0.02 0.001
PnP + BFMatcher + filter 0.2 0.9 0.8 −0.98 0 0.19 0 0 0.001

7

ARCore −0.4 −1.1 −0.9 −0.1 0.2 0 1 - -
PnP + FLANN −0.42 −1.09 −0.88 0.11 0.19 0 0.97 0.03 0.001

PnP + BFMatcher −0.33 −1.12 −0.87 0.11 0.18 −0.01 0.97 0.07 0.001
PnP + BFMatcher + filter −0.4 −1.1 −0.9 0.11 0.18 −0.01 0.97 0 0.001

8

ARCore −1.3 1 1.2 1 0 0.2 0.1 - -
PnP + FLANN −1.38 1.19 1.31 −0.97 −0.01 −0.2 0.12 0.24 5.14

PnP + BFMatcher −1.37 1.19 1.22 −0.97 0 −0.2 0.12 0.21 6.86
PnP + BFMatcher + filter −1.3 1 1.2 −0.97 0 −0.2 0.12 0 6.86

9

ARCore −0.5 −0.9 −2.6 −0.1 0 0 1 - -
PnP + FLANN −0.4 −0.94 −2.66 0.08 −0.02 −0.02 0.99 0.12 18.1

PnP + BFMatcher −0.39 −1.04 −2.7 0.09 −0.01 −0.02 0.99 0.2 20.04
PnP + BFMatcher + filter −0.5 −0.9 −2.6 0.09 −0.01 −0.02 0.99 0 20.04

10

ARCore −2 −1.1 0.2 −0.1 0.5 0.1 0.9 - -
PnP + FLANN −2.22 −1.49 0.02 0.14 0.47 −0.07 0.86 0.48 11.9

PnP + BFMatcher −2.01 −1.1 0.18 0.08 0.49 −0.1 0.86 0.02 0.001
PnP + BFMatcher + filter −2 −1.1 0.2 0.08 0.49 −0.1 0.86 0 0.001

PnP + FLANN - - - - - - - 0.573 29.5612
µ PnP + BFMatcher - - - - - - - 0.052 14.995

PnP + BFMatcher + filter - - - - - - - 0.02 14.995
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Table 3. The computing times of the feature matching algorithms, of the SIFT detector, of the selection of SIFT plus ARCore
feature points and of the PnP algorithm. The number of SIFT key-points, the number of SIFT plus ARCore points and the
final number of matched feature points used in the PnP algorithm, are also provided.

Entry Feature Matching
Method

SIFT
Time (ms)

SIFT Key
Points

SIFT +
ARCore

Time (ms)

SIFT +
ARCore
Points

Feature
Matching
Time (ms)

Number of
Matched

Points

PnP Time
(ms)

