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Abstract: Research shows that various contextual factors can have an impact on learning. Some
of these factors can originate from the physical learning environment (PLE) in this regard. When
learning from home, learners have to organize their PLE by themselves. This paper is concerned
with identifying, measuring, and collecting factors from the PLE that may affect learning using
mobile sensing. More specifically, this paper first investigates which factors from the PLE can affect
distance learning. The results identify nine types of factors from the PLE associated with cognitive,
physiological, and affective effects on learning. Subsequently, this paper examines which instruments
can be used to measure the investigated factors. The results highlight several methods involving smart
wearables (SWs) to measure these factors from PLEs successfully. Third, this paper explores how
software infrastructure can be designed to measure, collect, and process the identified multimodal
data from and about the PLE by utilizing mobile sensing. The design and implementation of the
Edutex software infrastructure described in this paper will enable learning analytics stakeholders
to use data from and about the learners’ physical contexts. Edutex achieves this by utilizing sensor
data from smartphones and smartwatches, in addition to response data from experience samples
and questionnaires from learners’ smartwatches. Finally, this paper evaluates to what extent the
developed infrastructure can provide relevant information about the learning context in a field study
with 10 participants. The evaluation demonstrates how the software infrastructure can contextualize
multimodal sensor data, such as lighting, ambient noise, and location, with user responses in a
reliable, efficient, and protected manner.

Keywords: multimodal learning analytics; physical learning environment; learning context; mobile
sensing; self-directed learning; distance learning; smart wearables; software infrastructure; Edutex

1. Introduction

In times of a pandemic, students are encouraged to keep their physical distance
from each other and study from home if possible. In this scenario, distance learning
becomes essential in areas where it was not before, and more institutions increase their
efforts to digitize their teaching materials and structure their learning courses in learn-
ing management systems. Understanding how students use learning materials and
digital learning environments can be beneficial to collect data about learners’ behav-
ior. This approach is most commonly referred to as Learning Analytics (LA). The Soci-
ety for Learning Analytics Research (SoLAR) defined Learning Analytics as the measure-
ment, collection, analysis, and reporting of data about learners and their contexts for pur-
poses of understanding and optimizing learning and the environments in which it occurs
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(https://www.solaresearch.org/about/what-is-learning-analytics/, last accessed on 9 Febru-
ary 2021). Traditionally, LA research focuses on learner behavior as it interfaces with the
keyboard and mouse in the learning management system. This narrow perspective on
learner behavior in digital environments can lead to incomplete or ambiguous data traces
because many other factors are difficult to capture and thus cannot be taken into account [1].
To counteract such potential shortcomings, approaches such as multimodal learning ana-
lytics (MMLA) are used [2]. MMLA has been used to gather rich data on various learning
tasks, such as collaboration (e.g., [3]), public speaking (e.g., [4,5]), or CPR training (e.g., [6]).
In addition to supporting conscious behavioral activities, MMLA can also be used to collect
and process physiological (e.g., [7]) and contextual data (e.g., [8]).

Figure 1. This figure illustrates an exemplary learning space with nine flagged factors that can effect learning. The factors
identified through a literature search and flagged here are visual noise, audible noise, context dependency, air quality,
nutrition, lighting, spacial comfort, self-care, and presence of others. (From stock.adobe.com by andrew_rybalko).

Many factors might have a direct or indirect effect on learning, some of which may
emanate from the physical learning environment (PLE) [9], such as lighting, temperature,
or noise level. Figure 1 shows an example of a learning space with potentially affecting
factors. Previous research has investigated the effects of physical environment factors on
learners and has shown that the configuration of certain environmental factors can benefit
or hinder performance in selected learning tasks [10,11]).

Various methods and instruments have been used for this purpose. One instrument
which was selected for this purpose is mobile sensing. Mobile sensing is a form of passive
natural observation of a participant’s daily life, using mobile sensor-equipped devices to ob-
tain ecologically valid measurements of behavior. Mobile sensing often uses a variety of bio-
metric sensors and data from self-reports utilizing, for example, the Ecological Momentary
Assessment (EMA). Particular devices such as movisens (https://www.movisens.com/,
last accessed on 5 August 2021) can be used as instruments. However, by using commodity
devices such as smartphones and smartwatches that students already own, studies can
reach more subjects and research prototypes can be more easily transformed into simple
learning support tools. Such simple tools could support everyday learning by allowing
students to journal their learning contexts and learning behaviors to reflect on them.

This paper is broadly concerned with how LA data can be augmented by considering
the physical context of learners engaging in distance learning from home. Specifically,
we investigate how multimodal data about the PLE with potential effects on learning can
be measured, collected, and processed while utilizing mobile sensing with commodity
hardware. For this reason, this paper presents Edutex, a software infrastructure that
can leverage consumer smartwatches and smartphones for this purpose. Edutex is an
implementation of the Trusted and Interoperable Infrastructure for Learning Analytics
(TIILA) [12] with a specialization in mobile sensing through smart wearables.

The first step in achieving this goal is to identify the factors from the students’ PLE
that might have an effect on their learning. Once identified, these factors need to be
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measured with adequate instruments. From these steps, we derive the following two
research questions:

RQ1 Which factors of the physical learning environment can have an effect on distance learning?
RQ2 Which instruments can be used to measure factors from the physical learning environment?

Based on the foundation laid by answering research questions RQ1 and RQ2, we will
derive requirements and design and implement the infrastructure. From the literature
search needed to answer RQ1 and RQ2, we expect to learn, as described, which factors are
already known and to what extent they can have an effect on learning. However, we still
need to determine which data can be efficiently measured and collected and whether they
can effectively describe the factors. By analyzing and aggregating the value set in terms of
consistency and coherence, it should be possible to determine the physical context during
specific learning periods. By deploying the development in a realistic pilot study, we will
assess whether the prototype can thus provide potentially relevant information about the
learners’ context in relation to the insight gained from the literature search. With these
goals in mind, we formulate the following two research questions:

RQ3 How can software infrastructure be designed to measure, collect, and process multi-
modal data about the physical learning environment through mobile sensing?

RQ4 To what extent can the developed software infrastructure provide relevant information
about the learning context in a field study?

The remainder of this paper is structured into five sections. In the following back-
ground section (Section 2), we address the background of our research by answering
research questions RQ1 and RQ2. In said section, we explain the results of our literature
search on factors from the PLE that might have an effect on learning (RQ1) and we review
the instruments that have already been used to measure these factors in the literature
(RQ2). In the software infrastructure section (Section 3), this paper describes the developed
concepts. This description elaborates on the developed software design and the design
considerations. In the method section (Section 4), we explain the study design and setup
we used to answer our research questions. In the results section (Section 5), we illustrate
the results we obtained from a study we conducted with ten participants. We then discuss
these results in the discussion section (Section 6). There, we assess the quality of the data,
the implementation’s performance, and the participants’ feedback. Finally, we draw a
conclusion in Section 7.

2. Background

To measure relevant factors from a student’s PLE, they first need to be identified.
Here, it is necessary to distinguish between factors from the physical environment and
their effects on the student. After identifying the factors and effects, it is also desirable to
determine how these identified factors can be measured with instruments in general and
with smart wearable devices in particular.

Previous work has examined the relationship between the physical environment and
various effects on learners’ cognitive loads (e.g., [9]). Similarly, we also attempted to assign
categories to the effects we found in our literature search. In the three categories we chose,
we distinguish between cognitive, physiological, and affective effects. Figure 2 visually
summarizes the results of the literature search by depicting the factors from the PLE and
their effects on the learner. In the following section, we describe these factors and their
effects in detail.
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Figure 2. This illustration depicts the relationship between the nine identified factors from the
physical learning environment and their effects on learners’ cognition, physiology, and affect.

