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Abstract: Motor imagery (MI) brain–computer interfaces (BCIs) have been used for a wide variety of 

applications due to their intuitive matching between the user’s intentions and the performance of tasks. 

Applying dry electroencephalography (EEG) electrodes to MI BCI applications can resolve many con-

straints and achieve practicality. In this study, we propose a multi-domain convolutional neural networks 

(MD-CNN) model that learns subject-specific and electrode-dependent EEG features using a multi-do-

main structure to improve the classification accuracy of dry electrode MI BCIs. The proposed MD-CNN 

model is composed of learning layers for three domain representations (time, spatial, and phase). We first 

evaluated the proposed MD-CNN model using a public dataset to confirm 78.96% classification accuracy 

for multi-class classification (chance level accuracy: 30%). After that, 10 healthy subjects participated and 

performed three classes of MI tasks related to lower-limb movement (gait, sitting down, and resting) over 

two sessions (dry and wet electrodes). Consequently, the proposed MD-CNN model achieved the high-

est classification accuracy (dry: 58.44%; wet: 58.66%; chance level accuracy: 43.33%) with a three-class 

classifier and the lowest difference in accuracy between the two electrode types (0.22%, d = 0.0292) com-

pared with the conventional classifiers (FBCSP, EEGNet, ShallowConvNet, and DeepConvNet) that used 

only a single domain. We expect that the proposed MD-CNN model could be applied for developing 

robust MI BCI systems with dry electrodes. 

Keywords: brain–computer interfaces; electroencephalography; motor imagery; lower limb;  

electrodes; neural networks; multilayer neural network 

 

1. Introduction 

A brain–computer interface (BCI) is a system that decodes the user’s intent from 

brain signals and allows the user to control a computer or other external device without 

actual movement [1–3]. BCIs are divided into invasive and noninvasive types depending 

on whether the decoding device for collecting brain signals requires surgical installation. 

Among the noninvasive BCIs that do not necessitate surgery, electroencephalography 

(EEG)-based BCI [4] is noted for its high temporal resolution [5], portability [6], and inex-

pensiveness [7,8]. BCI researchers have developed various paradigms that utilize signals 

such as evoked potentials (EPs) [9,10], steady-state visual evoked potentials (SSVEPs) 

[11,12], steady-state somatosensory evoked potentials (SSSEPs) [13,14], and motor im-

agery (MI) [15–17] to analyze and classify the intentions of BCI users. 

EEG-based BCIs can be divided into dry electrode-based BCIs (dry electrode BCIs) [18] 

and wet electrode-based BCIs (wet electrode BCIs) [19], depending on the type of electrode 
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used to obtain the EEG signal. Wet electrode BCI has been widely used for a variety of research 

purposes but has practical limitations involving discomfort with the wet gel, time constraints, 

and wearing time [20–23], but it achieves low impedance and high signal-to-noise ratio (SNR) 

signals due to the conductive gel placed between the electrode and the skin [21,24]. Dry elec-

trode BCI, which measures EEG signals through spike electrodes that directly touch the scalp 

without the use of wet gels, has practical aspects that solve the constraints of wet gels but 

produces low SNR and high impedance signals [25–27]. Despite these limitations, the practi-

cality of using dry electrode BCI is an attractive advantage that cannot be abandoned. 

Therefore, several studies have attempted to solve these low signal quality issues and 

thus improve the performance of dry electrode BCIs [20,23,28,29]. Hua et al. developed semi-

dry electrodes to compensate for the problems of wet electrodes, and obtained high-quality 

EEG signals from hair-covered electrode placement sites and presented low impedance sig-

nals and temporal correlations with wet electrodes to show the performance of their system 

[28]. Di Flumeri et al. also conducted comparative studies on the signal spectra and mental 

state classification aspects related to three different dry electrodes by measuring EEG signals 

and showed that the different dry electrode equipment could be conveniently placed and had 

comparable EEG signal results [20]. However, these hardware-based comprehensive compar-

ison approaches [20,28–30] have focused on demonstrating high signal quality or a high SNR 

for new electrodes, mostly by demonstrating how similar the measured EEG data are to those 

obtained with wet electrodes. Furthermore, dry electrode development investigations and 

comprehensive comparative studies between dry electrode and wet electrode BCIs have been 

conducted using EP [27,31,32], SSSEP [33], and SSVEP [34], demonstrating the applicability of 

dry electrode BCI systems. However, only a few studies have compared dry and wet electrode 

BCIs with MI-based paradigms, either by limited use of MI classification algorithms [23] or by 

different subject conditions, in which only two out of six subjects performed MI with the wet 

electrode [25]. Therefore, more research is still needed on the effectiveness and performance 

improvements of dry electrode BCI in MI-based applications. 

