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Abstract: In this paper, we propose a multi-view stereo matching method, EnSoft3D (Enhanced
Soft 3D Reconstruction) to obtain dense and high-quality depth images. Multi-view stereo is one of
the high-interest research areas and has wide applications. Motivated by the Soft3D reconstruction
method, we introduce a new multi-view stereo matching scheme. The original Soft3D method is
introduced for novel view synthesis, while occlusion-aware depth is also reconstructed by integrating
the matching costs of the Plane Sweep Stereo (PSS) and soft visibility volumes. However, the Soft3D
method has an inherent limitation because the erroneous PSS matching costs are not updated. To
overcome this limitation, the proposed scheme introduces an update process of the PSS matching
costs. From the object surface consensus volume, an inverse consensus kernel is derived, and
the PSS matching costs are iteratively updated using the kernel. The proposed EnSoft3D method
reconstructs a highly accurate 3D depth image because both the multi-view matching cost and
soft visibility are updated simultaneously. The performance of the proposed method is evaluated
by using structured and unstructured benchmark datasets. Disparity error is measured to verify
3D reconstruction accuracy, and both PSNR and SSIM are measured to verify the simultaneous
enhancement of view synthesis.

Keywords: stereo vision; multi-view stereo matching; iterative; refinement; view synthesis

1. Introduction

The 3D depth data are widely used in many applications such as object detection,
autonomous driving, 3D SLAM, and light-field, etc. The 3D depth of real objects can
be obtained by several methods, such as the structured-light, stereo vision, ToF, and
LiDAR methods, etc. Among these, stereo vision is one of the most common techniques
that can acquire high-resolution 3D depth maps [1–3]. Multi-view stereo vision has the
advantage of obtaining accurate and dense depth (disparity) information using many
cameras from different viewpoints. However, it is still difficult to obtain perfect 3D depth
maps, even when using multiple cameras, due to many inherent stereo vision problems
such as occlusion, light reflection, and textureless objects.

Multi-view stereo vision can be used also for novel view synthesis. In a view synthesis
technique, a new image is generated from a novel view using the depth and color of
neighboring views (in the geometry-based view synthesis). Therefore, the depth accuracy is
very important in view synthesis because the pixel color in the new image is determined by
the depth of the neighbor views. Penner et al. [4] propose a view synthetics method that is
based on the occlusion-aware depth obtained by a soft 3D reconstruction method (Soft3D).
In [4], the authors introduce a volumetric space called soft visibility as the probability
measure of the voxel visibility from the views of all cameras. The soft visibility is mainly
used to iteratively update the inverse depth (disparity) of occlusion areas. A summary of
the Soft3D method is as follows. When provided with the multi-view images and camera
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external poses, the pairwise matching costs between a reference view and its neighbor
views are computed using the Plane Sweep Stereo (PSS) algorithm [5,6]. Next, the PSS
matching costs are integrated to generate the disparity map of the reference view. After
the disparity maps of all the reference views are generated, they are used to compute
the soft visibility of all views. The soft visibility and the PSS matching costs are then
used to generate new disparity maps. With this closed-loop scheme, the soft visibility is
updated iteratively.

However, the Soft3D method has an inherent problem because only the soft visibility
is updated. The final disparity map of a reference view is determined by the weighted
averaging of the soft visibility and the PSS matching costs. Because the original PSS
matching costs contain incorrect values due to occlusion, color noise, a textureless surface,
speckle reflex, etc., they continuously affect the disparity map generation during the
refinement process. One method to solve this problem is to use accurate-guided depth data
which can be obtained from an additional depth sensing device, such as LiDAR sensors [7].
This method refines the incorrect matching costs using sparse-guided depth data. However,
this method requires additional processes such as the calibration between the camera and
external device.

In this paper, we propose a new multi-view, stereo matching pipeline called EnSoft3D.
The goal of the proposed method is to obtain high-quality depth maps by improving the
accuracy of PSS matching costs. Our main contributions are summarized as follows:

(1) A new cost update process is introduced in the pipeline of EnSoft3D to simultaneously
refine the PSS matching costs and soft visibility of multiple views.

(2) The PSS matching cost is refined using the object surface consensus. The object surface
is determined in sub-pixel accuracy from the surface consensus volumes.

(3) An inverse Gaussian kernel is derived from the object surface. Then, the kernel is
used to minimize the PSS matching costs around the surface.

After several update iterations, the PSS costs of both the surface and occlusion pixels
are simultaneously improved. The final disparity maps are generated using the updated
PSS cost and soft visibility.

An example in Figure 1 shows that the proposed method generates a more accurate
depth compared with the result of Soft3D. The qualitative and quantitative evaluation of
the proposed method is completed using multi-view stereo datasets with a small camera
baseline (Middlebury 2003, 2006 [8,9], ETH3D low resolution [10], Fountain-P11 [11]). An-
other evaluation is completed using the results of the view synthesis. By the qualitative
evaluation of the new synthesized images, we show the improved performance of our
EnSoft3D method. Evaluation is completed with the measurement of the peak signal-
to-noise ratio (PSNR) [12] and the structural similarity index map (SSIM) [13] using the
Middlebury dataset.
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Figure 1. Disparity results using structured multi-view images from Middlebury 2006 (Baby2). Unlike Soft3D, which
calculates only visible probability using initial matching costs, EnSoft3D updates the matching costs using object surface
probability. It is possible to obtain an accurate disparity map because both the matching cost and the visible probability are
refined simultaneously.
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The content of our paper is as follows: Section 2 shows the previous studies on the
stereo matching technique including the follow-on works of Soft3D; Section 3 describes the
base algorithms of the proposed method, PSS and Soft3D; Section 4 describes the details of
the proposed method; and Section 5 shows the qualitative and quantitative evaluation of
the 3D reconstruction and view synthesis.

2. Previous Works

In multi-view stereo vision, the refinement of either the disparity map or matching cost
volume is frequently performed for dense and accurate 3D reconstruction. For the disparity
map refinement, filtering techniques are commonly applied using a guided filter [14] and
weighted median filter [15,16]. However, 2D image filtering techniques have limitations in
disparity improvement. In order to refine the disparity map, such filters should be applied
to a 3D matching cost volume where an accurate disparity is selected from the refined
cost volume.

Hosni et al. [17] propose a cost volume refinement method using the guided filter
technique. This method applies a guide filter to each disparity plane of the stereo matching
cost volume. The disparity noise is removed and the object edge in the cost volume is
preserved by the guided filter. Therefore, this method generates edge-preserved disparity
maps. This method is simple and very efficient; however, it is subject to incorrect refinement
error due to the color similarity of the guiding image.

Another cost volume refinement method is Guided Stereo Matching proposed by
Poggi et al. [7]. For accurate disparity map generation, this method uses additional 3D
LiDAR sensor data. It generates a Gaussian kernel based on the 3D depth from the LiDAR
sensor. Then, the cost value is updated using the Gaussian kernel. Because of the accuracy
of the LiDAR sensor, it is possible to obtain low-noise disparity maps. However, an
additional depth sensor is necessary and the measurement error of the sensor can be
included in the disparity map.

Several problems with multi-view stereo vision are solved using deep learning meth-
ods. At the early stage of deep learning research, it was only used in some cases, such
as for cost computation using deep features and disparity map refinement [18–20]. Re-
cently, various deep learning-based methods were introduced for multi-view stereo vi-
sion. For example, DeepC-MVS [21] uses a deep network for confidence prediction and
DeepPCF-MVS [22] uses a segmentation network for multi-view stereo. In addition, several
end-to-end methods are also proposed, such as MVDepthNet [23], DeepMVS [24], and
DPSNet [25]. Due to such deep learning investigations, the performance of multi-view
stereo matching has greatly increased. However, it is still difficult to obtain a consistent
performance in various environments due to the limited training dataset.

Multi-view stereo vision is also used for view synthesis [26]. In the geometry-based
view synthesis, the depth acquisition of both occluded and non-occluded areas is very
important to synthesize new images in novel viewpoints. The Soft3D method was originally
introduced for novel view synthesis [4]. Soft3D introduced a view synthesis pipeline to
synthesize accurate images, even in the occlusion areas, by a visibility refinement process.
The original work was cited in many follow-on view synthesis investigations [27–29].
However, few investigations were introduced to iteratively update the PSS matching costs
for the purpose of obtaining accurate 3D depth reconstruction. In addition, due to the
recent research trend of using deep learning network for view synthesis, most follow-on
investigations employed deep learning networks to refine the volume of PSS matching
cost or multiplane images (MPI). Zhou et al. [27] introduce MPI which represents an
approximate light field as a stack of semi-transparent, colored depth layers. They use a
deep learning network to generate color and alpha images of MPI from the PSS volume
of a stereo pair. This approach is similar to Soft3D in that the PSS volume is used as the
input of the deep network to decide the weights of blending the background color with the
PSS matching features for MPI generation. Flynn et al. [28] introduce a gradient descent
deep learning network to iteratively enhance the color and alpha of MPI. The iterative
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enhancement scheme of the network is similar to the refinement of the soft visibility
of Soft3D. Srinivasan et al. [29] introduce a view extrapolation method using the MPI
training network. This network employs a 3D convolutional network to generate and train
occlusion-free MPI from PSS volumes as network inputs. The generation of occlusion-free
MPI is similar to the soft visibility refinement of the Soft3D method.