2.1. Factors with Cognitive Effects

The factors of the physical environment that we have identified to have a cognitive
effect on learning include visual and auditory noise, as well as context dependency. The
cognitive effects relate to working memory and long-term memory.

2.1.1. Visual Noise

Visual noise might be one of the most noticeable factors. It can be caused by everything
from muted TVs or video streaming to people moving around in eyesight. Such visual
noise can be regarded as an irrelevant environmental stimulus that drains the limited
resources of working memory from learners’ cognitive processes (e.g., [13,14]). Studies
have shown that cognitive performance can be improved simply by having subjects avert
their gaze from their surroundings.

A way to measure visual noise is to capture and categorize browser content or smart-
phone usage (e.g., [15]). With the help of plugins and apps, smartphone app usage can be
recorded and matched against classification lists. Nevertheless, even such lists can have dif-
ficulty distinguishing between learning usage and noise when it comes to YouTube videos
or Facebook groups. Other visual noise, such as people interacting with each other [16] or
with objects [17] in the environment, can be measured with 3D cameras.

2.1.2. Auditory Noise

Auditory noise is another very noticeable factor. The sources of ambient noise and
sounds can be multifaceted, for example, natural environmental sounds such as the wind
blowing or birds chirping and conversations, music, or office noise. Several studies have
examined the negative effects of machine noise, such as telephones ringing and conversa-
tions, on cognitive performance in work environments (e.g., [18]). The effect of ambient
noise was also studied in a more detailed way in relation to learning. Irrelevant auditory
sounds such as background speech or white noise were found to have a negative effect on
learners’ working memory function (e.g., [19,20]).
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Many smart devices already have a built-in microphone to record speech or voice
commands. This integration makes it possible to use existing smart wearables or smart
speakers for acoustic noise detection. When audio recording using smart wearables is
carried out in an uncontrolled environment such as at home, the quality of accurate auditory
detection of ambient noise can be questioned. A recent study found that the quality of
smartwatch audio recordings is in principle sound enough for humans to recognize speech
and other ambient sounds [21]. However, it was also found that more sophisticated
voice activity detection tools are needed to accomplish this automatically. Smartphone
microphones have already been used to measure and detect noise exposure [22]. However,
it was noted that measurements may differ between different models due to the different
sensors installed. Therefore, for fine measurements, it may be necessary to calculate a
calibration offset for each device, complicating generic applications.

2.1.3. Context Dependency

The contextual encoding of information in learning processes is another critical fac-
tor to consider. Memory performance is improved when the PLE and the physical test
environment are similar, in contrast to when they are different (e.g., [23,24]). Contextual
cues that the brain stores unconsciously and automatically about environmental stimuli
from the PLE can be used to retrieve the same information later. Such contextual cues
include olfactory cues such as smell [25], visual cues such as background color or visual
markers [26], and auditory cues such as sounds and music [27]. When the context of a test
situation cannot be mimicked, learning should best take place in various contexts, so that
transfer to new contexts is facilitated [28].

With the help of location services, learners could become aware of which locations
they use for learning, which ones they prefer, and with the additional use of assessments,
perhaps even at which ones they seem to learn effectively. Outdoor location tracking is
reasonably accurate and straightforward using geolocation services such as GPS. Addi-
tionally, some smartphone operating systems use Wi-Fi, Bluetooth, and cell towers to
increase accuracy (e.g., [29]). These additional signals can also be leveraged to pinpoint
locations in places where geolocation signals are not available, such as indoors. In addition,
technologies such as RFID and NFC offer the ability to identify precise positions. Even
room-level location in home environments is possible with smartwatches by generating
activity fingerprints with data from a smartwatch’s microphone and inertial sensors and
location information obtained from a smartphone [30].

2.2. Factors with Physiological Effects

Factors in the physical environment can also influence learning by affecting the
learner’s physiology. The research literature reports three factors of interest in this regard.
These three factors are air quality, nutrition, and lighting conditions. The effects found
relate to learner willingness to exert effort, cognitive performance, and alertness.

2.2.1. Air Quality

Cognitive performance is related to blood oxygen saturation (e.g., [31,32]). In this
context, the temperature and oxygen level in the ambient air can be influencing factors.
Learners may be more often aware of the relationship of their learning performance with
the oxygen level of the ambient air than they are of the fact that a high ambient temperature
can likewise reduce blood oxygen saturation and thus have an influence. For example,
it has been shown that subjects working in an ambient temperature of 30 ◦C show a lower
willingness to exert effort than subjects working in an ambient temperature of 22 ◦C [33].

The level of oxygen, CO2, and other volatiles in the air can be measured using special
sensors [34]. Measuring the outside temperature is more challenging with smart wearables,
as they are usually worn directly on the body and are thus affected by body tempera-
ture. Some unique smartphones use a laser sensor to measure the temperature of objects
(https://www.catphones.com/de-de/cat-s61-smartphone, last accessed on 24 June 2021).

https://www.catphones.com/de-de/cat-s61-smartphone
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However, most smart wearables can only measure their internal temperature. Nevertheless,
this sensor and the small differences in relation to changing environments can be used
to estimate the ambient temperature [35]. Sometimes, it might be easier to use public
weather service data to estimate the temperature roughly. The most accurate method for
this purpose would be to measure the blood oxygen saturation directly. It is possible
with greater effort to use the cameras of ordinary smartphones with the help of dedicated
models to measure oxygen saturation. Meanwhile, however, some smartwatches are al-
ready equipped with such a sensor, and the operating systems natively support them
(https://www.apple.com/apple-watch-series-6/, last accessed on 5 August 2021).

2.2.2. Nutrition

Learners’ nutrition may have an indirect effect on learning through the supply of
energy to the brain. An elevated blood glucose level is associated with improvements in
cognitive performance (e.g., [31]). Glucose, for example, is needed to meet the increased
metabolic demands of the brain during demanding cognitive tasks. Not considering
the health aspects, the consumption of glucose-intensive foods can increase learning
performance for a short time [36].

Using standard sensors, such as an accelerometer, the eating behavior of a person
can be detected reasonably accurately (e.g., [37]). Such a method could be used as a crude
indicator without knowledge of the actual blood glucose effect. A more accurate method
would be to directly measure the blood glucose concentration using, for example, sensors
that evaluate the composition of a person’s sweat (e.g., [38]). However, the use of these
sensors in smart wearables is still experimental (e.g., [39]).

2.2.3. Lighting

The characteristics of light sources in a PLE can have different effects on learners. Here,
the color and luminance of light sources can affect cognitive performance (e.g., [40,41]).
Exposure to different wavelengths, for example, may have a positive effect on learners’
alertness and thus enhance their cognitive performances [42]. In addition, the level of
concentration of learners could be improved with the help of color temperature and
intensity [43,44].

A wide variety of devices already use light sensors to automatically adjust their
screen’s illuminance and color temperature depending on the given lighting conditions.
The objective of this functionality in smart wearables is typically to improve the visibility
of the screen and minimize the energy consumption of the device [45]. However, the
light sensors of smart wearables can also be used to measure a person’s general lighting
conditions and adjust controllable light sources (e.g., [46]). In general, the light sensors of
smart wearables cannot detect the ambient color temperature or ambient colors. In some
use cases, such as the assistance of visually impaired people, special light-sensing devices
are used for this purpose [47]. However, modern smartphone cameras can be used as well.
Based on the brightness and color of the display or other reference object, a smartphone
camera may be able to detect the color and texture of surfaces, liquids, or objects with good
precision (e.g., [48,49]).