Recent BCI studies have shown the potential of using convolutional neural network 

(CNN)-based classifiers to improve dry electrode BCI. Schirrmeister et al. [35] demon-

strated that ConvNet was robust to noise by not misclassifying experimental trials even 

when random frequency or amplitude noise was introduced. Kojoma et al. [26] also pro-

posed a method to decode wet electrode signals from dry electrode signals with restora-

tion filters learned from simultaneously measured dry and wet electrode signals. How-

ever, few studies of these state-of-the-art CNN-based MI BCI classifier algorithms have 

yet directly confirmed and compared the classification performance between dry and wet 

electrodes with the same number of channels and identical subject conditions. 

The main contributions of our study are that it compared the performance achieved with 

dry and wet electrode BCI, and proposes a novel multi-domain CNN (MD-CNN) model 

which can reduce the performance gap between dry and wet electrode MI BCIs by improving 

the classification performance of dry electrode BCI. The MD-CNN’s multilayer structure can 

extract and learn suitable MI-related EEG features from multiple input data [36–38], and its 

multi-domain input can contain multiple EEG features that are less affected by the dry elec-

trode’s low SNR or subject-specific differences [39]. The MD-CNN model combines the mul-

tilayer structure and the multi-domain input to improve the classification accuracy of dry elec-

trode MI BCIs by learning multi-domain inputs with multiple layers to extract and classify 

EEG features from low SNR EEG signals. We first investigated the classification accuracy on 

the BCI Competition IV dataset 2a [40] to evaluate the performance of our proposed MD-CNN 

as an MI BCI classifier. We then validated the MI BCI classification accuracy of the proposed 

MD-CNN by recording the signals obtained with dry and wet electrode BCI systems from 10 

subjects over two sessions. We also compared the classification accuracy among four different 

MI BCI classifiers.  
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2. Materials and Methods 

2.1. Multi-Domain CNN Model Architecture 

We propose an MD-CNN model to reduce the classification performance gap be-

tween dry and wet electrode BCIs by improving the classification performance of the 

model with a dry electrode BCI system. The proposed MD-CNN uses the architecture of 

a multilayer deep learning model for the time, spatial, and phase domains. From each 

CNN layer, time-domain features are extracted from the temporal features such as ampli-

tude fluctuations [35], spatial-domain features are extracted from signals with maximized 

variance differences between different classes by spatial filters [41,42], and phase-domain 

features are extracted from the instantaneous phase [43]. The Fully Connected (FC) layer 

then combines the EEG features of the three domains and classifies them by weighting the 

features extracted from the most suitable domain for each subject or electrode type (Figure 

1). First, the layers in each domain adopt the architecture of the ShallowConvNet model 

[35] to extract features from the input data preprocessed into the three domains, and the 

neural network layer (FC layer) combines the features of each domain and classifies the 

MI BCI. The multiple outputs are then used to train the model, to check the training results 

for each domain, and to obtain and combine the trained domain-specific parameters. 
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Figure 1. Block diagram of the MD-CNN model’s architecture. Input data are preprocessed into 

three domains, where each plane represents a feature map, and the features extracted from each 

multilayer are concatenated. 

The MI classifier model was trained and evaluated with a randomly selected training 

set and test set using 10-fold cross-validation. The data were selected by applying a strat-

ified method that maintained the class ratio so that the percentage of samples for each 

class was preserved. Therefore, for example, in a dataset with a total of 90 trials, 81 trials 

(27 trials × 3 classes) per fold were used for the training data, and the remaining 9 trials 

were used for the test data. To augment the data, the sliding window procedure [35,44] 

was performed by sliding a 4-s window at 0.1-s intervals along the data and cropping 

them. As a result of the sliding window data augmentation, a training set of 81 × 11 and a 

test set of 9 × 11 were created. 