In terms of 3D reconstruction, the Soft3D method has an inherent problem in that it
does not refine the PSS matching cost volumes. Because the initial PSS matching cost may
contain erroneous values, updating only the soft visibility could have inherent limitations
for obtaining more accurate depth and view synthesis results. In contrast, we propose a
new multi-view stereo matching scheme to simultaneously update both visibility and PSS
matching costs. Using the proposed scheme, the matching costs of difficult image areas,
such as a textureless surface, color noises, and occluded areas, can be refined better than
Soft3D. By improving the 3D reconstruction performance using the proposed method, we
can also improve the novel view synthesis performance. The proposed scheme is shown
in Figure 2.
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Figure 2. The proposed EnSoft3D multi-view stereo matching scheme. In each reference view, the PSS matching costs are
computed using neighbor views and then they are integrated to the reference view. Then, a disparity map is generated
from the integrated matching cost volume using cost volume filtering (CF) and Winner-Take-All (WTA). Disparity maps of
all views are used to compute the object surface probability and the soft visibility in each view. The PSS matching cost is
updated using the consensus volumes and re-integrated with the soft visibility. This closed-loop process is repeated several
times to obtain final disparity maps of all views.

3. Framework of Soft 3D Reconstruction

The proposed method is developed based on the Soft3D method which was originally
introduced for view synthesis. In this section, we briefly describe the 3D reconstruction
framework of the Soft3D method. The 3D reconstruction framework consists of two
steps, initial disparity map generation and disparity refinement. The initial disparity map
is generated using the PSS algorithm. The PSS method is a volumetric, cost-matching,
computation method based on projection and back-projection between multi-view images.
The PSS algorithm needs a significant amount of computation; however, it has an advantage
for estimating an initially accurate disparity map. The second step is disparity refinement.
This step computes and refines the soft visibility iteratively. The refined soft visibility is
used for obtaining accurate, occlusion-aware disparity maps.

In Soft3D and EnSoft3D, all processes are performed in the disparity space (inverse
depth). Therefore, we explain the detailed algorithms in the disparity space. The intrinsic
and extrinsic parameters of multi-view cameras are supposed to be calibrated.
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3.1. Initial Disparity Map Generation

The PSS algorithm computes the matching cost volumes of a reference view using
all of the neighbor views. A matching cost volume consists of multiple inverse depth
planes which have the same resolution as input image. The number of the inverse depth
planes (disparity ranges) is usually defined as the depth range of a reconstruction scene. In
addition, the interval between each inverse depth plane is determined by a scale factor s.
The relationship between the inverse depth (disparity) d and real depth Z in 3D space is
calculated by (1):

s =
D · distmin

f
, Z =

f ·s
d

, (1)

where D is the number of inverse depth planes to be sampled (max disparity), distmin is
the minimum depth, and f is the focal length.

The reference view has N − 1 PSS matching cost volumes, which N is the number of
input views. Each PSS matching cost volume Vr,i contains the matching cost between the
reference view r and i-th neighbor view (i ∈ N − 1). As for the cost computation, we use
the Sum of Absolute Difference (SAD) [30] and the Census Transform (CT) [31], whose
cost is computed as:

SAD(Ir(x, y), Ii(xi, yi)) =
∑w
∣∣(Ir(xw, yw)− Ii

(
xw

i , yw
i
))∣∣

nw
, (2)

CT(Ir(x, y), Ii(xi , yi)) = τadg·∑
w

1(1(Ir(xw, yw) < Ir(x, y)) 6= 1(Ii(xw
i , yw

i ) < Ii(xi , yi))), (3)

Vr,i(x, y, d) = α·SAD(Ir(x, y), Ii(xi, yi)) + (1− α)·CT(Ir(x, y), Ii(xi, yi)) , (4)

where (xi, yi) is the pixel coordinate of i-th neighbor view, whose pixel is computed by the
perspective projection geometry based on the camera pose; the voxel Vr,i(x, y, d) contains
a cost value of between (x, y) and (xi, yi) pixels; and nw is the number of pixels in the
pixel window w. SAD computes the color difference between the reference and neighbor
views. A matching function 1(condition) in CT is the characteristic function, where its
output is 1 if the condition is satisfied, and is otherwise 0. In (3), CT compares the color
consistency between the reference and a neighbor view using the hamming distance. The
scale of hamming distance is relatively smaller than that of SAD; therefore, we adjust cost
importance using τadg. Two cost computations are completed in a matching window (w).
Then, the two costs are integrated by using a user parameter α. In normal experiments, the
user parameters are set as follows; α = 0.3, and τadj = 5, and w is between 3 × 3 and 7 × 7
depending on the input image resolution.

When all PSS matching cost volumes of the reference view are computed, they are
all integrated into a new cost volume by simple averaging, which is defined as the initial
cost volume of the reference view, as in (5). Then, to remove noisy cost values, an edge-
preserving filter (Wguide, guided filter) is applied to each inverse depth plane in the initial
cost volume Vr, as in (6). Finally, the initial disparity map Dr is generated using the
Winner-Take-All (WTA, (7)) method:

Vraw
r (x, y, d) =

∑i∈N−1 Vr,i(x, y, d)
N − 1

, (5)

Vr(x, y, d) = ∑
(x̂,ŷ)∈Wguide

Wguide(x̂, ŷ)Vraw
r (x̂, ŷ, d) , (6)

Dr(x, y) = argmin
d∈D

(Vr(x, y, d)) . (7)

Figure 3 shows an example of the initial disparity map generated by the PSS algorithm.
The initial disparity map has erroneous pixels in the occlusion and textureless areas. The
Soft3D method refines the disparity in the occlusion area by employing a soft visibility.
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3.2. Refinement of Disparity Cost Volume

The Soft3D method proposed in [4] computes the soft visibility of all views to refine
the disparity of the occlusion area. In Soft3D, ‘Soft’ means that the visibility of a 3D voxel is
softly represented by the probability values. Thus, the soft visibility is the visible probability
of a voxel in the multi-view images. The soft visibility is computed as follows. When
there is an initial disparity map of the reference view r, the vote value (VoteValr) and vote
confidence (VoteCon fr) volumes are generated using (8) and (9). The vote value represents
the hard object surface volume and the vote confidence represents the hard visibility
volume. Here, ‘hard’ means that those volumes consist of binary values. Therefore, voxels
which are supposed to be on the object surface in VoteValr are set to 1 and the others are
set to 0. For the VoteCon fr volume, all visible voxels in front of the object are set to 1 and
those behind the object are set to 0:

VoteValr(x, y, d) =

{
1 d = Dr(x, y)
0 otherwise

(8)

VoteCon fr(x, y, d) =

{
1 d ≥ Dr(x, y)
0 otherwise

. (9)

Once the VoteValr and VoteCon fr volumes of all the views are computed, they are
used to compute the consensus volume (Consensusr) of each reference view as follows:

Consensusr(x, y, d) =
∑i∈N VoteVali

(
x′i , y′i, d′i

)
∑i∈N VoteCon fi

(
x′i , y′i, d′i

) . (10)

where (x′i , y′i, d′i) are the voxel coordinates, which are the projection of a voxel (x, y, d)
of the reference view to the i-th neighbor view. The consensus value ranges from 0
to 1, which can be considered as the surface probability. If the value is close to 1, it
means that the voxel has a high probability of belonging to a real object surface. After
Consensusr(x, y, d) is computed, the guide filter is applied to refine the probability using
multi-view images. Finally, as in (11), the soft visibility volume So f tVisr(x, y, d) of the
reference view is computed using the cumulative summation of consensus in each pixel ray:

So f tVisr(x, y, d) = max(0, 1− ∑
d̂∈D,d̂>d

Consensusr(x, y, d̂)). (11)

So f tVisr(x, y, d) represents the visible probability of a voxel in the reference view.
Therefore, in an ideal case, voxels in front of the object surface have a value of 1, and the
other voxels behind the surface have a value of 0.

The voxels in the occlusion area are not visible, thus their PSS matching costs are
most likely erroneous. However, in the PSS algorithm, these erroneous matching costs are
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integrated with the other costs calculated from the other views. This is one of the reasons
that the incorrect disparity is computed in the occlusion areas. To reduce the effect of
the erroneous costs of invisible voxels, the Soft3D algorithm uses the soft visibility in the
weighted averaging the PSS matching costs to obtain the refined cost volume V′r (x, y, d) as
shown in (12):

V′r (x, y, d) =
∑i∈N−1 Vr,i(x, y, d)So f tVisi

(
x′i , y′i, d′i

)
∑i∈N−1 So f tVisi

(
x′i , y′i, d′i

) . (12)

4. Enhancement of Soft 3D Reconstruction

In this section, we describe the details of the EnSoft3D method in order to obtain an
improved 3D reconstruction performance. Soft visibility (So f tVisi) is a key property to
decide the integration weight of the PSS matching cost volumes (Vr,i), between the reference
(r) and a neighbor view (i), as shown in (12). The Soft3D method iteratively updates the
disparity maps using only the soft visibility. However, to enhance the accuracy of the
disparity maps, the erroneous PSS matching costs must be improved because Vr(x, y, d)
is the combination of the soft visibility and the PSS costs. This is our main motivation for
introducing the PSS matching cost update process.