2.3. Factors with Affective Effects

The PLE can have a direct and indirect effect on learners via mediators. Such me-
diators include learners’ emotional states, moods, or motivations. Learners’ cognitive
performances and willingness to engage can be affected by these mediators (e.g., [50]). We
identified several factors in the literature that may influence these mediators. These factors
are spatial comfort, presence of others, and self-care.

2.3.1. Spatial Comfort

Learners may perceive some factors of the space in which their learning occurs as
positive or negative with regard to their spatial comfort. The effects of air quality in terms

https://www.apple.com/apple-watch-series-6/
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of oxygen level and ambient temperature as factors affecting the blood oxygen level are
physiological but should also be considered in terms of their influence on learners’ moods.
Among other things, the perception of air quality is also subjectively influenced by the
smell of objects and people’s body odor. Smell has been shown to influence both human
mood and cognition. For example, essential oils of lavender and rosemary, when inhaled,
can elevate or maintain mood and increase contentment [51]. Similarly, a comfortable
ambient temperature can make a room seem pleasant and thus lift the mood. In addition,
the influence of the color temperature and luminance of a room’s lighting can not only be
counted as a direct influence on cognitive performance, but could also be driven by the
affective mood changes of learners (e.g., [40,41]). The more positive the learners’ moods,
the more willing they are to invest cognitive resources into learning [52]. Ambient noise
can likewise indirectly affect cognitive performance by decreasing motivation and thus
lowering learning performance [53]. Not only temporary but also permanent features of a
space, such as the organization and quality of the facilities as well as the equipment therein,
can influence learners’ ease when completing and thus their willingness to engage more or
less intensively with a learning task [9].

Air quality could be defined, for example, by measuring odor and smell within
a physical environment. Measuring odor and smell is technically feasible but rather
complex. Odors and smells are composed of different chemical molecules. A variety
of specialized sensors are typically combined to detect such molecules, such as metal
oxide, electrochemical gas, optical, surface, and acoustic wave sensors. Such a variety
of sensors allows the distinction of the different types of volatile organic compounds
necessary, for example, to detect coffee [54], essential oils [55], or fungi [56]. The other
factors of spatial comfort we identified, such as ambient temperature, lighting, and noise,
are reasonably measurable. Nevertheless, different people may perceive these factors
differently depending on their preferences. To determine the perceived spatial comfort of a
person, it is necessary to combine the objective sensor data with subjective self-reported
experience data from that person. Spatial comfort is perceived very subjectively, so self-
reports are necessary and beneficial to measure the required data.

2.3.2. Presence of Others

The presence of a peer learner during learning, or even just the illusion of it, can
trigger motivation and facilitate cognitive processes [57]. Thus, learners may spend more
time learning and be more engaged in learning activities in the presence of others, so long
as they do not contribute to detrimental factors such as excessive auditory noise.

A rough estimate of the presence of others could be possible to obtain by detecting
smartphones in the proximity of a person. For example, Bluetooth and Wi-Fi technologies
can be used for this purpose [58]. However, smartphones of the newer generations do not
necessarily respond automatically to Bluetooth requests, which is a problem. Nevertheless, a
specific implementation of human presence detection has been implemented, for example, as a
Bluetooth-based contact tracking functionality in some implementations of COVID-19 apps [59].

2.3.3. Self-Care

Not only external conditions but also learners’ self-care can have an impact on learning.
In this regard, clothing represents a symbolic means that can have an effect on a learner’s
cognitive performance [60]. Therefore, it may be reasonable for students learning from
home to prepare themselves for learning sessions as they might for an in-person event or
in the workplace. Such preparations could range from body hygiene measures such as
brushing teeth and combing hair to dressing in work clothes and stretching exercises.

Measuring an individual’s self-care is most effectively achieved through self-reported
data. With the help of 3D cameras it is possible, for example, to detect clothing changes [61],
but the fittingness cannot be evaluated in this way. To reduce subjectivity, it may be benefi-
cial to provide a guideline or offer the person the opportunity to receive an independent
second opinion.
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3. The Software Infrastructure

After identifying factors from the PLE that might affect learning and researching
instruments that can be utilized to measure these factors, the next task this research
addresses is collecting the desired data.

3.1. Requirements and Considerations

Before the initial architecture design was created, some design decisions have to be
made by the software architects. These decisions include device selection, method selection,
session flow, orchestration, and data format.

3.1.1. Device Selection

The literature search in the previous section (Section 2) shows that smart wearables
such as smartwatches and smartphones have been used in research to measure factors from
the PLE. Smart wearables provide a variety of sensors such as light sensors, microphones,
temperature sensors, heart rate sensors, blood oxygen saturation sensors, accelerators, gyro-
scopes, GPS, Wi-Fi, Bluetooth and NFC. The literature also shows that smart wearables are
suitable devices to collect self-reported data using ecological momentary assessment (EMA)
(e.g., [62,63]). Self-reported data are often necessary to capture those factors that are not
simple to measure with sensors, such as the presence of others, or enhance the combination
with self-reports such as spatial comfort. This is particularly true for factors related to
learners’ affective states.

3.1.2. Method Selection

We chose mobile sensing as the method for collecting the PLE factors. This method
allows us to collect two types of data. First, we can collect sensor data from the devices
transparently to the student. Second, we can gain additional information and confirm
sensor readings through self-reports on the smartwatch. Self-reports are queried using ques-
tionnaires or micro-questionnaires that are displayed on the smartwatch at configurable
times. Questionnaires typically consist of multiple questions with a range of response
options. These questionnaires are used to ask about multiple permanent factors such as
semantic location. On the other hand, micro-questionnaires are used in learning sessions
to capture temporary factors such as perceived noise level. By these means, we aim to
minimize the sampling burden for students within their learning sessions by utilizing
micro-interactions [62].

3.1.3. Session Flow

Certain restrictions apply to the use of smart wearables for data collection, such as
limits on battery consumption, processing power, and network bandwidth usage. We
intended for users to have direct control over the timing and duration of data collection
for self-determination and privacy reasons. For this reason, users need to be instructed
to open the application on their own and start a session whenever they intend to begin
learning. Sensor data, as well as EMA data, were collected only within a session, according
to the design. This restriction to learning sessions reduces the consumption of device
resources by the application. Not limiting data collection to learning sessions but collecting
it throughout the day could provide a more holistic perspective on a learner’s activities but
it turned out to be much more complex for a generic software design and more invasive
for the users. The design also calls for cyclically reminding users that data collection is still
active and should be stopped when they ended their learning. However, it is up to the
users to decide when to stop the sessions.

3.1.4. Orchestration

Data collection in mobile sensing needs to be orchestrated during the execution of
a session. For Edutex, the orchestration takes place continuously on the server-side part
of the infrastructure. Events that trigger self-report and sensor data collection are sent by
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an orchestrator module. This type of orchestration allows for a more flexible intervention
model in future iterations of the project. A unique feature of this approach is that a near-
continuous connection to the device must be maintained. To tolerate disconnections, the
connection channel of the software infrastructure is set up to tolerate connection losses
of up to 30 min without dropping the session. If the connection is re-established in the
meantime, the session will continue seamlessly and without disruption to the user. After
the timeout, the session is automatically terminated, and the user must start a new session.