1
FLANN

520.47 373 631.17 287
29.51 35 2.13

BFMatcher 174.47 19 3.65
BFMatcher + filter 237.07 19 0.85

2
FLANN

646.52 728 614.92 340
35.6 76 2.71

BFMatcher 289.1 20 2.14
BFMatcher + filter 531.11 20 0.92

3
FLANN

646.81 751 727.81 438
39 89 3.04

BFMatcher 296.99 20 2.17
BFMatcher + filter 588.48 20 9.01

4
FLANN

500 393 835.2 274
30.25 70 1.52

BFMatcher 100.52 20 2.1
BFMatcher + filter 208.15 20 0.97

5
FLANN

565.36 390 573.11 214
28.01 60 1.52

BFMatcher 104.73 20 1.98
BFMatcher + filter 147.52 20 0.88

6
FLANN

631.42 675 628.43 232
40 58 13.8

BFMatcher 374.5 20 1.02
BFMatcher + filter 197.75 20 2.02

7
FLANN

462.46 275 514.04 122
19.12 22 2.61

BFMatcher 97.2 19 1.01
BFMatcher + filter 27.47 19 2.53

8
FLANN

504.2 403 624.71 230
17.28 55 2.53

BFMatcher 149.51 20 0.97
BFMatcher + filter 77.48 20 2.24

9
FLANN

481.82 328 617.19 272
19.34 46 2.23

BFMatcher 177.72 20 1.19
BFMatcher + filter 92.73 20 2.43

10
FLANN

493.99 343 572.32 168
25.47 44 1.2

BFMatcher 104.86 20 0.93
BFMatcher + filter 69.03 20 2.06

FLANN
545.305 466 633.89 258

28.358 56 3.329
µ BFMatcher 186.96 20 1.716

BFMatcher + filter 217.679 20 2.391

Overall, the localization method based on the FLANN feature matcher obtained a
position error of 0.573 m and an orientation error of 29.561 degrees. Both methods based
on BFMatcher obtained similar orientation errors (approx. 15 degrees), but the filtering of
the BFMatcher reduced the position error by 0.032 m. It should be noted that even though
FLANN produces relatively accurate results, it is not as stable as BFMatcher. This can be
observed in Table 2, entry 4, where the results of the PnP algorithm with input from the
FLANN matcher deviate greatly from the ground truth.

Table 3 presents the computing time of the SIFT detector, the number of detected SIFT
key points, the computing times of the feature matching algorithms (FLANN, BFMatcher
with and without the proposed filtering), and the final number of matched feature points,
used as input for the PnP algorithm. We also provide the running time of PnP. All the tests
were made on a Samsung S9 Edge smartphone. Additionally, we include the computing
time for filtering the 2D feature points, selecting only those that are detected both by SIFT
and by ARCore, and the number of SIFT plus ARCore points. It must be pointed out that
this step can be performed either in the localization stage, only for the image from the CMS
that most closely resembles the visitor’s image, or in the configuration stage, but for all the
images from the CMS acquired for a certain room.
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As previously mentioned, the FLANN matching algorithm is faster than the variations
of the BFMatcher, as can also be observed in Table 3. Comparing the average computing
times for the FLANN based approach and for the feature matching using BFMatcher
and filtering, we obtained a difference of approximately 188 ms. However, considering
the importance of the accuracy in estimating the position and orientation of the visitor’s
smartphone, we decided to use BFMatcher with the proposed filtering in the feature
matching step. On average, the chosen computer vision-based initialization step runs
in approximately 1.4 s if the selection of ARCore plus SIFT feature points are performed
in the localization stage, and in approximately 0.76 s if this selection is performed in
the configuration stage. It should be emphasized again that this computer-vision based
localization step is applied only once, as an initialization step, when the visitor enters a
new room. Then, the ARCore localization technology can be used. Therefore, the overall
computing time of the initialization step does not represent an impediment.

5. Pilot Study

The CultReal solution was deployed in four cultural settings: the Museum of the
University POLITEHNICA of Bucharest (UPB) [68], the UPB Library [69], the Badea Cârt,an
Museum [57], and the Gong Theatre [70]. We tested multiple scenarios to assess the
potential of deploying the system in any new cultural location and to cover as many use
cases as possible, as shown in the Supplementary Materials.

5.1. Beacon-Based Localization

A simple use case is to detect the room (or section of a hall) where the visitor is
positioned and to render general information about that room. This use case is covered by
the beacon-based localization component. Several beacons are placed in the cultural space,
one beacon in each room/area of interest. When the beacon-based localization component
detects the approximate position of the visitor’s smartphone, the application downloads
on the mobile the general content related to that room or section. Then, the augmented
content display component renders the content, which consists of a text or a video, in
image space, without considering the actual position and orientation of the phone relative
to the 3D room’s coordinate system, but only the presence of the phone in that room.

This use case was tested both indoors and outdoors. Figure 8 illustrates such a scenario,
where a beacon was placed in a section of the UPB Museum, dedicated to the Endless
Column [71], which was designed by the Romanian sculptor Constantin Brâncus, i. When
the visitor is nearing that beacon, a video with general information about the column is
displayed on the phone’s screen.