The proposed update process consists of two steps. The first step is the object surface
decision which decides the object surface in each pixel’s ray in the disparity space. The
second step is the matching cost update using the decided object surface. By repeating
these two steps, the matching costs of the surface voxels become reduced compared to the
other voxels.

4.1. Object Surface Decision

Multi-view stereo is a very time-consuming and difficult problem because all the
matching costs of multiple stereo images must be optimized simultaneously. If there
is an external depth sensor which can guide the disparity of some reference views or
pixels, matching cost refinement can be completed with the guiding views, as described
in Section 1. However, using an external device requires additional processes (coordinate
calibration, data conversion), and some device measurement errors can affect the result.

The Soft3D method uses consensus volumes to compute the soft visibility as shown
in (11). A consensus volume is computed in the disparity space, and each voxel value
represents its likelihood of belonging to the object surface. Therefore, the consensus is
iteratively improved and it has a high value near the object surface. Figure 4 shows an
example of the consensus update in an occlusion pixel. In the beginning, the peak consensus
is at an incorrect disparity position. However, after several iterations, it is refined and the
peak point moves to the correct disparity value. From this consensus update process, we
find that the surface consensus can be a reliable property to update the PSS cost volumes.

However, the object surface is sometimes occluded by another surface as shown in
Figure 5 (left). In Figure 5, the blue-colored point is visible from the reference view but the
red-colored point is not. On the other hand, both points can be visible from another view
as shown in the figure. Even though the red-colored point is not visible from the reference,
the surface consensus can also be high at this point because the other neighbor views can
see the surface point.
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Figure 5. Multiple consensuses in occlusion areas (red box). The matching cost of the occluded areas
must be updated by only the visible surface. For this reason, the proposed method decides the object
surface by using the consensus with the visibility mask.

When the surface consensus of the reference view is used to update the PSS matching
cost, only visible surfaces should be used. To prevent the consensus of an occluded surface
from updating the PSS matching cost, we multiply a visibility mask Bvis to the surface
consensus to exclude the occluded surface:

Bvis(x, y, d) =

{
1 So f tVis(x, y, d) 6= 0
0 otherwise

. (13)

In the right of Figure 5, two images of consensus surfaces are shown. Two images are
generated from the consensus volume of the center (reference) from the total of seven input
images. The red boxes show some occluded areas from the center view. In the top-right
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image, the surface consensus is represented without a visibility mask. Therefore, many
erroneous background surfaces are shown in the red boxes. In contrast, using the binary
mask, the surface consensus represents the only visible surface from the reference view.

The consensus volume is represented in discontinuous space (due to integer disparity
values). In order to use the consensus to efficiently update the PSS matching cost, it
is required to represent the surface position (consensus) in the sub-pixel accuracy. To
represent the object surface in the sub-pixel accuracy, quadratic interpolation (Quad) is
used to find the sub-pixel peak position of the surface, as shown in Figure 6. Given the
pixel position in the consensus volume, we first find the peak consensus along the disparity
axis (dmax). Then, the sub-pixel position (d′max) is interpolated using dmax and neighbor
voxels as follows:

dmax(x, y) = argmax
d∈D

(Bvis(x, y, d)· Consensusr(x, y, d)) , (14)

d′max(x, y) = Quad(dmax − 1, dmax, dmax + 1) . (15)
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After all the peak consensus positions are interpolated in the reference image, the
PSS matching cost is updated. After several iterations, the sub-pixel surface position d′max
becomes very accurate. Accordingly, the PSS matching cost is also accurately updated.

4.2. Update of Multi-View Matching Cost

The goal of EnSoft3D is to iteratively update the initial PSS multi-view matching costs
using the surface consensus. This means that the matching cost of a voxel corresponding to
the object surface should be minimized. Because the matching cost is the measure of color
error between the matched pixels, the matching cost between the correct pixels must be at
a minimum. In the proposed EnSoft3D method, we use the surface consensus to reduce
the matching cost at the correct disparity position.

If the initial surface consensus is perfectly computed, it can be used to reduce the
matching cost at a correct disparity position. However, the surface consensus can also
contain erroneous values and, by reducing only one matching disparity, the local minima
problem can occur. Therefore, similar to [7], we use the Gaussian kernel at the consensus
peak position to reduce the matching costs of neighbor disparities at the same time. To
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reduce the PSS matching costs around the consensus peak, an inverse Gaussian kernel is
used as shown in (16):

Vnew
r,i (x, y, d) = Vr,i(x, y, d) ·

(
1− β′(x, y)·exp

(
− (d′max(x, y)− d)2

2σ2

))
. (16)

The inverse Gaussian kernel is derived using d′max(x, y) and the standard deviation σ.
When the Gaussian value becomes close to 1, Vnew

r,i (x, y, d) becomes close to zero. Updating
the matching cost with too low a value causes another local minimum problem. Therefore,
caution must be taken so that the value of Vnew

r,i (x, y, d) is not too low. Sometimes, the
matching cost can be very actively updated in some strong texture areas. Therefore, we
employ and multiply an adaptive weight β′(x, y) to adjust the Gaussian peak values:

var(x, y) =
1

nw
∑
w

(
p(xw, yw)−

∑w p(xw, yw)

nw

)2
, (17)

varn(x, y) =
var(x, y)

var(x, y) + ε
, (18)

β(x, y) = τintensity·exp(γ·varn(x, y)) , (19)

β′(x, y) =

{
β(x, y) varn(x, y) < τvariance

0.02 otherwise
, (20)

where variance var( x, y) is computed within a window (w) and varn(x, y) is a normalized
variance using a parameter ε. Adaptive weight is computed by varn(x, y) and a constant γ.
The τintensity is an update weight to avoid an excessive update, and this weight is used
when the variance of a pixel is smaller than threshold τvariance. Other pixels are updated
weakly to avoid local minima.

The PSS matching cost volumes are iteratively updated by the proposed scheme in
EnSoft3D. The refined matching costs and soft visibility are re-integrated as described
in Section 4.3. Since the accuracy of the multi-view matching cost is improved, it is also
possible to obtain a more accurate disparity map than Soft3D. With this proposed update
scheme, both the consensus and soft visibility become more accurate in the next iteration,
and the improved properties further improve the final disparity map generation.

A comparison of the matching cost update between Soft3D and EnSoft3D is shown in
Figure 7. The disparity image in the graph below shows the matching costs of a pixel at the
red arrow in the figure. In Soft3D, the matching cost at the incorrect disparity position does
not change because the PSS matching cost is not refined. In contrast, the matching cost of
EnSoft3D is iteratively updated and reaches a minimum at the correct disparity. As shown
in the disparity maps, it is known that the proposed method can improve the performance
of the disparity generation more than Soft3D.

4.3. New Matching Cost Integration

The Soft3D method generates a new cost volume Vr′(x, y, d) which stores the result of
the weighted average of soft visibility and PSS matching costs, as in (12). In contrast, in
EnSoft3D, the results of the weight average are stored at the initial cost volume Vr(x, y, d)
which is defined in (6). The proposed computation of Vr(x, y, d) using the updated PSS
matching costs is shown in (21). The reason for a different method of storage is that the 3D
reconstruction requires an estimation of the disparity value at a sub-pixel accuracy. For
sub-pixel disparity estimation, we perform quadratic interpolation as the last step in the 3D
reconstruction. This step uses Vr(x, y, d) to interpolate d and its neighbors, d− 1 and d + 1
for sub-pixel disparity in each pixel ray. However, if the soft visibility of all corresponding
disparities is 0 (such as behind the object surface), Vr(x, y, d) cannot be integrated. In this
case, if the integrated cost is stored in a new volume, Vr′(x, y, d), some pixels cannot be
interpolated due to empty visibility voxels. To prevent this kind of interpolation error,
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we store the integrated costs in Vr(x, y, d). With this new integration method, only the
visible voxels of Vr(x, y, d) are updated, and non-updated voxels of Vr(x, y, d) keep the
previous values.
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After Vr(x, y, d) is computed, the guided filter is applied to every inverse depth plane
and a refined disparity map is computed by referring only to the updated voxel (processing
only visible areas) with the following equation:

Vr(x, y, d) =
∑i∈N−1 Vnew

r,i (x, y, d)So f tVisi
(
x′i , y′i, d′i

)
∑i∈N−1 So f tVisi

(
x′i , y′i, d′i

) , (21)

Dnew
r (x, y) = argmind∈D((1− Br(x, y, d) ·τmax + Br(x, y, d)·Vr(x, y, d)) , (22)

where Br(x, y, d) is a binary flag indicating whether the voxel (x, y, d) is updated or not,
and τmax is a threshold value for avoiding the non-updated voxel.