A WebSocket connection is used for communication between the client and the server.
Through this connection, the client is currently given instructions and the collected data
are sent back to the server. This type of connection is also used by other applications such
as email so clients can maintain a constant connection and quickly exchange new events.
The study described later in this paper did not include interventions based on the collected
data. However, interventions based on data from multiple data sources, including learning
management systems, are planned in subsequent iterations of this project. We have opted
for the ability to push interventions rather than have the client ask for them. Maintaining
a WebSocket connection between the client and server is, we believe, more timely for
just-in-time interventions triggered by an analytics service from the server. The stream of
events arriving at the client is usually very sparse, as typically only a few short commands
are sent. With an HTTP API, smartphone clients would need to perform continuous fast
polling unnecessarily. However, the amount of data streamed from the client side to the
server side depends on the study design.

The infrastructure provides data in two modes. These are the exploratory mode
and the intervention mode. The orchestration is visualized in Figure 3. The exploratory
mode allows data to be collected in snapshots. With a snapshot, the momentary sensor
measurements are captured. A snapshot can be configured in the administrative interface
of the server side to set up a variety of sensor hooks. Each sensor hook is configured
at the time of activation to collect data in the specified period and with the specified
accuracy. At the end of each snapshot, the collected data are transmitted to the server
side in the specified data format. This mode is intended for exploratory studies where
data are collected for data analysis purposes. The intervention mode allows sensor data
to be collected in a continuous stream. In this mode, the sensor hooks are configured to
continuously collect sensor data and relay them as they become available. Smart wearable
operating systems typically limit the fidelity of sensor data collection to reduce the resource
consumption of the devices. The Android operating system unofficially limits the fidelity
to 100 Hz. If the study design requests many data from sensors with high resolutions,
bandwidth usage can become high. Therefore, study designers must be made aware of this
before configuring sensor hooks. Collecting data in this mode with a near-real-time data
stream can be used, for example, to facilitate stream processing or apply AI models. The
results could be used to make predictions or detect specific conditions that could, in turn,
trigger just-in-time interventions.

3.1.5. Data Format

A suitable data format is beneficial to ensure the comprehensibility of the data.
In addition, using an established data schema can reduce immaturity and promote data
re-usability. Due to the different requirements that the two supported modes of the in-
frastructure have, different data formats were used. The left box (a) in Figure 4 shows
the database storage structure and the detailed JSON sensor data format used in the ex-
ploratory mode. The right box (b) in Figure 4 shows the message broker storage structure
and the detailed sensor event format used in the intervention mode.
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Figure 3. This figure displays the data orchestration of Edutex in the exploratory mode. Study
designers can collect sensor and self-reported data before, within, and after the student started a
learning session.

Figure 4. This figure displays the storage structures and data formats used in the two data collection
modes. The data schema used in exploratory mode (a) is either JSON specified in the OpenMobile-
Health project or aligned with it. The data schema used in the intervention mode (b) is transmitted
without a schema to reduce size.

For the exploratory mode, we decided to use the Open Mobile Health (OMH) data
format whenever possible and appropriate (https://www.openmhealth.org, last accessed
on 5 August 2021). The OMH standard provides an excellent schema and facilitates
uniformity. Some of the sensor data that the infrastructure collects are not yet specified by
the OMH standard. This is mainly because the OMH standard is predominantly oriented to
physiological characteristics. Therefore, we specified similar data schemas for unspecified
sensor types such as ambient noise and illumination levels. Since we were not aware of
a suitable standard for EMA data, we derived our data format based on the OMH data
schemas. The storage structure is oriented from the perspective of a study designer. Here,

https://www.openmhealth.org
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the study designer can relate EMAs to sensor data directly during the study design process
in the administration interface.

The selected data format should not consume an unnecessary amount in the interven-
tion mode. Therefore, the transmitted data are reduced by any schema in this mode. Each
event contains only the collected data values in a well-defined sequence. This approach
allows the prototype and related projects to transfer larger amounts of data with high
throughput when needed. In the implementation, the software infrastructure uses the
Apache Avro (http://avro.apache.org, last accessed on 5 August 2021) system for storage
and communication in the Event Store for this purpose. This system allows managing the
data schema separately from the data utilizing a schema registry.

3.2. Software Architecture Design

For the software architecture design, we used the Big Data Value Chain (BDVC) [64]
as a guideline. The BDVC can be used to model the high-level activities that make up any
information system [1]. The BDVC identifies the following key high-level activities: data
acquisition, data analysis, data curation, data storage, and data usage. Corresponding to
these five components are the learning activity sensors, data source connectors, orches-
tration service, preprocessing service, analytics service, message broker, and dashboard
service. Figure 5 illustrates this.

Figure 5. This figure shows the software architecture design of Edutex. The design differentiates between
the client-side part and the server-side part. The client side comprises modules for data acquisition and
data usage. The server side encapsulates the processing logic for data acquisition and data usage as well
as data curation, data analysis, and storage.

3.2.1. Learning Activity Sensors

The learning activity sensors are the software units that measure the data about the
factors of the PLE and the learners at the data sources. The hardware sensors of the smart
wearables and the self-reports of the users are the data sources we currently measure with
the application.

http://avro.apache.org
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3.2.2. Data Source Connectors

The data source connectors provide the interfaces for data exchange between the
server side and client side. The protocols WebSocket, REST, and MQTT are used for
this purpose.

3.2.3. Orchestration Service

The orchestration service provides an administrative interface to configure study de-
signs, including the data inputs. The study designs are composed of questions and answer
choices as well as the assigned sensor requests. Furthermore, questions can be aggregated
to questionnaires and micro-questionnaires. Studies encapsulate these types of surveys
and are assigned internally to registered participants. The participants click on the session
start button on the smartwatch starts a new session process in the orchestration service.
During the session, the questions and sensor requests are orchestrated live. Administrators
can also review the live data stream for troubleshooting. After a session is completed or a
study is finished, the administrators can also export all the acquired data from this service.

3.2.4. Message Broker

The Message Broker is primarily used for data transfer between the different com-
ponents of the infrastructure. Its second task is to permanently keep the communicated
events in their original sequence. This also makes the message broker an event store. The
data are organized within the event store in so-called topics. A topic is created for each
data source, such as a specific sensor on a specific smartwatch. The session IDs serve as
keys. The retention of the raw data enables reprocessing at a later point in time and the
traceability of calculations.

3.2.5. Preprocessing Service

The preprocessing services enable the incoming data stream to be cleaned, filtered,
transformed, and the required features to be calculated. The output of this data stream
serves as input for the analytics service. On the one hand, the data must be preprocessed
so that AI models can make just-in-time predictions. On the other hand, the preprocessed
data are needed as training data for the new AI models after a review step by the learning
expert. The current version of this service only performs basic aggregations and filters the
data streams.

3.2.6. Analytics Service

This is where previously computed and stored AI models are loaded and executed.
At runtime, these services register for the preprocessed data streams of the preprocessing
services. After the various indicators have been calculated, the services publish their results
again in their dedicated topics. These topics can then in turn serve as input for further
analysis services or data usage.

3.2.7. Dashboard Service

The Dashboard service is a first attempt to use the resulting data streams by registering
for the output topics of the LA service and reading the indicator results. In the first
version, the data are only restructured in a rudimentary manner and made available to
an HTML5 dashboard via the WebSocket protocol. The dashboard allows an instructor to
look at aggregated data streams of online recordings from participants with a number of
technical statistics.