Sensors 2021, 21, 6672 5 of 17 
 

 

The input data were each domain with a fixed size of 31 × 1000 (channels × samples). 

The data were extracted through the first CNN layer with a receptive field size of 1 × 25 

[35,45] and the second CNN layer with a receptive field size of 31 × 1. The first CNN layer 

had 40 receptive fields and the second had 40 receptive fields. Since each receptive field 

had a different value, the size of the extracted feature map that passed the previous two 

CNN layers was 40 × 1 × 976. Next, through a batch normalization layer, interlayer recen-

tering and rescaling were performed and activated with a square function, and the data 

were compressed to 40 × 1 × 44 by an average pooling layer with a 1 × 75 kernel and a 1 × 

15 stride. Activation and dropout were performed sequentially with a log function at a 

rate of 0.5 to train the EEG features. FC layers were used for weight learning and output 

feature generation for concatenation in each domain. In order to reduce overfitting, we 

used the maxnorm weight constraint [46,47], which imposes constraints on the weight 

vectors for all neurons in the CNN and FC layers in addition to the sliding window data 

augmentation. Finally, the output features of the time-, spatial-, and phase-domain repre-

sentations were combined through the concatenated layers and again through the FC 

layer to perform weight learning for the final output. Activation of the FC layers for the 

final output was performed with the softmax function. 

To learn and combine the output features for each domain layer, we performed 

weight learning for the class label output in each domain. The epoch of model learning 

was 100 and the batch size was 32. The loss was calculated using cross-entropy, and the 

Adam optimizer was adopted for model learning with a reduced learning rate, which was 

adjusted according to the loss reduction. In addition, the model weights and hyperparam-

eters that produced the lowest validation loss with the test data were used to generate the 

predictive results. 

2.2. Multi-Domain Input Preparation 

2.2.1. Spatial-Domain Representation with a Common Spatial Pattern 

Spatial-domain representation was implemented through the common spatial pat-

tern (CSP), which uses a spatial filter to identify the internal space of the signal in which 

the variance difference is maximized [41]. Multiclass CSP can be performed by imple-

menting a binary-class CSP for each combination of classes or by using the joint approxi-

mate diagonalization (JAD) algorithm [42]. In our study, we implemented multiclass CSP 

with JAD because we wanted to use the spatially filtered signal as input data. 

The EEG signal E of class M has the input format N × T (channel N). In the response, 

CSP must obtain a covariance matrix W to maximize the variance difference to obtain the 

spatially filtered signal Z. The projection matrix W is represented by R, indicating the rep-

resentation of EEG data, and D, indicating the diagonal matrices in the following covari-

ance matrix expression, which depends on the class condition: 

� = �� (1)

����|��
� = �� �

, � = 1, 2, … , � (2)

The JAD algorithm allows us to obtain the multiclass transformation projection ma-

trix W by selecting the L columns of W that maximize the expression of mutual infor-

mation. 
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2.2.2. Phase-Domain Representation with the Hilbert transform 

Phase-domain representation is implemented through the Hilbert transform [43], 

which quantifies increases and decreases in the EEG data to calculate the instantaneous 

amplitude and phase (�). The instantaneous phase of the analytical signal z(t) is obtained 

by the following expression: 

�(�) = �(�) + ��̂(t) = �(�)���(�) 

�̂(t) =
1

�
�

�(�)

� − �

�

��

�� 
(4)
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� ���
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� − �
; � ���
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 , � = −∞, … , −1,0,1, … , ∞ (5)

�(�) = arctan(�̂(k)/�(�)) (6)

where �̂(t) is the Hilbert transform of s(t), a single channel’s time-domain data. With �̂(k) 

of discrete Hilbert transformation [48], �(�) is the instantaneous phase data of the signal, 

which was defined as the phase-domain representation of the signal and used as input to 

one of the multilayers of the model. 

2.3. Public Dataset 

To evaluate the proposed MD-CNN, we used the BCI Competition IV dataset 2a, 

consisting of EEG data for 4 MI classes (left hand, right hand, both foot, and tongue) col-

lected from 9 healthy subjects over training and evaluation sessions. It was sampled at 250 

Hz by 22 Ag/AgCl wet electrodes, with 72 trials per class and a total of 288 trials in each 

session. The MI EEG data were the MI period of 4 s after the cue and were lowpass filtered 

at 38 Hz [35] using a fourth-order zero-phase Butterworth infinite impulse response (IIR) 

filter. The steps for the input representation described above were then preprocessed by 

performing CSP (spatial-domain) and Hilbert transform (phase-domain) to generate the 

input dataset for the MD-CNN model. Finally, normalization was performed for each do-

main of the preprocessed data to scale before training the classifier. 