5.2. Augmented Images Functionality

The Augmented Images API provided by ARCore searches, in the real world, for
images placed on flat surfaces and displays augmented content that is bound to those
images. We designed several scenarios to test this functionality. Augmented images can be
used for quests, to display guiding cues, or to simply render augmented content related to
an image placed on a flat surface.

Quests are simple, yet entertaining elements that provide a rich user experience for
the visitors of a cultural space. A quest was designed where the visitor was tasked to find
several photos/paintings of personalities or other important items from a museum. When
the phone application identifies in the real world a photo or a painting from the list, it
displays a text announcing which of the tasks is complete. When all the items have been
found, another text is displayed, informing the visitor about the successful completion of
the quest.

Guiding cues are also simple, yet very useful features in an augmented cultural space.
One possible scenario is to bind these guiding cues to pictures that represent logos or
descriptions of locations of interest from the real world. Such a scenario was implemented
in the grand hall at the UPB Museum, where guiding cues were displayed as arrows
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pointing to various sections of the hall, each section representing a faculty from UPB. For
each faculty logo that was identified by the Augmented Images API, two arrows pointing
at the nearby faculty booths were displayed on the visitor’s phone screen.

Figure 8. Piloting the beacon-based localization: a screenshot from an external video, filming the
real scene and the visitor’s phone (left) and a screen capture of the phone, displaying a video with
general information about that room, in the center, superimposed on the video stream from the
phone’s camera (right).

As previously mentioned, the augmented images functionality can be also used to
display general multimedia content that is bound to a specific picture, poster, or painting.
Several scenarios were tested, in which videos, 3D objects or images were displayed when
identifying posters or book covers. Figure 9 illustrates a scenario where the application
displays the table of contents for a book at the UPB Library.

Figure 9. Piloting the augmented images functionality: a screen capture of the visitor’s phone,
displaying the video stream acquired with the camera before identifying the book cover (left), a
screenshot from an external video filming the real scene, and the visitor’s phone (middle), and a
screen capture of the phone displaying the virtual image with the book’s table of contents superim-
posed on the video stream from the phone’s camera (right).

Figure 10 showcases a scenario where the application displays a video promoting a
cultural event at the Gong Theatre, connected to the physical logo of the theater.
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Figure 10. Piloting the augmented images functionality: a screen capture of the visitor’s phone,
displaying the video stream acquired with the camera, before identifying the logo of the Gong
Theatre (left), and a screen capture of the phone displaying the video promoting a cultural event
superimposed on the video stream from the phone’s camera (right).

5.3. The Computer Vision-Based Localization

The computer vision-based localization component estimates the position and orienta-
tion of the visitor’s phone relative to a room’s coordinate system, defined by the location
manager. If multimedia content is placed relative to that coordinate system, then the aug-
mented display component renders this content, then superimposes it on the video stream
acquired with the visitor’s smartphone camera. Several scenarios were tested, populating
the CMS with content associated with rooms or areas of interest from the cultural spaces.
Each 3D image, text, video, or mesh stored in the CMS was assigned to a specific area and
placed relative to the coordinate system defined for that area, based on a transformation
matrix containing translation, rotation, and scaling.

Figure 11 illustrates three of these scenarios. The image on the left shows a screen
capture of the visitor’s phone displaying two virtual images of chemistry experiments,
placed in the 3D coordinate system associated with a section of the UPB museum. In the
middle, a 3D model of a plane is assigned to another section of the UPB museum. The
image on the right shows a 3D text superimposed on the video stream acquired with the
visitor’s phone camera, at the UPB library.

Figure 11. Piloting the computer vision-based localization: screen captures of the visitor’s phone, dis-
playing two virtual images (left), a 3D model of a plane (middle), 3D text placed on the floor (right).



Sensors 2021, 21, 6618 20 of 24

Another very important use case was to run the application with multiple users in
the same augmented space. Figure 12 showcases this scenario, where a real space was
augmented with a 3D virtual model. Two different smartphones, a Google Pixel 2 and a
Google Pixel 3, running the CultReal solution, display the same 3D model according to their
position and orientation, as computed by the computer vision-based localization component.