3.2.8. Privacy and Data Protection

As responsible researchers and developers, we need to think about privacy and
data security early in the design process. This allows us to provide a trusted and secure
experience for study participants. As researchers and developers in Europe, this also makes
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us compliant with GDPR [65], particularly with the regulations “Data protection by design”
and “Data protection by default”, as formulated by Article 25 of the GDPR.

In terms of data protection, the prototype enables study organizers to assign each
participant a unique pseudonym at the beginning of a study. Thus, the data of the partici-
pants can no longer be directly associated with their identity. Furthermore, we only collect
technical identifiers of devices. All sensor information that could re-identify individuals is
also hashed with a secret salt in the user-side application using the SHA-1 (https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf, last accessed on 5 August 2021) algorithm.
This refers to WIFI and Bluetooth BSSIDs. The GPS coordinates are fuzzed in the client-side
application using the geohash (https://mmcloughlin.com/posts/geohash-assembly, last
accessed on 5 August 2021) method. With a geohash length of 6, we consequently distort
the coordinates by 610 m. Thus, an exact position determination on the server side was no
longer possible (implications are discussed in Section 6).

The Android operating system, operating the smart wearables used in the field
study, is developed by the company Google (https://www.google.com/, last accessed
on 5 August 2021). In the prototype, we wanted to prevent cloud services from Google
from possibly analyzing participant data. For this reason and performance reasons, we
used a direct channel between the smartwatch and smartphone. Therefore, we used
the ChannelClient API instead of the DataClient API or the MessageClient API (https:
//developer.android.com/training/wearables/data-layer, last accessed on 5 August 2021).
In the DataClient API, the data were synchronized via Google Cloud Services in some
use cases. The ChannelClient API, on the other hand, provides a direct channel between
the two devices. However, all of the mentioned APIs are proprietary implementations
of Google.

To ensure data security, all communication between the user-side application and
the server-side application is encrypted. This refers to the MQTT, HTTP, and WebSocket
protocols used.

In the software infrastructure, a selection of the rights of the data subjects as defined
by chapter 3 of the GDPR was automated as an independent user-specific feature. This
allows all users to log into the web interface with their credentials and execute their rights
independently. In particular, the web interface enables participants to download their
data as a JSON-specified file as part of their right of access (Article 15) and right of data
portability (Article 20). Furthermore, participants can delete all of their data as part of
their right to erasure (Article 17). Since it is complex to implement a subsequent correction
of data entries in the context of an automated feature, participants can delete the data of
individual sessions. This allows them to exercise their right to rectification (Article 16)
simply and autonomously, whereby study operators lose a considerable amount of data.
Finally, the right to rectification (Article 18) has been automated. This restriction prevents
study operators from exporting the data of these participants before any conflicts or
misunderstandings have been resolved and the participants have released the data usage.

4. Method

A small pilot study with ten participants was conducted by us to properly evaluate
the software design and implemented application.

4.1. Participants

The study was conducted from December 2020 to March 2021. Due to pandemic
restrictions, we were only able to recruit colleagues and associate students. Before the
participants could start the study, they were informed in writing about the procedure and
its purpose. In addition, all collected data were explained, and the subsequent use was
described. This procedure ensured informed consent to the study. In addition, no personal
data were collected (see Section 3.2.8). A total of ten participants participanted. Of these
ten participants, seven were men and three were women. Participants were between 20

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://mmcloughlin.com/posts/geohash-assembly
https://www.google.com/
https://developer.android.com/training/wearables/data-layer
https://developer.android.com/training/wearables/data-layer
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and 45 years old and spanned educational levels from undergraduate, to graduate, and
post-doctoral levels.

4.2. Study Design

Preconfigured smartwatches and smartphones were provided to all participants for
the study. When the devices were handed over, participants were shown how to use the
application and the devices and instructed on how to participate in the study. Participants
were expected to use the application over several days and in several sessions at different
times of the day. If possible, they should use the application at different learning locations.
However, this was not always possible due to COVID-19 restrictions.

We divided the study design into five phases: pre-survey, pre-session, in-session,
post-session and post-survey. The session phases can be repeated at will. In the pre-survey
and post-survey phases, participants each completed a questionnaire in an online tool
(https://www.soscisurvey.de/, last accessed on 5 August 2021). Each session also started
and ended with a few questions and sensor sampling. However, the questions were asked
directly after the participant’s interaction on the smartwatch. In the in-session phase, the
questions and sensor queries were asked and retrieved at intervals.

4.2.1. Pre-Survey

Before the participants launched the first session, they completed a questionnaire
about their demographics and affinity to technology in an online survey tool.

4.2.2. Pre-Session

At the beginning of each session, the participants reported permanent factors of the
learning environment using a questionnaire prompt on the smartwatch and recorded
simultaneously using the appropriate sensors. Questions were asked about the semantic
location and the spatial comfort such as “At which location are you studying at the moment?
Options: Home office, work office, café, library, outdoors, other location”. The associated
sensors were GPS, Wi-Fi, and Bluetooth.

4.2.3. In-Session

During the sessions, sensor data were recorded approximately every 20 min. Si-
multaneously, the application probed participants situational factors from the physical
environment such as “I feel comfortable with the temperature and humidity of my current
study room”. The sensors used included the microphone, heart rate, accelerometer, and
light sensor. In parallel, the application sent the sensor data in a continuous stream during
the ongoing session on the sensor data stream channel.

4.2.4. Post-Session

After participants indicated completion of a learning session by pressing the stop
button on the Smartwatch display, the application displayed a final questionnaire. The final
questionnaire was used to test the usability of complex standardized questionnaires in the
application context. To ensure that participants did not forget to stop the application once
they had stopped learning, they were sent a notification every 60 min. In this notification,
they were informed that the application was still active.

4.2.5. Post-Survey

At the end of the study, participants completed a final questionnaire that included
questions about usability such as “How comfortable were you with the navigation within
the questionnaires?” and about their experience with the application such as “How would
you rate your experience with the application?”. In addition, questions were asked about
the perceived invasiveness of the data collected, such as “How invasive do you consider
the sensors that have been used to collect data about you?”, and motivation to reuse the
application, such as “How motivated are you to use this application again in another

https://www.soscisurvey.de/
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study?”. Furthermore, open-ended questions were asked about desired feedback and
missing features such as “What improvements would you make to this application to make
it better for you and others?” and “If you have any additional comments or feedback about
the application, please share them here”.

4.3. Compensation

There was no financial compensation in this study, neither for participation nor for
achieving high compliance. Participants were only offered the opportunity to try a regular
smartwatch for the duration of the study.

4.4. Implementation

For the development and evaluation of the prototype, we looked for an operating
system and devices that are favorable to an open-source project. The decision fell on
Android devices (https://www.android.com/, last accessed on 5 August 2021). In our
opinion, development for this operating system is very developer-friendly and future-
proof, and no special development environments are needed. Android devices also have
good market coverage and are relatively inexpensive. In particular, we selected Mob-
voi TicWatch Pro 3 GPS (https://www.mobvoi.com/ge/pages/ticwatchpro3gps, last ac-
cessed on 5 August 2021) and Google Pixel 4 (https://support.google.com/pixelphone/
answer/7158570, last accessed on 5 August 2021) devices. The application must be installed
on both paired devices for use in studies. The primary participant interaction took place on
the smartwatch. Only server-side communication and authentication settings were altered
by the participant on the smartphone. Furthermore, the smartphone interface displays
rudimentary status information. Figure 6 shows snapshots of the client interfaces.