2.4. Experimental Dataset 

2.4.1. Subjects 

Ten healthy subjects (5 males and 5 females, all right-handed and 23–44 years of age) 

participated in 2 experiment sessions each. Eight out of 10 subjects had no previous expe-

rience of participating in BCI experiments, and none had a history of central nervous sys-

tem abnormalities or related medical histories. Prior to the experiment, the subjects were 

informed about the experimental protocols, which were approved by the Institutional Re-

view Board of Korea Institute of Science and Technology (KIST IRB number 2020-025; date 

of approval: October 29, 2020) and were conducted according to the guidelines of the Dec-

laration of Helsinki, and they provided consent to participate in the study. 

2.4.2. Experimental Setup 

The MI task performed in our experiment included two imagery tasks related to 

lower limb movement (gait and sitting down) and a resting state. During the MI task, the 

subject stood on crutches in front of a monitor adjusted to eye level and performed a men-

tal rehearsal [15,49]. When the subjects were ready to perform the trial, they were in-

structed to start by pressing the button attached to the crutch. After the button had been 

pressed, the monitor showed a 3-s fixation cross with a beep and then presented a 2-s 
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random cue, an upward arrow, a box, or a downward arrow, representing walking, rest-

ing, and sitting, respectively; the subject was then asked to perform the corresponding MI 

task for 5 s. After the 5 s of the MI task, a second beep sound played, notifying the subject 

of the end of the task and telling them to be ready for the next trial. 

The experiment consisted of 2 sessions (1 for dry electrode BCI and the other for wet 

electrode BCI) presented 1 hour apart on the same day. The session order was random-

ized, and the subjects were instructed to keep the MI used between the 2 sessions as sim-

ilar as possible. Each session consisted of 30 trials per class, with a total of 90 trials rec-

orded per session, during which the subjects were asked to minimize blinking and body 

movement during the 5-s MI task, especially for MI related to body sensations and motor 

execution. Figure 2 shows a schematic overview of the experiment, including the two 

types of electrode devices used in this study, the experimental environment and setup, 

and an example of the experimental protocol. 

 

Figure 2. Schematic overview of the experimental protocol and setup. (A) Experimental environ-

ments and setup. (B) The two types of electrodes used in this study. (C) Experimental protocol of 

the two sessions: dry and wet electrode BCI. 

2.4.3. Data Acquisition 

The EEG data were measured using both wet electrodes (actiCAP Slim, Brain Product 

GmbH, Gilching, Germany) and dry electrodes (actiCap Xpress Twist, Brain Product 

GmbH, Gilching, Germany) and a BrainAmp device (actiCHamp, Brain Product GmbH, 

Gilching, Germany) by selecting 31 channels from the international 10-20 system (FP1, 

FP2, F3, F4, F7, F8, FC1, FC2, FC5, FC6, C1, C2, C3, C4, Cz, CP1, CP2, CP5, CP6, P3, P4, P7, 

P8, Pz, TP9, TP10, O1, O2, Oz, PO9, and PO10). The reference and ground electrodes were 

placed at FCz and AFz, respectively. The impedance level was set to remain below 20 kΩ 

for the wet electrode system and 500 kΩ for the dry electrode system during the experi-

ment. The sampling rate was 500 Hz, and a 60 Hz notch filter was applied to remove 

power line noise. 

2.4.4. Signal Processing 

The EEG data were bandpass filtered from 4 to 40 Hz [50–52] using a fourth-order 

zero-phase Butterworth infinite impulse response (IIR) filter [15] and subsequently 
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downsampled to 250 Hz during preprocessing to avoid overfitting and reduce the number 

of deep learning parameters required. We then performed preprocessing and normaliza-

tion for input representation before training the classifier, as with the public dataset above. 