The refined disparity map Dnew
r is again used as an input to the EnSoft3D multi-view

stereo matching scheme. After a sufficient number of iterations, both the soft visibility and
PSS matching costs are correctly refined, and very accurate disparity maps are obtained.

5. Experiment and Evaluation

In this section, the performance of proposed method is compared with the state-of-
the-art multi-view stereo matching and view synthesis methods. For the experiments,
we use two types of multi-view stereo images. One consists of structured multi-view
images obtained with a calibrated array camera and the other consists of unstructured
multi-view images obtained with a single moving camera. If the camera’s intrinsic and
pose parameters are not available, we use the COLMAP [32] algorithm for calibration.

The first evaluation is completed with a structured multi-view image dataset Middle-
bury which is famous for stereo vision. The 3D reconstruction performance is measured
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by the ratio of bad pixels. The view synthesis evaluation is measured by the quality of
synthesized images. The view synthesis is completed with the algorithm in Soft3D. For the
quantitative analysis of view synthesis, we measure the peak signal-to-noise ratio (PSNR)
and structural similarity index map (SSIM) between the synthesized image and the ground
truth image.

The second evaluation is completed by using the unstructured multi-view image
dataset. In order to show the effect of the proposed matching cost refinement, we use
multi-view images which have a small camera movement so that all the images have
common overlapping areas. Fountain-P11 and part of the ETH low-resolution dataset are
used as the unstructured multi-view image dataset.

Our computing environment is as follows: Intel i9-10900K, 64GB RAM, and sources
which are implemented by C++. The number of inverse depth planes in the PSS algorithm
is between 80 and 120. The refinement iteration is completed a minimum of five to a
maximum of ten times.

5.1. Structured Dataset: Middlebury
5.1.1. D Reconstruction of Middlebury 2003 Dataset

Cones and Teddy are famous images in the Middlebury 2003 dataset for stereo matching
evaluation. In our evaluation, we use nine-view quarter-size images. A visual comparison
between EnSoft3D and Soft3D is shown in Figure 8. The red-colored pixels in the disparity
map are bad pixels when the error threshold is one pixel. Compared with Soft3D, EnSoft3D
shows a smaller number of bad pixels. In the Teddy image, some pixels consist of a repeated
pattern and a large textureless area. In this area, EnSoft3D cannot sufficiently refine the
depth due to the incorrect surface consensus.
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For a detailed quantitative analysis, our results are compared with many stereo
matching algorithms evaluated in the Middlebury v2 benchmark [33], as shown in Table 1.
Among a total of 167 algorithms, 20 well-known and high-ranking algorithms of average
accuracy are compared. In addition, a couple of multi-view stereo algorithms, MVSegBP
and MultiCamGC, are also compared. In this comparison, three different measurements are
used for bad pixels; nonocc, all, and disc mask. The nonocc evaluates the pixels excluding
the occlusion area, the all evaluates all pixels, and the disc evaluates only the discontinuous
area. In each table, 22 algorithms including EnSoft3D and Soft3D are ranked by the bad
pixel ratio when the error threshold is 0.5 pixels for the all mask. In the Cones image,
EnSoft3D ranks 1st Top one and the bad pixel ratio is 5.35. When the error threshold is 1.0,
EnSoft3D ranks 2nd behind the PM-Forest [34] and the bad pixel ratio is only 2.73. In Teddy
image, our method ranks 4th when the threshold is 0.5 pixel and 2nd when the threshold is
1.0 pixels.
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Table 1. The ratio of bad pixels when error threshold is 0.5 and 1.0 pixel. Evaluation and ranking are
from the Middlebury v2 benchmark (online: [33]) (Cones, Teddy). The ranking of listed algorithms is
sorted in the descending order when error threshold is 0.5 for all pixels.

Cones (# of Disparity
Plane: 80) Err Threshold: 0.5 Err Threshold: 1.0

Algorithm (Online rank) nonocc all disc nonocc all disc

EnSoft3D 2.85 5.35 7.41 1.42 2.73 4.22
PM-Forest (1) 5.11 6.35 9.31 1.32 2.02 3.69

Soft3D 3.66 6.75 9.13 1.63 3.35 4.78
PM-Huber (2) 2.70 7.90 7.77 2.15 6.69 6.4

ARAP (4) 3.00 8.55 8.35 2.08 6.73 6.17
GC+LocalExp (6) 3.46 8.65 9.72 2.72 7.42 7.94

PM-PM (7) 3.51 8.86 9.58 2.18 6.43 6.37
SubPixSearch (10) 4.02 9.76 10.3 2.24 6.87 6.5
PatchMatch (11) 3.80 10.2 10.2 2.47 7.80 7.11
LAMC-DSM (17) 4.00 11.0 9.79 2.09 8.31 6.1
C-SemiGlob (23) 5.37 11.7 12.8 2.77 8.35 8.2

IGSM (25) 6.17 11.8 12.0 2.14 6.97 6.27
ADCensus (28) 6.58 12.4 11.9 2.42 7.25 6.95
SemiGlob (30) 4.93 12.5 13.5 3.06 9.75 8.9
CrossLMF (46) 7.55 13.5 14.5 2.34 7.82 6.8

BSM (56) 6.45 14.1 13.1 2.34 8.79 6.8
SubPixDoubleBP (70) 8.49 14.7 16.5 2.93 8.73 7.91
AdaptLocalSeg (76) 7.78 15.0 16.2 2.73 9.69 7.91
HistAggrSlant (81) 9.34 15.1 16.2 2.90 8.40 7.97

CVW-RM (106) 12.6 17.9 18.6 2.96 7.71 7.72
MultiCamGC (113) 12.0 18.8 21.2 4.89 11.8 12.1

MVSegBP (130) 14.4 21.2 24.5 5.29 11.3 14.5

Teddy (# of disparity
plane: 200) Err threshold: 0.5 Err threshold: 1.0

Algorithm (Online rank) nonocc all disc nonocc all disc

PM-Forest (1) 4.95 5.45 11.3 1.91 2.29 5.47
GC+LocalExp (3) 5.16 7.73 14.2 3.33 4.88 8.87

PM-Huber (5) 5.53 9.36 15.9 3.38 5.56 10.7
EnSoft3D 6.77 9.94 17.4 3.86 4.85 10.9
ARAP(8) 5.52 10.7 15.6 3.01 6.47 9.51

SubPixSearch (9) 6.71 11.0 16.9 4.00 6.39 11.0
Soft3D 9.61 11.3 21.4 5.91 6.57 13.8

PatchMatch (10) 5.66 11.8 16.5 2.99 8.16 9.62
PM-PM (11) 5.21 11.9 15.9 3.00 8.27 9.88
IGSM (13) 9.02 12.1 21.3 4.08 5.98 11.4

ADCensus (15) 10.6 13.8 20.1 4.1 6.22 10.9
LAMC-DSM (19) 7.29 14.6 19 4.63 10.4 12.7

BSM (21) 11.2 15.2 24.2 5.74 8.95 14.8
SubPixDoubleBP (26) 10.1 16.4 21.3 3.45 8.38 10.0

C-SemiGlob (36) 9.82 17.4 22.8 5.14 11.8 13.0
CrossLMF (37) 11.1 17.5 24.1 5.50 10.6 14.2

HistAggrSlant (40) 11.2 17.6 22.5 3.44 8.82 9.77
CVW-RM (48) 15.0 17.9 26.2 4.70 6.94 12.1
SemiGlob (56) 11.0 18.5 26.1 6.02 12.2 16.3

AdaptLocalSeg (80) 12.9 20.0 26.5 5.32 11.9 14.5
MVSegBP (93) 15.9 21.5 29.8 6.53 11.3 14.8

MultiCamGC (153) 24.3 30.4 36.9 12.0 17.6 22.0

The performance of the proposed method depends on the accuracy of consensus and
visibility. For example, if the region of the textureless or repeated pattern is wide, both
the consensus and visibility can be incorrectly computed due to color ambiguity. In this
reason, the effect of iterative enhancement of PSS cost can be reduced. After several real
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experiments, we find that some pixels in such textureless regions can be refined after a
large number of iterations. However, this requires a long processing time and can cause
the local minimum problem in PSS cost update. This is why almost all bad pixels in Teddy
are distributed at the bottom of the image, a textureless planar region as shown in Figure 8.
This problem could be improved using an additional process in consensus computation,
such as planar surface fitting.