(a) (b) (c)

(d) (e) (f)
Figure 6. Figures (a–c) show different display and input formats for questions on the smartwatch:
(a) a vertically scrollable list of answers allows to offer a wider range of options; (b) a horizontal
slider enables participants to give their ratings on a scale; and (c) one click on an answer option in
a micro questionnaire and it vanishes. The session duration is displayed in the interface shown in
figure (d) when the session is running and no response is requested. Figures (e,f) show part of the
smartphone interface: (e) this overview helps participants to see the status of the application; and
(f) in the settings they can set up the server connection and credentials.

https://www.android.com/
https://www.mobvoi.com/ge/pages/ticwatchpro3gps
https://support.google.com/pixelphone/answer/7158570
https://support.google.com/pixelphone/answer/7158570
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5. Results

The ten participants successfully recorded themselves in a total of 55 learning sessions.
We cleaned the data before analysis by filtering out sessions that were canceled due to tech-
nical errors. The sessions lasted on average 78.07 min and were about equally distributed
over the morning (28) and the afternoon (27). The application performed 620 sensor queries
during these sessions, with the sensors returning in total 892,938 individual sensor events.
To collect self-reports, a total of 174 questionnaires were displayed to the 10 participants.
On average, they had to be prompted 1.22 times to answer them. When answering the
questionnaires, 98.9% of the questions were answered successfully. Whether some ques-
tions were skipped intentionally or by mistake could not be determined technically. It took
the participants about 46.6 s to answer the questionnaires. These results are summarized in
Table 1.

Table 1. This table shows descriptive statistics about the 55 learning sessions the ten participants
conducted in the evaluation study.

Total
Total
Sessions Duration
(min)

Mean
Session Duration
(min)

Morning
Sessions

Afternoon
Sessions

Session 55 5062.48 78.07 28 27

Total Sensor Events Location Events Audible Noise Events Lighting Events

Sensor
Request

620 892,838 350 1715 39,560

Total Mean Prompts Questions Answered Questions
(Percent)

Median
Submission Time
(s)

EMA 174 1.22 1465 98.9 46.60

5.1. Data Quality and Expressiveness

The recorded sensor data of the ten participants show an expected level of interfer-
ence in the evaluation. There were some measured values for the light sensor and the
microphone that we classified as outliers after a visual analysis. For this reason, we did not
calculate the mean values for the analysis but the median and quartiles. The mean value is
prone to outliers, as demonstrated by the high standard deviation, making the median a
more robust measure for our use case. In the study, we asked participants if they perceived
their environment as very bright and if they perceived their environment as very noisy at
the current time. We were able to read the lighting conditions and the noisiness of the PLE
well from the sensor data with regard to the self-reports of the participants. Thus, bright
and non-bright environments can be well distinguished in the data, and the prevailing
noisiness can also be well inferred from the measured data. In both cases, the values of the
outliers are very scattered and sometimes take on extreme values. These measurements
can be caused by clothing that slides over the sensors, such as a sweater sleeve, or by the
unidirectional sensors. The measurement results are presented as boxplots in Figure 7.

In most cases, the location could be clearly assigned to the semantic position indicated
by EMA. The participants gave different information within one session in three cases, in-
dicating statements made by mistake. As expected, the Wi-Fi identifier could be reassigned
to the geoposition in all cases. Thus, an already known study space can be re-identified
by Wi-Fi with a high probability. If no Wi-Fi signal is available, a unique assignment is
possible, as long as the positions are outside the distortion of 610 m introduced intentionally
with the geohash method (see Section 3.2.8). With an available Wi-Fi signal, unambiguous
identification is also theoretically possible at a shorter distance at the signal capacity of
the Wi-Fi.
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(a) (b)
Figure 7. This figure shows the sensor data related to the two PLE factors: (a) lighting: The data
show that, on average, the lighting conditions measured by the sensors match the self-reported PLE
conditions. The median of the not very bright environment is 190.5 lx, which corresponds to normal
room lighting. The median of the very bright environment is 2521.0 lx, which corresponds to very
bright room lighting; and (b) audible noise: The data show that, on average, the noise conditions
measured by the sensors are consistent with the self-reported PLE conditions. The median amplitude
of a not very noisy environment is 1369.0 (62.7 dB), which corresponds to a regular noisy background.
The median amplitude of a very noisy environment is 4859.5 (73.7 dB), which corresponds to a very
noisy background.

The Bluetooth data were very mixed. The number of devices that the sensor had
detected varied greatly within even one session. New devices were added again and again
within the sessions, and some were no longer detected. Thus, we could not reliably use
this data to re-identify a context. In addition, there was no consistent correlation between
the number of devices detected and the number of other people in their PLEs reported by
the participants.

All further sensors were only measured and collected for the technical evaluation but
not further analyzed because our study design did not yet allow for this.

5.2. Software Implementation

In the following, we evaluate the implementation according to performance, scalabil-
ity, extensibility, and versatility. The implementation of the research prototype is made
available to the community as an open source (https://gitlab.com/ciordashertel/edutex,
last accessed on 5 August 2021).

5.2.1. Performance

The MQTT client is crucial for the evaluation of the client-side application on the
client device. In the implementation, we used the Eclipse Paho MQTT client library
(https://www.eclipse.org/paho/, last accessed on 5 August 2021). A requirement for the
use of mobile sensing was that the client should be able to handle a momentary client-side
message pushback. This case can occur when there is a temporary shortage of network
bandwidth because the sensors continue to generate events at the same frequency.

The used library provides a queue for up to 65,536 messages for these so-called “in-
flight messages”. When the queue is full, any subsequent messages are discarded. This
results in maximum memory consumption of 100 bytes × 65,536 = 6400 KB for an average
message size of 100 bytes. There is, therefore, no risk of a memory leak in this case.

The further evaluation of the intervention mode of the prototype was based on the
assumption that all sensors described in Section 2 must be transmitted in a frequency as high

https://gitlab.com/ciordashertel/edutex
https://www.eclipse.org/paho/
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as possible. This refers to the sensors for acceleration, light, audible noise, heart rate, blood
oxygen saturation, temperature, Bluetooth, Wi-Fi, and GPS. The sensors for Bluetooth and
Wi-Fi can only be retrieved once per minute in the Android operating system and the GPS
signal only with a frequency of 1 Hz. The maximum amplitude for volume measurement was
only evaluated by us every 5 s. The sampling rate of the remaining five sensors is limited to
approximately 100 Hz by the Android operating system. This results in a calculated maximum
threshold of (1 + 1 + 60 + 20 + 5 × 6000) events/min = 30,082 events/min = 501.3 events/s.
For simplicity, we assumed 500 events per second in our evaluation. Since the individual
events are transmitted as individual MQTT messages in the intervention mode, this results in
an average load of 500 Hz by each client for the data source connectors.

We tested the throughput of the server-side data source connector using the benchmark
tool MQTT-bench. The test was performed at the local host level to eliminate the network
throughput factor. We loaded the connector several times with 50 clients, 10,000 events
per second, and an event size of 100 bytes. This resulted in an average throughput of
38,684 messages for the Mosquitto MQTT Broker (https://mosquitto.org/, last accessed
on 5 August 2021) used, which corresponds to approximately 773 messages per second
per client.

However, after the MQTT broker has received the messages, they are written to the
message broker via another connector in the implementation. The Kafka MQTT con-
nector used was able to achieve a maximum throughput of 23,780 messages on average,
which corresponds to approximately 475 messages per second per client. With a maxi-
mum throughput of 500 Hz per client, this results in a maximum limit of approximately
47 participants that can simultaneously send data to one server-side data source connector.
Horizontal scaling of the components is necessary to support additional users in parallel.
This is supported by the use of container technology (see Section 5.2.2).