3. Results 

3.1. MD-CNN’s Classification Accuracy in Public Dataset 

We compared the classification accuracy of the proposed MD-CNN as a four-class 

classifier with conventional models (FBCSP [53], EEGNet [54], ShallowConvNet [35], and 

DeepConvNet [35]) for the BCI Competition IV dataset 2a. The chance level considering 

Müller-Putz et al.’s confidence limit was about 30% [55]. As shown in Table 1, the MD-

CNN model had the highest classification accuracy (78.96%) among the comparative mod-

els (FBCSP: 67.90%; EEGNet: 67.32%; ShallowConvNet: 72.73%; DeepConvNet: 67.25%) 

(one-way ANOVA; p = 0.375). In most subject-specific classification results, MD-CNN was 

the highest among the comparative models; in particular, S6 in Figure 3, which showed 

the largest performance improvement over the other models, was further investigated for 

multi-domain and single-domain classification results. Of the multi-domain classification 

accuracy (60.71%) and the single-domain classification accuracy (time: 56.31%; spatial: 

39.03%; phase: 59.14%) in S6, the multi-domain classification accuracy was the highest. 

Although there was no statistically significant difference between the multi-domain and 

the other domains (time, spatial, phase) (one-way ANOVA; p = 0.554), the multi-domain 

showed the highest classification accuracy compared with domain-specific results, except 

for S3 and S8 (Figure 4). 

Table 1. Classification accuracy of FBCSP, EEGNet, ShallowConvNet, DeepConvNet, and MD-

CNN for the BCI Competition IV dataset 2a. 

Subject FBCSP EEGNet 
Shallow 

ConvNet 

Deep 

ConvNet 
MD-CNN 

S1 78.47 76.10 84.61 77.43 87.56 

S2 53.53 47.97 53.94 49.42 62.50 

S3 83.80 91.61 90.74 87.15 90.63 

S4 60.59 51.91 65.80 51.04 74.59 

S5 60.19 56.77 53.82 60.24 69.56 

S6 47.74 51.04 52.03 51.74 60.71 

S7 90.57 71.12 88.66 74.94 94.10 

S8 70.49 77.84 82.81 76.04 85.53 

S9 65.74 81.54 82.18 77.26 85.47 

mean 

(s.d.) 

67.90 

(14.21) 

67.32 

(15.74) 

72.73 

(16.19) 

67.25 

(14.17) 

78.96 

(12.43) 
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Figure 3. Classification accuracy of the MD-CNN in each domain for S6 with the BCI Competition 

IV dataset 2a: time-domain (blue), spatial-domain (green), phase-domain (purple), and multi-do-

main representation (red). The horizontal dotted line indicates the chance level. 

 

Figure 4. Classification accuracy of the MD-CNN for each domain and subject in the BCI Competi-

tion IV dataset 2a: time-domain (blue), spatial-domain (green), phase-domain (purple), and multi-

domain representation (red). The box plots with scatter points depict the mean value and distribu-

tion for each domain. The horizontal dotted line indicates the chance level. 

3.2. MD-CNN’s Classification Accuracy on the Experimental Dataset 

3.2.1. MD-CNN Model Evaluation in Dry–Wet Electrode BCI Experiments 

We compared the classification accuracy of the proposed MD-CNN model as a three-

class classifier with that of other classifiers (FBCSP, EEGNet, ShallowConvNet, and Deep-

ConvNet) for dry and wet electrodes. The chance level considering the confidence limit 

was about 43.33% [55]. Figure 5 and Table 2 show the classification accuracy for several 

MI BCI models and electrode types. The MD-CNN model had the highest average classi-

fication accuracy for both electrode types among the compared models (58.44% for the 

dry-type BCI and 58.66% for the wet-type BCI). Moreover, our results showed that deep 

learning-based classifiers outperformed the FBCSP classifier in dry (one-way ANOVA; p 

= 0.0778) and wet (one-way ANOVA; p = 0.891) electrode BCI. Furthermore, the difference 
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in accuracy between the machine learning-based classifier (FBCSP: 44.74%) and the deep 

learning-based classifiers (EEGNet: 50.61%; ShallowConvNet: 54.17%; DeepConvNet: 

54.20%; MD-CNN: 58.44%) using dry electrodes was larger than that using wet electrodes. 