5.1.2. D Reconstruction of Middlebury 2006 Dataset

As the second evaluation for 3D reconstruction, we use the Middlebury 2006 dataset
to compare the disparity error of the proposed method with a variety of two-view and
multi-view stereo matching methods. For a fair comparison, we refer to two recent stereo
matching papers [35,36] for a quantitative error analysis of the disparity image recon-
struction. In [35], a multi-scale fusion stereo matching method was proposed to obtain an
accurate disparity in the textured and textureless regions. Table 6 in [35] presents and com-
pares the disparity errors of eight different methods, including the author’s method, using
the Middlebury 2006 dataset. In this comparison, several patch-match-based methods are
also included. In [36], a matching cost volume filtering method named FASW is proposed.
Table 5 in [36] also presents the disparity errors of five different methods using the same
Middlebury 2006 dataset.

We tested Soft3D and EnSoft3D using 17 images among the images in the two tables
in [35,36]. In [35], a total of twenty-one images are compared. Among them, four images,
Midd1, Midd2, Monopoly and Plastic, are excluded from our comparison because those
images are composed of very large textureless regions and our method does not specifically
address the stereo matching of textureless objects. However, images such as Lampshade1,
Lampshade2, Bowling1, and Bowling2, which are composed of moderately textureless regions,
are included in our comparison. In [36], a total of twenty-seven images are compared.
Among them, we use 17 images which are common with the test images in [35].

The two above papers provide extensive comparison results of recent stereo matching
methods using many images from the Middlebury 2006 images. Therefore, the quantitative
comparison of a total of 14 methods listed in the two reference papers can be considered
as an objective error analysis of the proposed method. In addition, for fair comparison,
we use the same error measurement criteria with the two papers: the error threshold is
1.0 pixel with the nonocc mask. Our proposed method shows the best performance in
nine images and a good performance in the remaining test images than the other methods
including the original Soft3D as shown in Table 2. In terms of the average error of all 17
images, the proposed method is 1.54 pixels and is the best among all methods. Figure 9
shows examples of the final disparity images of seven test images reconstructed by the
proposed method. Because not all the disparity images are available in [35,36], we compare
our results with the ground truth and Soft3D.

Table 2. The ratio of bad pixels from Middlebury 2006 dataset (error threshold: 1.0 pixel, nonocc mask).

Dataset [37] [38] [39] [40] [41] [42] [43] [35] [44] [45] [46] [47] [36] Soft3D EnSoft3D

Aloe 4.51 6.75 3.21 5.03 3.92 3.78 3.06 4.15 5.17 6.19 6.51 6.94 4.50 3.32 2.98
Baby1 4.10 3.27 2.21 4.45 2.74 2.15 1.98 1.40 3.01 7.37 3.23 3.19 2.26 1.57 1.49
Baby2 4.77 3.97 2.08 16.9 5.48 2.87 1.05 1.49 3.60 13.96 3.77 4.21 3.51 1.55 1.38
Baby3 4.77 3.92 3.07 4.54 6.56 3.22 3.12 2.38 4.31 7.85 4.63 4.77 3.76 1.85 1.74

Bowling1 14.1 12.1 4.14 16.5 5.37 5.30 2.06 3.92 7.58 17.17 5.71 6.38 5.76 3.29 1.56
Bowling2 4.64 5.27 2.19 10.6 6.44 2.74 1.45 2.64 7.49 12.58 7.81 7.40 5.29 3.53 3.34

Cloth1 1.68 1.17 0.71 0.68 0.78 0.89 0.60 0.71 0.77 0.96 1.65 1.09 0.66 0.41 0.34
Cloth2 4.19 4.52 2.90 4.30 3.26 2.81 2.39 2.40 2.80 4.60 3.82 3.28 2.15 1.47 1.38
Cloth3 2.88 2.15 1.66 2.54 1.62 1.91 1.57 1.01 2.06 2.55 2.48 2.73 1.68 0.99 0.94
Cloth4 3.10 2.20 1.75 1.70 0.99 1.78 1.87 0.79 1.74 1.86 2.00 2.06 1.31 1.08 0.86

Flowerpots 9.28 8.80 4.60 12.5 10.8 5.56 2.49 1.81 9.32 15.51 8.87 9.71 8.97 4.87 2.59
Lampshade1 13.5 8.67 12.6 10.9 5.96 9.70 1.50 1.63 9.85 10.96 9.91 14.80 6.37 10.5 1.95
Lampshade2 16.5 17.2 10.0 16.2 21.7 11.1 0.99 1.76 9.52 12.69 10.65 16.93 6.42 13.9 1.27

Rock1 4.15 2.60 2.19 2.96 1.60 2.35 1.80 1.28 2.52 3.63 3.61 4.06 2.22 1.16 1.04
Rock2 1.82 1.68 1.46 2.38 1.49 1.64 1.20 0.94 2.00 2.91 2.50 2.76 1.75 1.02 0.89
Wood1 1.52 4.19 0.48 4.66 1.30 0.87 0.73 3.36 5.16 10.53 4.55 4.95 2.95 2.16 2.14
Wood2 0.70 0.49 0.36 2.38 4.62 0.56 0.37 0.42 3.43 5.95 2.75 2.53 2.42 0.45 0.36

Average 5.66 5.23 3.27 7.01 4.98 3.48 1.66 1.89 4.73 8.07 4.97 5.75 3.65 3.12 1.54
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5.1.3. View Synthesis of Middlebury 2006 Dataset

The Middlebury 2006 dataset is also used for view synthesis analysis. Art, Laundry,
Cloth1, Dolls, Books, Wood1, Bowling1, Bowling2, Aloe are 7-view images and depth maps
are generated in six views, with the exception of a test view. The depth of six views are
used to synthesize the new image at the test view. In Figure 10, the view synthesis results
of Bowling1, Art, and Aloe are compared with the Luo et al. [48] and Oliveira et al. [49]
algorithms. Our results show high quality results in the object edge and corner areas. In
the close-up image in Figure 10, we find that the object edge of our result is synthesized
in a very similar way to the original color image. The PSNR and SSIM measurements
of all nine test images are shown in Table 3. For a sufficient number of comparisons, we
use six algorithms, including Jain et al. [50], Tran et al. [51], Ramachandran et al. [52] and
Soft3D. In our results, the PSNR ranges from 38 to 45 and the SSIM ranges from 0.97 to
0.99, which are the highest scores among all the compared methods. Compared to Soft3D,
a view synthesis using the refined depth shows a better performance. This implies that the
PSS matching costs are updated correctly by the surface consensus.
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Figure 10. View synthesis result (Middlebury 2006: From top, Bowling1, Art, and Aloe). The red box shows the close-up
results. Our results shows high quality images and more close to the ground truth.

Table 3. PSNR and SSIM view synthesis evaluation using the Middlebury 2006 dataset.

Middlebury
Dataset

[50] [51] [52] [48] [49] Soft3D EnSoft3D

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Art 31.67 0.95 32.09 0.94 30.22 0.94 27.85 0.91 30.02 0.93 38.71 0.97 39.25 0.97
Laundry 31.66 0.95 31.63 0.95 31.32 0.94 28.85 0.93 29.99 0.94 38.33 0.97 38.59 0.98
Cloth1 35.04 0.96 35.68 0.97 33.66 0.94 - - - - 43.39 0.99 43.43 0.99
Dolls 31.61 0.95 31.95 0.94 30.90 0.94 - - - - 41.96 0.98 42.02 0.98
Books 30.10 0.93 30.15 0.92 38.74 0.92 - - - - 41.12 0.98 41.22 0.98
Wood1 36.29 0.94 37.36 0.94 - - - - - - 44.71 0.98 44.75 0.99

Bowling1 - - - - - - 31.97 0.95 32.23 0.95 42.33 0.98 45.08 0.99
Bowling2 - - - - - - 28.44 0.93 30.48 0.94 43.35 0.98 43.43 0.98

Aloe - - - - - - 29.91 0.92 29.35 0.92 38.75 0.97 38.89 0.98
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5.2. Unstructured Dataset: Fountain-P11, ETH3D Low Resolution Dataset

Another evaluation is completed using unstructured multi-view images. In Section 5.1,
the structured multi-view images are captured by a camera moving in the horizontal
direction, which results in an x-axis image shift only. In the unstructured multi-view images,
the camera moves in a free space and the 6-DoF external parameters are computed for
multi-view matching. In this experiment, we compare the 3D reconstruction performance
with state-of-the-art algorithms.

The first dataset is Fountain-P11. These data consist of 11 images, where the camera
motion is large. We reconstruct the 3D point cloud using 768 × 512 resolution images. In
the unstructured real scene data, especially in the outdoor environment, the matching cost
computation is difficult due to the large depth range between the foreground and back-
ground objects. To enhance the depth resolution, we increase the number of inverse depth
planes. Increasing depth resolution produces more accurate 3D point clouds. However,
since the cost volume size increases, the processing time also increases.

The relationship between the accuracy and processing time with respect to the number
of inverse depth planes is shown in Figure 11. In this experiment, the 3D point cloud is
reconstructed using 11 views (768 × 512 pixels) and 10 iterations of refinement. When
the error threshold is 2 cm, the accuracy improves as the number of planes increases.
Additionally, the processing time increases significantly with the number of planes, pro-
portionately. In contrast, when the error threshold is 10 cm, the accuracy of more than
80 planes is saturated.
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inverse depth planes (Fountain-P11).