We used Kafka technology for our implementation of the message broker. Kafka has
a throughput of several 100,000 messages per second (https://www.confluent.io/blog/
kafka-fastest-messaging-system/, last accessed on 5 August 2021) per instance. Therefore,
we refrained from testing the Kafka brokers.

5.2.2. Scalability

For the deployment of the server-side part of the software infrastructure, we decided
to use Docker (https://www.docker.com/, last accessed on 5 August 2021) containerization
technology. With this technology, it is possible to run applications independent of operating
systems and isolated from other sensitive applications. In addition, this technology offers
the possibility to document the configuration and operation transparently and in detail.
Since the prototype uses public Docker images for standard components such as MQTT,
MQTT-Connector, and Kafka, they are easy to update or replace by other developers. The
implementations can also be converted into images by operators using specified Dockerfiles.
The use of containers simplifies the scaling of the infrastructure for different requirements.
The detailed setup can be reviewed in the source code repository.

5.2.3. Extensibility

The application can be easily extended for expansion by newly available sensors of
the smart wearables. For this purpose, the applied pattern can be adopted during software
development. The interfaces on the client and server sides were designed generically for
this purpose. A software-side extension by new types of EMA is not planned because we
have not yet seen any need for this. Nevertheless, the project is open to extensions by the
community. The design of the existing implementation can be easily adapted.

5.2.4. Versatility

By enabling the configuration of the measurement instruments and measurement inter-
vals in a server-side administration interface, we consider the versatility of the application
to be high. Study organizers can thus create and test various study designs. Furthermore,

https://mosquitto.org/
https://www.confluent.io/blog/kafka-fastest-messaging-system/
https://www.confluent.io/blog/kafka-fastest-messaging-system/
https://www.docker.com/
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study designs can be adapted or exchanged without user involvement. This makes it
possible to adapt the application in a versatile way for longitudinal studies or adoption.

5.3. Qualitative Feedback

At the end of the study, we asked the participants to answer a questionnaire with
open questions. Here we gained good insights from the participants about the application.
None of the participants in this study had used a similar application before. As was
already to be expected due to the different affinity of the users for technology (7 scale
points, M 3.6, SD 1.5), the users rated their experiences with the application varied but
positive (5 scale points, M 3.3, SD 1.2). They did not perceive the collected sensor data
as invasive and responded favorably about using this data for research purposes (5 scale
points, M 2.0, SD 1.5). Participants liked using the applications to learn more about
the many influencing factors from their PLE. They rated the factors presence of others,
lighting, and air quality from their PLEs as the most crucial to their learning productivity.
Altogether, they were missing direct feedback from the application. It was suggested
that there should be a dashboard with reflection possibilities and recommendations for
improvements. For this, it was proposed by one participant that the dashboard should
alert learners to likely unnoticed factors in their PLE. Furthermore, gamification aspects
were suggested. To this end, it was proposed by another participant that users should be
able to self-track themselves in PLE individually optimized learning sessions.

6. Discussion

To extend the power of learning analytics in distance learning at home, it is advanta-
geous to additionally include factors from students’ PLE. For this purpose, in line with So-
LAR’s definition of LA (https://www.solaresearch.org/about/what-is-learning-analytics/,
last accessed on 5 August 2021), we addressed in this paper how we could identify, measure,
collect, process, and report these factors using multimodal data sources.

To the best of our knowledge, LA researchers have paid little attention to the effects
of the PLE on learners in distance education at home. In experiments, the PLE is usually
treated as a constant variable. One goal of this work was to determine what factors
from the PLE can have an effect on learning. To answer the first research question (RQ1),
we identified different factors from the PLE in the literature. We then grouped these
factors into nine types and assigned their effects to the three categories of cognitive effects,
physiological effects, and affective effects. These factors, contrary to common belief and
student practices, may be counterproductive to learning by exerting unconscious influence,
for example, retention loss increases in learning environments such as the cafeteria or
during online messaging [66]. The identification of these factors with the help of the
relevant literature enabled us to derive requirements and considerations for the design of
the software infrastructure and to outline our further procedure.

After identifying factors from the literature, we addressed, in the course of answering
RQ2, which instruments we could use to measure these factors in the PLE of students
learning at home. Here, our literature search revealed that smart wearables are well suited
to be utilized for this purpose. Moreover, we specifically selected smartwatches as de-
vices as they have shown to be a low burden for EMAs in everyday life [62]. Crucial in
this regard is that sales of smart wearables, and smartwatches, in particular, are increas-
ing rapidly (https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-
forecasts-global-spending-on-wearable-devices-to-total-81-5-billion-in-2021, last accessed
on 5 August 2021). Thus, these devices will soon be widely available instruments for
students with which their learning process could be monitored and supported. In addition,
smartwatches are equipped with an increasing number of sensors. The owners of such
devices are primarily focused on the physiological sensors that are being used in the course
of the e-health movement. Many specialized sensors that were previously only installed in
dedicated devices, such as sweat glucose monitors, are now being actively miniaturized
and installed in smart wearables. Nevertheless, smart wearables also have sensors that can

https://www.solaresearch.org/about/what-is-learning-analytics/
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measure movement and the physical environment. The information from these sensors
primarily serves and improves the user’s interactions with the device. However, the results
of our literature review revealed that there are more advanced application areas such as
human activity recognition and context recognition. The community could leverage these
recognitions to enable sensor-based quantified-self learner applications, for instance.

After identifying the factors and effects and searching for instruments of measurement,
we were able to proceed to design the software infrastructure in accordance with RQ3.
For the design, it was first necessary to define some requirements and make trade-offs.
For the device and method selection, we chose mobile sensing sensors and EMAs on
smartwatches and smartphones. By this selection, we expect a higher coverage of end-user
devices and thus a higher probability of usage in subsequent studies. However, we are
well aware of the fact that there are several providers on the market whose applications are
unfortunately not compatible. For development time, price and market coverage reasons,
we have chosen Wear OS operating devices. Implementing an exploratory mode and
an intervention mode may allow study designers to iteratively develop a research case
and finally deploy it in situ. In addition, it became apparent during planning that the
exploratory and interventional uses of Edutex require different orchestration and data
formats. Whereas in the exploratory phase a flexible UI and human-readable formats
matter, in the intervention phase, performance and reliability count. The insights and
artifacts as outputs of the exploration are inputs of the intervention. This particularly
refers to preprocessing steps where the data are exported and externally analyzed. The
insights gained from data mining and the trained AI models are the output of the use of
the exploration mode. Such AI models will in later iterations of this project be installed in
the intervention mode.

Using the “Data Protection by Design” and “Data Protection by Default” guidelines
early in the software design process, we have been able to ensure data privacy and data
protection without limiting the use cases. This allows the software infrastructure to meet
the needs of study participants and study organizers at the same time. By implementing
the Data Subject Rights as an automated feature to be used autonomously, users can
control their data independently of study operators. Through this, we not only want to be
compliant with GDPR but also hope to enable participant agency. With technology giants
such as Google, Microsoft, and Apple providing this functionality, the same should be true
for the education infrastructure.