Table 2 shows that the differences in classification accuracy according to electrode 

type for the MI BCI models were 10.15% for FBCSP, 3.87% for EEGNet, 2.49% for Shal-

lowConvNet, 3.26% for DeepConvNet, and 0.22% for MD-CNN. Although there was no 

statistically significant difference in the classification accuracy between the dry and wet 

electrodes for any classifier (paired t-test, p > 0.05), the deep learning-based classifiers 

tended to have smaller differences in accuracy between the dry and wet BCI systems than 

the machine learning-based classifiers by having better accuracies for the dry electrode 

BCI. The effect size of each classifier, calculated as Cohen’s d, was 0.5816 for FBCSP, 0.4474 

for EEGNet, 0.1994 for ShallowConvNet, 0.6044 for DeepConvNet, and 0.0292 for MD-

CNN. 

 

Figure 5. Classification accuracy of the FBCSP, EEGNet, ShallowConvNet, DeepConvNet, and MD-

CNN models. The horizontal dotted line indicates the chance level. 

Table 2. Comparison of classification accuracy between dry and wet electrode BCI systems. 

Classifier 
Dry 

Mean (s.d.) 

Wet 

Mean (s.d.) 
p-Value 

Effect Size 

Cohen’s d 

FBCSP 44.74 (14.26) 54.89 (9.37) 0.10 0.5816 

EEGNet 51.57 (10.70) 55.44 (8.03) 0.22 0.4132 

ShallowConvNet 54.17 (10.66) 56.66 (10.13) 0.54 0.1940 

DeepConvNet 54.20 (7.85) 57.46 (8.22) 0.09 0.6044 

MD-CNN 58.44 (9.76) 58.66 (9.76) 0.93 0.0292 

3.2.2. MD-CNN’s Domain-Specific Classification Accuracy 

Figure 6 shows the classification accuracy for each domain for the MD-CNN model 

to confirm that each of the domain-specific learning results was dependent on the elec-

trode type. We investigated the MD-CNN’s classification accuracy for time-domain (blue), 

spatial-domain (green), phase-domain (purple), and multi-domain representations (red), 

which were produced by combining and learning the features of the three individual do-

mains. 
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Figure 6. Classification accuracy of the MD-CNN model for S10. The shading represents the stand-

ard deviation according to cross-validation. The horizontal dotted line indicates the chance level. 

(A) Classification accuracy for each domain per electrode: time-domain (blue), spatial-domain 

(green), phase-domain (purple), and multi-domain representation (red). (B) Classification accuracy 

for each electrode per domain: dry electrode (light blue) and wet electrode (dark blue). 

Figure 7 shows the classification accuracy of the MD-CNN model separated by do-

main for each subject or electrode type. For wet electrode BCI (Figure 7B), the classification 

accuracy of the time-domain representation was higher than that of the other two domains 

(time domain: 57.33%; spatial domain: 54.98%; phase domain: 55.83%), but this did not 

hold for the dry electrode BCI (Figure 7A)(time domain: 54.06%; spatial domain: 56.05%; 

phase domain: 55.72%). The multi-domain classification accuracy either followed the clas-

sification performance of the highest performing domain for each subject or was the high-

est of all classification performances. Although there was no statistically significant dif-

ference (one-way ANOVA; dry: p = 0.762; wet: p = 0.807) between the multi-domain and 

the other domains (time, spatial, phase), multi-domain classification showed the highest 

performance in dry and wet electrode MI BCI systems. 
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Figure 7. Classification accuracy of MD-CNN for all subjects. The boxplots with scatter points are 

drawn from 10-fold cross-validation results for each subject. The horizontal dotted line indicates the 

chance level. (A) Classification accuracy for each domain per electrode: time-domain (blue), spatial-

domain (green), phase-domain (purple), and multi-domain representation (red). (B) Classification 

accuracy for each electrode for each domain: dry electrode (light blue); wet electrode (dark blue). 

4. Discussion 

In this study, we proposed an MD-CNN model with a multilayer structure for three 

domains and investigated the possibility of dry electrode MI BCIs. Before training the 

proposed MD-CNN model on data collected in this study, we evaluated the proposed 

MD-CNN on the BCI Competition IV dataset 2a and identified the classification accuracy 

(78.96%). After that, 10 subjects performed a three-class lower-limb MI BCI over two ses-

sions with dry and wet electrodes. We also compared the classification accuracy of the 

proposed MD-CNN model with that of other classifiers. We demonstrated that the MD-

CNN model showed a higher classification accuracy for both the dry (58.44) and wet 

(58.66) BCI systems and a smaller difference in accuracy between the two than the other 

existing classifiers. 