Based on this experiment, we use 80 to 120 disparity planes in the indoor environment,
and more in the outdoor environment. Figure 12 shows the result of the 3D reconstruction
of the second view of Fountain-P11. Our method reconstructs more dense point clouds
compared with the same input resolution in COLMAP. It is shown that the speckle noises
are very low in the object edge area. The quantitative analysis of Fountain-P11 is shown
in Table 4. In this table, the ratio of the correct pixels with respect to the error threshold
is shown. When the ratio is closer to 1, the performance is better. Analysis of many other
algorithms are cited from the COLMAP paper. When the error threshold is 10 cm, our
result with more than 80 planes is better than the other algorithms.
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The second unstructured multi-view is the ETH3D low-resolution dataset. These data
are obtained by four cameras, and each camera consists of 200 to 300 grayscale images.
Because the proposed algorithm has a limitation in the number of input images, we use
16 images from the first camera. The image resolution is 910 × 510 pixels. We evaluate the
accuracy of the 3D point clouds and compare this with the ETH3D online benchmark [60],
as shown in Figures 13 and 14. In this benchmark test, the accuracies of three deep
learning methods are also compared (DeepC-MVS, DeepPCF-MVS, and DPSNet, explained
in Section 2). Recently, deep learning methods show a competitive performance in the
multi-view stereo benchmark test. In multi-view stereo matching, the depth accuracy is
improved when many images are used. Most algorithms in the ETH3D online benchmark
use all of the input images. However, our method uses only 16 images, which cannot be
a fair comparison. Nevertheless, the proposed method can obtain a dense depth even
with a small number of images. Using an indoor dataset, Terrains, 3D reconstruction
can be completed in high quality (the accuracy in a 2 cm error threshold is 92.55%). In
this comparison, the accuracies of DeepC-MVS, DeepPCF-MVS, and DPSNet are 86.38%,
86.72%, and 65.18%, respectively. In contrast, a reconstruction using an outdoor dataset
shows an inaccurate performance. For example, in Forest, the accuracy of the proposed
method is 58.52% when the error threshold is 2 cm. This is a better accuracy than DPSNet
(20.25%); however, it is lower than DeepC-MVS (63.91%) and DeepPCF-MVS (64.65%). This
is a problem with the disparity space in the PSS algorithm. The PSS algorithm is completed
in the inverse depth planes which are defined by a constant disparity interval. This causes
a large depth interval in the far distance of the real metric space. For this reason, the depth
interpolation with the sub-pixel accuracy is relatively inaccurate in the far distance, which
results in a low depth accuracy in 3D reconstruction.

As an additional experiment, the 3D reconstruction accuracy is measured within 7 m.
This experiment is to show the better performance of the proposed method in the near
distance. The error thresholds are set to 0.1, 0.2, and 0.5 m. The results of the Delivery
area are 88.23%, 94.34%, and 97.78%, respectively. The results of Playground are 85.71%,
93.74%, and 97.32%, and Forest is 93.55%, 96.79%, and 98.73%. From this experiment, we
find that accurate 3D reconstruction is achievable using the dense depth interval in the
PSS algorithm.
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5.3. Runtime

In this section, the runtime of the proposed method is analyzed and compared with
different methods. To compare the runtime with other methods, we refer to Table 3 in [36]
and Table 8 in [61] which use the Middlebury dataset as test images. In Table 3 of [36],
the processing times of 11 methods are presented with the computation environments of
each method. The stereo matching runtime is measured with the quad resolution image
pairs of the Middlebury dataset. In Table 8 of [61], the runtime of stereo matching with
three different image resolutions is compared. In this table, the quad, half, and original
resolutions of the Middlebury dataset are compared with an Intel i7 CPU with a GeForce
GTX 1080 Ti GPU.
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We cite the two tables in [36,61] to compare the runtime of the proposed method. In
Table 5 below, the runtime of Soft3D and EnSoft3D are added to Table 3 in [36]. The pro-
cessing is the measured time for generating a single frame of the depth image. Additionally,
the computation environment is an Intel i9-10900K CPU with 64GB RAM. In Table 6, three
different resolutions of images are used to compare the runtime of the proposed method,
quad, half, and full resolutions of the Middlebury dataset. The runtime of the proposed
method is reasonably fast compared with three different methods.

Table 5. Runtime comparison of Middlebury quad resolution dataset.

Algorithm Environments Runtime
(s)

PSMNet_ROB [62] Nvidia GeForce GTX 1080 Ti /PCIe /SSE2
(CUDA, Python/PyTorch) 0.55

DSGCA [63] i7-4770 @ 3.40 GHz; GTX 1080 GPU
(Matlab) 11.0

ADSM [64] 8 i7 cores; Nvidia GTX460 SE
(CUDA, C/C++) 35.8

DDL [65] 4 i7 cores @ 4.0 GHz (Matlab/C) 112
IGF [66] 1 i5 Core @ 3.2 GHz (C++/OpenCV) 132

BSM [67] Intel(R) Core(TM)2 Duo CPU P7370 @
2.00GHz (C++/OpenCV) 244

ISM [47] 1 i5 core @ 3.2 GHz (C/C++) 330
MPSV [68] 1 i5 core @ 2.7 GHz (Python) 594

DogGuided [69] 2 i5 cores @ 3.0 GHz (Matlab) 630
DF [70] Matlab 2017 9999

FASW [36] Intel Core i5-6500 @ 3.2 GHz 40.5

Soft3D Intel Core i9-10900K @ 3.7 GHz
(C++/OpenCV) 13.3

EnSoft3D Intel Core i9-10900K @ 3.7 GHz
(C++/OpenCV) 14.1

Table 6. Runtime comparison of multi-frame stereo matching methods.

Resolution of Middlebury
Dataset

Runtime (Seconds)

[71] [72] [61] Soft3D EnSoft3D

Quad resolution (100–200 kP) 8.2 16.4 10.1 12.1 13.3
Half resolution (200–500 kP) 68.1 139.2 35.8 33.0 34.4
Original resolution (1–2 MP) 458.7 1905.4 170.1 136.1 141.5

Environments Intel i7 Intel i7+ GTX
1080 Ti Intel i7 Intel i9 Intel i9

As shown in the two tables, there is no conspicuous time difference between the Soft3D
and EnSoft3D methods. Because the update process of the PSS cost can be considered as the
2D convolution of a Gaussian-like kernel, it only needs an additional short processing time.

5.4. Limitations

In this section, we discuss some limitations of the proposed EnSoft3D method. The
first limitation is memory usage. All processes in the proposed method require a lot of 3D
memory space. Each view must have multiple matching costs, consensuses, and visibility
volumes. The 3D volume size is determined by the resolution of the input image and the
disparity range (width × height × disparity). Therefore, with a large number of views or
image resolutions, the proposed method cannot be executed due to memory limitations.
In addition, the problem of the sub-pixel accuracy described in Section 5.2 is also related
to memory limitation. In the PSS algorithm, the larger the interval between the inverse
depth planes, the less accurate the 3D reconstruction is. Increasing the number of planes
improves the accuracy; however, it requires more memory.
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Using many 3D volumes also requires a long processing time. Multi-view matching,
soft visibility computation, and cost updates are performed simultaneously in all multi-
view images. In our computation environment, it takes 2 min and 40 s (initial disparity
computation: 20 s, refinement of 5 iterations: 2 min 20 s) to produce half-size seven-
views disparity maps in the Middlebury dataset. To reduce the processing time, GPU
implementation using a large video memory must be used.

The last limitation is the refinement of the repeated image pattern and large textureless
area. Even in this area, the proposed method can refine the matching costs when a large
number of iterations is used. However, the results are not perfect. Because the erroneous
surface consensus is widely distributed in this area, the edge-preserving filter cannot
remove the errors. To solve this problem, an additional refinement method, such as depth
plane fitting, is needed.

6. Conclusions

In this paper, we propose EnSoft3D, a multi-view stereo matching method for high-
quality 3D reconstruction and view synthesis. In contrast to our base algorithm, Soft3D,
we introduce a new multi-view stereo matching scheme for the generation of dense and
accurate disparity maps. Multi-view stereo matching costs and a soft visibility are simulta-
neously updated by using the surface consensus in the 3D inverse depth space.

The first step of the proposed method is to decide the position of the object surface
in the disparity space. We use the consensus volume. This is the likelihood of the distri-
bution of the object surface in the disparity space. Based on this likelihood, we derive the
surface consensus in the sub-pixel accuracy by quadratic interpolation. The second step
is the matching cost update process. An inverse Gaussian kernel is generated based on
the surface consensus. By multiplying the inverse Gaussian kernel, the matching costs
corresponding to the surface voxels are reduced. The level of reduction is adjusted by
the color variance of pixels. This update process is repeated simultaneously with the soft
visibility update process.