In order to evaluate the extent to which the prototype can provide relevant information
about the learning context in practical use as part of answering RQ4, we tested the first
stable prototype with 10 participants. We evaluated the prototype by asking participants
to conduct multiple sessions in varying contexts. For this, we also instructed participants
to choose different, if possible, places and schedules. Through this study, we were able to
collect and analyze data from 55 sessions. The evaluation showed that Edutex could be
successfully used to predict self-reported contexts based on the collected sensor data. In
particular, we successfully predicted the lighting conditions, volume levels, and positions
of the learning contexts. This shows that it is potentially possible to detect factors from the
PLE without explicit human involvement. Thus, the application can be used to learn more
about the physical contexts when students are distance learning. However, the results
show that the sensor values can be quite sensitive to interference if they are covered and
touched, for instance, or if the space is equipped in unconventional ways. Additionally,
the students’ answers can be given incorrectly if they read the questions only superficially
because they are perhaps under stress or absent in thought. An accurate statement about
conditions should only be made based on a large amount of reliably collected data. For this
reason, it is also important that users review their data and rectify them if necessary (see
Section 3.2.8). Based on the findings, it would be possible to provide extended feedback
or initiate adaptive just-in-time interventions. However, in the conducted study, this was
not yet carried out, which was conveyed to the participants at the beginning, but they still
remarked on it at the end. The positive feedback from the participants indicates that the
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client application provides a good user experience to the individual. However, although
the prototype was well-rated, participants missed an appropriate representation of the
data obtained about their learning context. This extension will be addressed in upcoming
interations to close the loop from data collection to feedback. However, the comprehensible
presentation of the collected data and the inferences based on them will likely prove to
be a very complex task and represent a new cornerstone for this project. In this regard,
student feedback needs to be integrated especially in the context of interventions based
on potentially ambiguous data. For example, through semi-supervised learning. We also
evaluated the design and prototype against the performance criteria of power, scalability,
extensibility, and versatility. The evaluation found that the design has the potential to
be deployed at the institutional level. Through the use of advanced technologies, the
software infrastructure can be deployed on-site to meet institutional privacy requirements.
In addition, its flexible design options allow it to be used in a variety of application areas.

Since the implementation of the prototype is publicly available and open-source,
interested researchers can run the software infrastructure on their premises. Moreover, this
allows the implementation to be extended with new functionalities by different actors in
the future and to be made available to the community as well.

Limitations

The developed software infrastructure and the conducted study have several poten-
tials for improvements. One limitation is that the infrastructure has not yet been tested
with a variety of devices. The hardware sensors embedded in commodity devices can vary
significantly in quality and thus impact the quality of the data collected. Therefore, in
further development steps, it is necessary to perform standardized measurements of the
factors with different devices and, if necessary, to store corresponding calibrations. Further-
more, at the time of study planning during the pandemic, we opted for a straightforward
questionnaire for the final collection of feedback from study participants. In retrospect,
it probably would have been better if we had chosen to conduct online interviews. In
such a format, participants are often more detailed in their explanations, and follow-up
questions can be asked. Another limitation is that the prototype has not yet been deployed
in a broad study with various participants using it simultaneously. Such a deployment
may reveal unexpected side effects such as bottlenecks in performance. With a higher
heterogeneity of participants, the analyses of the multimodal data would also be more
expressive. An additional limitation is that, so far, only project participants have created
studies and operated the infrastructure. The productive use by third parties will likely
reveal ambiguities and flaws in its use. A final limitation is that the prototype has not yet
been used with a more general, diverse, and much larger population in a wide variety of
PLEs. With a good study design, such a comprehensive study may provide generalized
insights into effects due to students’ physical learning contexts.

7. Conclusions and Future Directions

The first research aim of this paper was to investigate what factors of a student’s
learning environment can have an effect on learning and which effects those factors cause.
The literature search results identified nine factors that can have an effect on a learner’s
cognition, physiology, and affect.

Based on this, the second research aim of this paper was to determine what instruments
could be used to measure these factors using smart wearables. The search showed that all
factors could be measured with smart wearables using inherent sensors and self-reports on
the devices.

The third research objective was to design an infrastructure that would be able to mea-
sure, collect, and process the necessary multimodal data using commodity smartwatches
and smartphones. Based on the design, the software infrastructure Edutex was created. The
results show that the infrastructure can be used both in an exploratory mode to collect new
research data and in an interventional mode for just-in-time interventions. In this regard,
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the configurable software infrastructure enables flexible design possibilities for studies.
The digital provision of data subject rights as defined by the GDPR enables students to
have extended data agency.

The final research aim of this paper was to find out to what extent the prototype can
provide relevant information about the learning context in a field study. The results show
that the factors lighting, audible noise, and context dependency can be inferred well. The
factor blood oxygen saturation can be measured outright. Factors that can have an affective
effect, such as spatial comfort, presence of others and self-care and the factor visual noise,
can be measured well via self-reports on the smartwatch. The last factor, blood glucose
level, can only be measured with upcoming generations of smart wearables.

The primary vision use case for this infrastructure is to support self-directed learning
in distance education. In times of a pandemic, it has become even more critical for students
to self-organize their learning and their physical learning environments. Instruments such
as Edutex could support students in doing so by providing information about habits,
behaviors, physiological state, and physical learning environments. In doing so, perhaps it
should not always be the student who is the addressee of evidence, but rather the instructors
or the educational institution, taking into account security, privacy, and informed consent.
Educational institutions are envisioned as the primary operators of this infrastructure.
These could support students using this tool as part of their educational missions. However,
as an open-source project, it could also be operated by student organizations and businesses,
for example. The user base is currently limited to Android devices (see Section 4.4), but
this only needs to be the first step with good coverage. During development, care was
taken to ensure that the infrastructure is server-independent and relatively easy to use.
With this structure, the infrastructure can be operated on the premises of many educational
institutions with little effort. The insights gained from the collection of the various factors
can potentially be used in a variety of use cases. The next planned use case is to analyze the
collected data to make users aware of the physical context in which they regularly work,
the physical and affective state they are in while doing so, and how and which factors
from their environment they may want to improve. In terms of individuals’ conscious and
unconscious behaviors, integration with other data sources such as learning management
systems would be interesting to explore to determine what learning goals students set for
themselves and when distraction, fatigue, stress, or arousal set in. Meaningful recognition
and labeling of states and behaviors could help learn models for recognition and identify
facilitating factors. If identification, recognition, or even prediction becomes accurately
possible, just-in-time interventions can promote performance, volition, or retention in
learning. In this context, it might also be of interest to education providers or social service
agencies to find out if and what inadequacies of PLEs are associated with social inequality.
Access to an appropriate PLE is likely to be related to wealth and social class. In addition,
Edutex could be used as an individual tool as part of a range of interventions to help
individuals optimize ergonomics, environment, and other working conditions. In this
respect, the user base is not only aimed at learners, but also at those who work from home.
Not only the individual, but also stakeholders such as employers, supervisors or trade
unions need to be considered. These groups also have an interest in promoting health
and safety in the workplace and supporting better working conditions when working
from home.

There are several approaches to how this project could be extended in technical terms
in the future. A first way to widen the application scope would be to futher evaluate the
smart wearable applications on various devices with different hardware sensors, display
sizes, and input capabilities. A next step to improve the measurement in future work
is to extend the multimodal approach with more data sources such as blood glucose
measurement, blood pressure measurement, and skin conductance to identify more factors.
Providing standard measurement models for the individual factors such as acoustic noise
could further enhance the ease of practical applicability. Study creators could thus already
use a pre-assessed interpretation of the raw data. To identify new insights and connections
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of context with learning and compute standard measurement models, the prototype should
be applied and evaluated in larger-scale studies. Upcoming studies include investigations
of off-task behavior (e.g., [67]) and self quantification of students in distance education
at home. Finally, a data storytelling dashboard on the multimodal data should benefit
students and instructors in the superficial analysis of behavior and context across learning
(e.g., [68]).
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