4.1. Classification Performance of MD-CNN with the Public Dataset 

Some BCI studies [35,54] have sought to improve the classification accuracy of MI 

BCIs through a deep learning approach. ShallowConvNet [35], which learns spatial infor-

mation and time information from the raw EEG data, has frequently been used as a com-

parative model in this deep learning approach and reported 72.05% classification perfor-

mance for four class MI tasks using the BCI Competition IV dataset 2a in a model reim-

plemented directly in this study. Recent studies [56,57] have also proposed a model that 

leverages information from other domains rather than just a single layer that extracts only 

spatial and time information. Sakhavi et al. [57] proposed CW-CNN that generates and 
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learns the input structures with spatial and time information, and they reported a classi-

fication accuracy of 74.46% for four-class MI task classification using the BCI Competition 

IV dataset 2a. Likewise, Amin et al. [56] proposed an MCNN model that allows multiple 

features to be extracted through a multilayer network of different depths. They reported 

a classification accuracy of 75.72% for four-class MI tasks using the BCI Competition IV 

dataset 2a and compared it with other models. 

In this study, we aimed to investigate whether a deep learning model that learns 

multi-domain input data in parallel with multilayer structures could combine and utilize 

the features of the multi-domain to improve the classification performance of dry elec-

trode BCIs. The proposed MD-CNN learned multi-domain input data from three domains 

via three parallel layers, demonstrating a high classification accuracy of 78.96% for four-

class MI tasks using the BCI Competition IV dataset 2a (Table 1). The reason why MD-

CNN outperformed other models can be inferred from the classification accuracy for each 

domain of S6 (Figure 3), one of the most improved subjects. The classification accuracy in 

the time domain, which was mainly used in other models, was similar to other models. 

The augmentation of the phase domain may have helped MD-CNN improve its classifi-

cation results. Together with Figure 4, these results suggest that MD-CNN outperformed 

the existing single-domain-based algorithms by learning the features from multiple do-

mains in parallel and weighting the features of domains appropriate for the specific sub-

ject, as intended by the design. 

4.2. Classification Performance of MD-CNN with Dry and Wet Electrode MI BCIs 

After confirming its applicability through MD-CNN’s high performance in MI task 

classification with the public dataset, our study aimed to achieve its original purpose of 

reducing the difference in MI BCI classification accuracy between dry and wet electrode 

systems by proposing a novel model appropriate for dry electrode BCIs. Figure 6 and 

Figure 7 show that the classification results of each domain’s features varied by subject 

and electrode type. Among the domain-specific classification accuracies for S10, the spa-

tial-domain accuracy was the highest (66.11%) with the dry electrode system, while the 

time-domain accuracy (67.96%) was the highest with the wet electrode system. This indi-

cates that the MI-related EEG features have different domain-related characteristics de-

pending on the electrode type, even for the same subject. Furthermore, the existence of 

subject-specific domain characteristics, as shown in Figure 7, is congruent with other stud-

ies demonstrating that different subjects had different best CNN parameters [36,56] or 

inputs [36–38]. Across the entire subject cohort, the time-domain representation with the 

wet electrode BCI showed the highest average classification accuracy (57.52%) after multi-

domain BCI with 58.66%, but it had the lowest accuracy (54.06%) of the three domains 

with dry electrode BCI. These results show that MD-CNN improves classification accu-

racy by extracting and learning the EEG features that are less affected by the low SNR of 

dry electrodes across multiple domains, as intended. 

Four classifiers (FBCSP, EEGNet, ShallowConvNet, and DeepConvNet) were evalu-

ated using the same conditions as MD-CNN to compare existing dry and wet electrode 