The quantitative analysis of the proposed method is completed by using the structured
and unstructured multi-view stereo datasets, Middlebury 2003, 2006, Fountain-P11, and
ETH3D low-resolution datasets. We completed extensive error analyses and comparisons,
including a disparity estimation, a view synthesis of image quality, and a 3D reconstruction
performance. In addition, the runtime was analyzed and compared with other methods.
As shown in the experimental results, the proposed method achieved the best performance
in both 3D reconstruction and view synthesis.

Author Contributions: Conceptualization, S.-Y.P., G.-M.U. and J.Y.; methodology, software, valida-
tion, formal analysis, M.-J.L.; investigation and data curation, G.-M.U. and J.Y.; writing—original
draft preparation, writing—review and editing, and visualization, M.-J.L. and S.-Y.P.; supervision,
S.-Y.P.; project administration and funding acquisition, W.-S.C.; All authors have read and agreed to
the published version of the manuscript.

Funding: This work has supported partly by Institute for Information & communications Tech-
nology Planning & Evaluation (IITP)(No. 2017-0-00072) and the National Research Foundation of
Korea(NRF)(No. 2021R1A2C2009722) grant funded by the Korea government(MSIT), and partly by
BK21 FOUR project (4199990113966).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 6680 22 of 24

References
1. Hirschmuller, H. Accurate and efficient stereo processing by semi-global matching and mutual information. In Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June
2005; pp. 807–814.

2. Yao, Y.; Luo, Z.; Li, S.; Shen, T.; Fang, T.; Quan, L. Recurrent mvsnet for high-resolution multi-view stereo depth inference. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20
June 2019; pp. 5525–5534.

3. Zhang, H.T.; Yu, J.; Wang, Z.F. Probability contour guided depth map inpainting and superresolution using non-local total
generalized variation. Multimed. Tools Appl. 2018, 77, 9003–9020. [CrossRef]

4. Penner, E.; Zhang, L. Soft 3d reconstruction for view synthesis. ACM Trans. Graph. 2017, 36, 1–11. [CrossRef]
5. Collins, R.T. A space-sweep approach to true multi-image matching. In Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 18–20 June 1996; pp. 358–363.
6. Ha, H.; Im, S.; Park, J.; Jeon, H.G.; Kweon, I.S. High-quality depth from uncalibrated small motion clip. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5413–5421.
7. Poggi, M.; Pallotti, D.; Tosi, F.; Mattoccia, S. Guided stereo matching. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 979–988.
8. Scharstein, D.; Szeliski, R. High-accuracy stereo depth maps using structured light. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), Madison, WI, USA, 18–20 June 2003; pp. 195–202.
9. Hirschmuller, H.; Scharstein, D. Evaluation of cost functions for stereo matching. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.
10. Schops, T.; Schonberger, J.L.; Galliani, S.; Sattler, T.; Schindler, K.; Pollefeys, M.; Geiger, A. A multi-view stereo benchmark with

high-resolution images and multi-camera videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3260–3269.

11. Strecha, C.; Hansen, W.V.; Gool, L.V.; Fua, P.; Thoennessen, U. On benchmarking camera calibration and multi-view stereo for
high resolution imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage,
AK, USA, 23–28 June 2008; pp. 1–8.

12. Huynh, T.Q.; Ghanbari, M. The accuracy of PSNR in predicting video quality for different video scenes and frame rates.
Telecommun. Syst. 2012, 49, 35–48. [CrossRef]

13. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

14. He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [CrossRef] [PubMed]
15. Brownrigg, D.R. The weighted median filter. Commun. ACM 1984, 27, 807–818. [CrossRef]
16. Ma, Z.; He, K.; Wei, Y.; Sun, J.; Wu, E. Constant time weighted median filtering for stereo matching and beyond. In Proceedings of

the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 49–56.
17. Hosni, A.; Bleyer, M.; Rhemann, C.; Gelautz, M.; Rother, C. Real-time local stereo matching using guided image filtering. In

Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Barcelona, Spain, 11–15 July 2011; pp. 1–6.
18. Chen, R.; Han, S.; Xu, J.; Su, H. Point-based multi-view stereo network. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 1538–1547.
19. Manuel, M.G.V.; Manuel, M.M.J.; Edith, M.M.N.; Ivone, R.A.P.; Ramirez, S.R.E. Disparity map estimation with deep learning in

stereo vision. In Proceedings of the Regional Consortium for Foundations, Research and Spread of Emerging Technologies in
Computing Sciences (RCCS+SPIDTEC2), Juarez, MX, USA, 8–9 November 2018; pp. 27–40.

20. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3D shape recognition. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 945–953.

21. Kuhn, A.; Sormann, C.; Rossi, M.; Erdler, O.; Fraundorfer, F. DeepC-MVS: Deep confidence prediction for Multi-view stereo
reconstruction. In Proceedings of the International Conference on 3D Vision (3DV), online, 25–28 November 2020; pp. 404–413.

22. Kuhn, A.; Lin, S.; Erdler, O. Plane completion and filtering for multi-view stereo reconstruction. In Proceedings of the German
Conference on Pattern Recognition (GCPR), Dortmund, Germany, 10–13 September 2019; pp. 18–32.

23. Wang, K.; Shen, S. Mvdepthnet: Real-time multiview depth estimation neural network. In Proceedings of the International
Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 248–257.

24. Huang, P.H.; Matzen, K.; Kopf, J.; Ahuja, N.; Huang, J.B. Deepmvs: Learning multi-view stereopsis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2821–2830.

25. Im, S.; Jeon, H.G.; Lin, S.; Kweon, I.S. Dpsnet: End-to-end deep plane sweep stereo. In Proceedings of the International Conference
on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019; pp. 1–12.

26. Wu, G.; Li, Y.; Huang, Y.; Liu, Y. Joint view synthesis and disparity refinement for stereo matching. Front. Comput. Sci. 2019, 13,
1337–1352. [CrossRef]

27. Zhou, T.; Tucker, R.; Flynn, J.; Fyffe, G.; Snavely, N. Stereo magnification: Learning view synthesis using multiplane images. ACM
Trans. Graph. 2018, 37, 1–12. [CrossRef]

http://doi.org/10.1007/s11042-017-4791-x
http://doi.org/10.1145/3130800.3130855
http://doi.org/10.1007/s11235-010-9351-x
http://doi.org/10.1109/TIP.2003.819861
http://doi.org/10.1109/TPAMI.2012.213
http://www.ncbi.nlm.nih.gov/pubmed/23599054
http://doi.org/10.1145/358198.358222
http://doi.org/10.1007/s11704-018-8099-4
http://doi.org/10.1145/3197517.3201323


Sensors 2021, 21, 6680 23 of 24

28. Flynn, J.; Broxton, M.; Debevec, P.; DuVall, M.; Fyffe, G.; Overbeck, R.; Snavely, N.; Tucker, R. Deepview: View synthesis with
learned gradient descent. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019; pp. 2367–2376.

29. Srinivasan, P.P.; Tucker, R.; Barron, J.T.; Ramamoorthi, R.; Ng, R.; Snavely, N. Pushing the boundaries of view extrapolation
with multiplane images. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 175–184.

30. Kanade, T.; Okutomi, M. A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Trans. Pattern
Anal. Mach. Intell. 1994, 16, 920–932. [CrossRef]

31. Zabih, R.; Woodfill, J. Non-parametric local transforms for computing visual correspondence. In Proceedings of the European
conference on computer vision (ECCV), Stockholm, Sweden, 2–6 May 1994; pp. 151–158.

32. Schönberger, J.L.; Zheng, E.; Frahm, J.M.; Pollefeys, M. Pixelwise view selection for unstructured multi-view stereo. In Proceedings
of the European Conference on Computer Vision (ECCV), Amsterdam, Netherland, 8–16 October 2016; pp. 501–518.

33. Middlebury Stereo Evaluation-Version 2. Available online: https://vision.middlebury.edu/stereo/eval/ (accessed on 26
September 2021).

34. Huang, X.; Yuan, C.; Zhang, J. A systematic stereo matching framework based on adaptive color transformation and patch-match
forest. J. Vis. Commun. Image Represent. In press.

35. Li, H.; Gao, Y.; Huang, Z.; Zhang, Y. Stereo matching based on multi-scale fusion and multi-type support regions. J. Opt. Soc.
Amer. A. JOSAA 2019, 36, 1523–1533. [CrossRef] [PubMed]

36. Wu, W.; Zhu, H.; Yu, S.; Shi, J. Stereo matching with fusing adaptive support weights. IEEE Access 2019, 7, 61960–61974. [CrossRef]
37. Besse, F.; Rother, C.; Fitzgibbon, A.; Kautz, J. PMBP: PatchMatch belief propagation for correspondence field estimation. Int. J.

Comput. Vis. 2013, 110, 2–13. [CrossRef]
38. Li, Y.; Min, D.; Brown, M.S.; Do, M.N.; Lu, J. SPM-BP: Sped-up PatchMatch belief propagation for continuous MRFs. In Proceedings

of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4006–4014.
39. Taniai, T.; Matsushita, Y.; Naemura, T. Graph cut based continuous stereo matching using locally shared labels. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014;
pp. 1613–1620.

