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Abstract: The role of sensors such as cameras or LiDAR (Light Detection and Ranging) is crucial for
the environmental awareness of self-driving cars. However, the data collected from these sensors are
subject to distortions in extreme weather conditions such as fog, rain, and snow. This issue could
lead to many safety problems while operating a self-driving vehicle. The purpose of this study is to
analyze the effects of fog on the detection of objects in driving scenes and then to propose methods for
improvement. Collecting and processing data in adverse weather conditions is often more difficult
than data in good weather conditions. Hence, a synthetic dataset that can simulate bad weather
conditions is a good choice to validate a method, as it is simpler and more economical, before working
with a real dataset. In this paper, we apply fog synthesis on the public KITTI dataset to generate the
Multifog KITTI dataset for both images and point clouds. In terms of processing tasks, we test our
previous 3D object detector based on LiDAR and camera, named the Spare LiDAR Stereo Fusion
Network (SLS-Fusion), to see how it is affected by foggy weather conditions. We propose to train
using both the original dataset and the augmented dataset to improve performance in foggy weather
conditions while keeping good performance under normal conditions. We conducted experiments
on the KITTI and the proposed Multifog KITTI datasets which show that, before any improvement,
performance is reduced by 42.67% in 3D object detection for Moderate objects in foggy weather
conditions. By using a specific strategy of training, the results significantly improved by 26.72% and
keep performing quite well on the original dataset with a drop only of 8.23%. In summary, fog often
causes the failure of 3D detection on driving scenes. By additional training with the augmented
dataset, we significantly improve the performance of the proposed 3D object detection algorithm for
self-driving cars in foggy weather conditions.

Keywords: adverse weather conditions; foggy perception; synthetic datasets; 3D object detection;
autonomous vehicles

1. Introduction

Today, the trend is to bring automation applications into life to reduce the cost, human
strength and improve working efficiency. While humans use sensory organs such as the
eyes, ears, nose, and touch to perceive the world around them, industrial applications use
sensors such as cameras, RADAR (radio detection and ranging), Kinect, LiDAR (light detec-
tion and ranging), IMU (inertial measurement unit) to collect data before being processed
by complex algorithms. This research focuses mainly on self-driving cars, where cameras
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and LiDAR play a vital role in the perception of the environment. Cameras are often
integrated in many practical computer vision applications such as retail [1], security [2],
automotive industry [3], healthcare [4], agriculture [5], banking [6], and industrial automa-
tion [7]. Meanwhile, LiDAR is widely used to create high-resolution graphic products, with
many advanced applications in the fields of geodesy [8], geomatics [9], archeology [10],
geography [11], geology [12], geomorphology [13], mapping [14] and aeronautics [15]. This
technology is also widely used for the sensing mechanisms of autonomous vehicles, and it
is even integrated on Apple’s new product lines such as iPad Pro and iPhone 12 Pro as a
3D scanner. The fusion of cameras, LiDAR, and other sensors such as RADAR, GPS/IMU
brings the ability to perceive the environment and then make operational decisions for
self-driving cars.

Autonomous vehicles have been put into tests or even commercial uses with varying
degrees of automation from big tech companies such as Waymo, Uber, Lyft, Tesla, etc.
However, these cars have not yet reached the level of performance in all circumstances and
all weather conditions. Many factors can affect the perception ability of self-driving cars,
thereby potentially causing serious consequences on the lives of other road users. One of
the causes is that the data collected from these sensors are distorted due to environmental
influences that may directly affect the awareness of self-driving cars. While applications
using these sensors do quite well in controlled lighting or indoor environments unaffected
by weather, outdoor applications face many problems. For example, applications that use
a camera to perceive the environment often fail in extreme lighting conditions such as
sunburns, low light, or nighttime conditions. Significant challenges arise in self-driving
cars under adverse weather conditions such as fog, rain, or snow, in which both the camera
and LiDAR are severely affected, as shown in Figure 1. Therefore, this work focuses on 3D
object detection with camera and LiDAR sensors operating in foggy weather conditions.