BCI classifiers. To the best of our knowledge, we are the first to compare the MI BCI clas-

sification accuracy for the same subjects with both dry and wet electrodes using CNN-

based classifiers. As shown in Figure 5, the accuracy of the CNN-based classifiers was 

higher for both dry and wet electrode BCIs than FBCSP, and the difference in the accura-

cies between the two BCI systems was smaller than that with FBCSP. This might be asso-

ciated with the fact that CNN-based classifiers were shown to be robust to perturbation-

induced noise [35,58]. The noise caused by the low SNR of the dry electrode BCI system 

cannot be explained only by perturbations or random noises. Along with the results that 

the deep learning-based classifiers, including the proposed MD-CNN, showed a higher 

tendency than the machine learning-based FBCSP classifier in a dry electrode MI BCI (one-

way ANOVA; p = 0.0778), the proposed MD-CNN model showed the possibility that deep 

learning-based classifiers could improve the classification performance of dry electrode 
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system-based MI BCIs. Consequently, we also confirmed that the smallest difference in 

classification accuracy (0.22%, p-value = 0.93, effect size = 0.0292) between the wet and dry 

electrode MI BCIs was achieved with the proposed MD-CNN. 

4.3. Limitations and Future Work 

The main limitation of this study was that the proposed MD-CNN model showed an 

improvement against other algorithms for the public dataset and the dry electrode MI BCI 

experiment dataset but in the wet electrode MI BCI experiment dataset. These limitations 

might be related to the characteristics of MD-CNN, which exploits an approach in which 

each subject or each electrode has a specific domain with appropriate features for MI BCI 

classification. MD-CNN’s specific domain classification results for dry electrode MI BCI 

or the public dataset had higher results for domains other than the time domains, which 

are frequently used in existing algorithms, but MD-CNN’s specific domain classification 

results for the wet electrode MI BCI with little improvement had the highest results from 

the time domains (Figure 4 and Figure 7). We conjecture that a wet electrode BCI with 

proper time-domain features within the multi-domain would have no significantly im-

proved classification accuracy compared with existing algorithms that utilize the same 

proper time-domain features. As already noted, only a few studies have compared MI 

with dry and wet electrode BCIs, and none have compared classification accuracies with 

those of CNN-based classifiers. Moreover, no studies have used three classes of lower-

limb MI in a BCI, and thus we were unable to compare our accuracy with that of other 

studies. It is warranted to further improve classification accuracy by adopting different 

network structures for different domains to accommodate more appropriate features for 

each domain. Nevertheless, it is difficult to overcome the criticism that the MI BCI classi-

fication accuracies of dry and wet electrodes have become similar due to their low baseline 

of classification accuracy compared with other studies [56,59,60] related to other motor 

imagery tasks. Therefore, further research should collect and analyze the wet and dry 

electrode BCI data using more common motor imagery (e.g., right and left hands) that can 

be compared with the accuracy of other studies [37,40]. 

The main goal of reducing the difference in MI BCI classification accuracy between 

dry and wet electrode BCIs can be supported by the low effect size (d = 0.0292) with the 

proposed MD-CNN [61]. The statistically significant improvement in the performance of 

dry and wet electrode BCIs using the proposed MD-CNN over other models was not a 

precondition for the goal of reducing the performance gap between dry and wet electrode 

BCIs [62]. However, the proposed MD-CNN did not show a statistically significant im-

provement over other models in dry and wet electrode BCIs due to the small number of 

subjects [63,64]. Therefore, in future studies, sufficient subjects should be secured to con-

firm that the proposed MD-CNN has better classification performance over other models 

in dry and wet electrode BCIs. Identifying differences in the classification accuracy of the 

electrodes with CNN algorithms has been considered an important unexplored issue to 

date, and this has been achieved through this study. 

5. Conclusions 

In this study, we investigated the MI BCI classification performance with dry and 

wet electrodes by using CNN-based algorithms. We also proposed MD-CNN, a model 

based on a multi-domain CNN model with a multilayer architecture, and confirmed its 

classification performance with the BCI Competition IV dataset 2a. The classification per-

formance of MD-CNN in the public dataset showed an improved accuracy of 78.96% over 

other algorithms and appropriate subject-specific domain characteristics. The compara-

tive analysis with the experimental dataset showed that the difference in performance be-

tween the two electrode systems was reduced with CNN-based algorithms and was the 

smallest with MD-CNN. Furthermore, the proposed MD-CNN improved the classifica-

tion performance by combining domains with EEG features suitable for MI classification, 



Sensors 2021, 21, 6672 15 of 17 
 

 

which may vary by subject or electrode type. These experimental results showed the pos-

sibility of using dry electrodes in the MI BCI field by developing classification algorithms 

based on deep learning. 
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