40. Mei, X.; Sun, X.; Dong, W.; Wang, H.; Zhang, X. Segment-tree based cost aggregation for stereo matching. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 313–320.

41. Taniai, T.; Matsushita, Y.; Sato, Y.; Naemura, T. Continuous 3D label stereo matching using local expansion moves. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 40, 2725–2739. [CrossRef]

42. Bleyer, M.; Rhemann, C.; Rother, C. PatchMatch stereo–stereo matching with slanted support windows. Available online:
http://www.bmva.org/bmvc/2011/proceedings/paper14/paper14.pdf (accessed on 3 October 2021).

43. Li, L.; Zhang, S.; Yu, X.; Zhang, L. PMSC: Patchmatch-based superpixel cut for accurate stereo matching. IEEE Trans. Circuits Syst.
Video Technol. 2016, 28, 679–692. [CrossRef]

44. Yang, Q.; Ji, P.; Li, D.; Yao, S.; Zhang, M. Fast stereo matching using adaptive guided filtering. Image Vis. Comput. 2014, 32,
202–211. [CrossRef]

45. Yang, Q. Stereo matching using tree filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 834–846. [CrossRef] [PubMed]
46. Zhang, K.; Fang, Y.; Min, D.; Sun, L.; Yang, S.; Yan, S. Cross-scale cost aggregation for stereo matching. IEEE Trans. Circuits Syst.

Video Technol. 2017, 27, 965–976. [CrossRef]
47. Hamzah, R.A.; Kadmin, A.F.; Hamid, M.S.; Ghani, S.F.A.; Ibrahim, H. Improvement of stereo matching algorithm for 3D surface

reconstruction. Signal Process. Image Commun. 2018, 65, 165–172. [CrossRef]
48. Luo, G.; Zhu, Y. Foreground removal approach for hole filling in 3D video and view synthesis. IEEE Trans. Circuits Syst. Video

Technol. 2016, 27, 2118–2131. [CrossRef]
49. Oliveira, A.Q.; Walter, M.; Jung, C.R. An artifact-type aware dibr method for view synthesis. IEEE Signal Process. Lett. 2018, 25,

1705–1709. [CrossRef]
50. Jain, A.K.; Tran, L.C.; Khoshabeh, R.; Nguyen, T.Q. Efficient stereo-to-multiview synthesis. In Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 889–892.
51. Tran, L.C.; Bal, C.; Pal, C.J.; Nguyen, T.Q. On consistent inter-view synthesis for autostereoscopic displays. 3D Res. 2012, 3,

1–10. [CrossRef]
52. Ramachandran, G.; Rupp, M. Multiview synthesis from stereo views. In Proceedings of the International Conference on Systems,

Signals and Image Processing (IWSSIP), Vienna, Austria, 11–13 April 2012; pp. 341–345.
53. Zheng, E.; Dunn, E.; Jojic, V.; Frahm, J.M. Patchmatch based joint view selection and depthmap estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 1510–1517.
54. Hu, X.; Mordohai, P. Least commitment, viewpoint-based, multi-view stereo. In Proceedings of the International Conference

on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), Zurich, Switzerland, 13–15 October 2012;
pp. 531–538.

55. Furukawa, Y.; Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32,
1362–1376. [CrossRef] [PubMed]

http://doi.org/10.1109/34.310690
https://vision.middlebury.edu/stereo/eval/
http://doi.org/10.1364/JOSAA.36.001523
http://www.ncbi.nlm.nih.gov/pubmed/31503846
http://doi.org/10.1109/ACCESS.2019.2916035
http://doi.org/10.1007/s11263-013-0653-9
http://doi.org/10.1109/TPAMI.2017.2766072
http://www.bmva.org/bmvc/2011/proceedings/paper14/paper14.pdf
http://doi.org/10.1109/TCSVT.2016.2628782
http://doi.org/10.1016/j.imavis.2014.01.001
http://doi.org/10.1109/TPAMI.2014.2353642
http://www.ncbi.nlm.nih.gov/pubmed/26353297
http://doi.org/10.1109/TCSVT.2015.2513663
http://doi.org/10.1016/j.image.2018.04.001
http://doi.org/10.1109/TCSVT.2016.2583978
http://doi.org/10.1109/LSP.2018.2870342
http://doi.org/10.1007/3DRes.01(2012)1
http://doi.org/10.1109/TPAMI.2009.161
http://www.ncbi.nlm.nih.gov/pubmed/20558871


Sensors 2021, 21, 6680 24 of 24

56. Zaharescu, A.; Boyer, E.; Horaud, R. Topology-adaptive mesh deformation for surface evolution, morphing, and multiview
reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 823–837. [CrossRef]

57. Tylecek, R.; Šára, R. Refinement of surface mesh for accurate multi-view reconstruction. Int. J. Virtual Real. 2010, 9, 45–54. [CrossRef]
58. Jancosek, M.; Pajdla, T. Multi-view reconstruction preserving weakly-supported surfaces. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 3121–3128.
59. Galliani, S.; Lasinger, K.; Schindler, K. Massively parallel multiview stereopsis by surface normal diffusion. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 873–881.
60. ETH3D Low-Resolution Many-View Benchmark. Available online: https://www.eth3d.net/low_res_many_view (accessed on

26 September 2021).
61. Xue, T.; Owens, A.; Scharstein, D.; Geosele, M.; Szeliski, R. Multi-frame stereo matching with edges, planes, and superpixels.

Image Vis. Comput. 2019, 91, 103771. [CrossRef]
62. Chang, J.R.; Chen, Y.S. Pyramid stereo matching network. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 5410–5418.
63. Park, I.K. Deep self-guided cost aggregation for stereo matching. Pattern Recognit. Lett. 2018, 112, 168–175.
64. Ma, N.; Men, Y.; Men, C.; Li, X. Accurate dense stereo matching based on image segmentation using an adaptive multi-cost

approach. Symmetry 2016, 8, 159. [CrossRef]
65. Yin, J.; Zhu, H.; Yuan, D.; Xue, T. Sparse representation over discriminative dictionary for stereo matching. Pattern Recognit. 2017,

71, 278–289. [CrossRef]
66. Hamzah, R.A.; Ibrahim, H.; Hassan, A.H.A. Stereo matching algorithm based on per pixel difference adjustment, iterative guided

filter and graph segmentation. J. Vis. Commun. Image Represent. 2017, 42, 145–160. [CrossRef]
67. Zhang, K.; Li, J.; Li, Y.; Hu, W.; Sun, L.; Yang, S. Binary stereo matching. In Proceedings of the International Conference on Pattern

Recognition (ICPR), Tsukuba, Japan, 11–15 November 2012; pp. 356–359.
68. Bricola, J.C.; Bilodeau, M.; Beucher, S. Morphological Processing of Stereoscopic Image Superimpositions for Disparity Map

Estimation. Available online: https://hal.archives-ouvertes.fr/hal-01330139/ (accessed on 26 September 2021).
69. Kitagawa, M.; Shimizu, I.; Sara, R. High accuracy local stereo matching using DoG scale map. In Proceedings of the Fifteenth

IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 258–261.
70. Mao, W.; Gong, M. Disparity filtering with 3D convolutional neural networks. In Proceedings of the 15th Conference on Computer

and Robot Vision (CRV), Toronto, ON, Canada, 8–10 May 2018; pp. 246–253.
71. Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intel. TPAMI

2008, 30, 328–341. [CrossRef] [PubMed]
72. Zbontar, J.; LeCun, Y. Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res.

JMLR 2016, 17, 2287–2318.

http://doi.org/10.1109/TPAMI.2010.116
http://doi.org/10.20870/IJVR.2010.9.1.2761
https://www.eth3d.net/low_res_many_view
http://doi.org/10.1016/j.imavis.2019.05.006
http://doi.org/10.3390/sym8120159
http://doi.org/10.1016/j.patcog.2017.06.015
http://doi.org/10.1016/j.jvcir.2016.11.016
https://hal.archives-ouvertes.fr/hal-01330139/
http://doi.org/10.1109/TPAMI.2007.1166
http://www.ncbi.nlm.nih.gov/pubmed/18084062

	Introduction 
	Previous Works 
	Framework of Soft 3D Reconstruction 
	Initial Disparity Map Generation 
	Refinement of Disparity Cost Volume 

	Enhancement of Soft 3D Reconstruction 
	Object Surface Decision 
	Update of Multi-View Matching Cost 
	New Matching Cost Integration 

	Experiment and Evaluation 
	Structured Dataset: Middlebury 
	D Reconstruction of Middlebury 2003 Dataset 
	D Reconstruction of Middlebury 2006 Dataset 
	View Synthesis of Middlebury 2006 Dataset 

	Unstructured Dataset: Fountain-P11, ETH3D Low Resolution Dataset 
	Runtime 
	Limitations 

	Conclusions 
	References