Figure 12. Piloting the computer vision-based localization with multiple users in a common aug-
mented space: a screen capture of the first phone, displaying a 3D model of a bamboo (left), a screen
capture of the second phone, displaying the same 3D model (middle), a screenshot from an external
video filming the real scene and the two phones of the visitors (right).

6. Discussions and Conclusions

Beacon-based localization, the augmented images functionality, and the computer
vision-based localization were tested both individually and combined in various scenarios.
The pilot implementations were successful, but they uncovered several limitations that
should be addressed before starting a more elaborated user testing process.

One problem was that the Bluetooth communication between the smartphone and
the beacons was occasionally unstable. Also, the readings of the distances between the
beacons and the visitor’s smartphone were sometimes delayed. This poses a problem
when having multiple beacons in a cultural space, since the most proximal beacon is not
recognized instantly as the visitor moves, introducing a lag in downloading the multimedia
content and the annotated images from the CMS, which are necessary for the computer
vision-based localization component. To solve this, we intend to acquire additional beacons
from various manufacturers, and to select the ones that offer stable and fast communication
with the smartphones. Also, we plan to start researching and debugging the Bluetooth
connection stability in order to identify if the current problems are the result of the protocol,
limitations of the hardware, or the speed of movement.

Another observed limitation was the difference between environments when config-
uring the space and when navigating as a visitor. These differences may be caused by
the lighting conditions, shadows, camera angle, or by changes in the setting that may be
introduced, for example, by rearranging the furniture. Lighting differences may influence
the image matching algorithms, thus having a negative impact on the computer vision-
based localization method. One possible solution is to provide multiple configurations
of the same room by acquiring images annotated with position and orientation data at
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different moments of the day, in various lighting conditions. If there are major changes in
the placement of objects in a room, the location configuration step must be redone.

During the pilot implementations, possible issues regarding the configuration of the
locations and the placement of virtual elements in a scene were also observed. The location
manager should pay attention when defining the coordinate system associated with a
room and should acquire sufficient images of the environment for accurate image matching
and position estimation based on computer vision. For an intuitive placement of the 3D
multimedia objects in space, the origin and axes of a room’s coordinate system should be
carefully chosen. When configuring a small room, a handy solution is to choose the origin
as one of the corners of the room, with the axes defined along the frontiers between two
adjacent walls or between a wall and the floor. However, when configuring a section of a
big hall, the lack of landmarks might become an impediment. Momentarily, the placement
of a virtual object in the scene is done by configuring its translation, rotation, and scale
factors relative to the room’s coordinate system, without having a 3D visualization of the
elements from the real environment. In the future, we intend to obtain a 3D reconstruction
of the scene and to place it in the same virtual space as the multimedia objects, relative
to the user-defined coordinate system. The visualization of the 3D reconstruction of the
environment will provide location managers with a more intuitive method of placing the
multimedia objects relative to the 3D model of the scene, regardless of the origin and axes
of the room’s coordinate system.

The solution was piloted in four locations with various cultural purposes: an engineer-
ing museum, a library, a village museum, and a theatre. We tested the ease of use from the
point of view of a location manager, as well as the intuitiveness and the response time from
the visitor’s perspective. The fused localization, based on beacons and computer vision,
provided a fast and accurate estimation of the position and orientation of the visitor’s
device, and the integration of the ARCore functionalities (the Augmented Images API, the
ARCore localization) in the application provided an intuitive user experience.

The configuration of each location, consisting of the scanning of the rooms and sections
of interest and the placement of the multimedia objects, took several hours (from 4 to 8 h),
depending on the number of areas of interest and on the number or characteristics of
the virtual objects. This result is quite promising, demonstrating the potential of the fast
deployment of the CultReal solution in any new cultural space.

Supplementary Materials: CultReal pilot in UPB Museum and UPB Library. Available online:
https://youtu.be/Ep6--rfwtgg (accessed on 1 October 2021). CultReal pilot with multiple users.
Available online: https://youtu.be/PIA59650RHs (accessed on 1 October 2021).
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