(a) Original sample (b) Foggy sample

Figure 1. An example of distortion of an image and a point cloud in the proposed dataset. Note that the color of each point in the
point cloud is the color of the corresponding pixel in the image (for visualization only). (a) shows the original sample from the KITTI
dataset [16] with the image above and point clouds below collected by Velodyne HDL64 S2 LiDAR [16,17]. (b) shows the image
and the point cloud simulated in foggy conditions with visibility equal to 52 m (V = 52 m) from the proposed dataset. Arising from
receiving back-scattered light from water drops, fog makes the image have lower contrast and causes incorrect point measurements in
the point cloud.

Methods that produce the best results are mostly based on deep learning architectures
by training a model with large amounts of data associated with labeling (supervised
learning). While labeling and collecting data in good conditions such as daytime or sunny
weather take time, it takes even more time and effort in extreme weather. Thus, there is an
imbalance in the amount of data recorded in extreme weather conditions compared to those
in normal conditions [18–22]. In addition, there may be an imbalance in different levels
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of fog, rain, or snow when collecting data. Most of the data are only collected during a
given time and place, so the data will not be able to fully cover all situations, and therefore
using a model trained with a limited range of data may make mistakes. So, in addition
to real data, the creation of synthetic data which can be simulated under many controlled
parameters is equally important. This paper aims at generating physics-based fog data
on a well-known dataset collected in daytime and mild sunlight conditions to provide
improvements under foggy conditions.

Some studies also identify failures and how to fix them in extreme weather condi-
tions [23–27]. However, most of them only experiment on images and not on both images
and point clouds [27]. To improve the performance of the perception algorithms, several
studies suggest to dehaze fog, rain, or snow on images [23,28,29] and more recently for
point clouds [30]. Others pointed out how the combination of LiDAR and cameras also
affects performance [25,27]. Other studies proposed to increase the amount of data during
the training phase [23,24,26,31].

This paper extends our previous work [32], a 3D object detector for self-driving cars
in normal weather conditions, to run in foggy conditions. We point out that the late-fusion-
based architecture can perform well with a justifiable training strategy in foggy weather
conditions. The main contributions of this paper are:

• Firstly, we propose a new public dataset augmented from the KITTI dataset [16] for
both images and point clouds through different visibility ranges (in fog) from 20 to
80 m to be as close as possible to a realistic foggy environment.

• Secondly, we show that the data collected from the camera and LiDAR are significantly
distorted under foggy scenes. It directly affects the performance of self-driving cars
3D object detection algorithm, as confirmed through our experiments.

• Finally, extending from our previous work [32] on the original dataset [16] (good
weather condition dataset), we propose a specific training strategy which uses both
normal and foggy weather datasets as training datasets. Experiments show that the
model can run better in foggy weather conditions while keeping performance close to
that obtained in normal weather conditions.

The rest of this paper is organized as follows. A review of the related work is presented
in Section 2. Section 3 describes the fog phenomenon, the fog rendering on camera and
LiDAR. It also describes the 3D object detection method used in this paper. Numerical
experiments and dataset generation are given in Section 4. Section 5 shows the results and
gives its interpretation. Finally, we outline our conclusions and ongoing and future work
in Section 6.

2. Related Work

This section aims to discuss and place the proposed work in the context of existing
research. We distinguish between three main topics related to this work: Section 2.1
3D object detection, Section 2.2 datasets in adverse weather conditions and Section 2.3
perception in adverse weather conditions.

2.1. 3D Object Detection

Based on the sensors used as input, 3D object detection algorithms for self-driving cars
are often divided into categories such as camera-based methods, LiDAR-based methods,
and fusion-based methods. Since images do not provide depth information, methods
of using RGB images [33–36] suffer from many difficulties and ambiguities when trying
to predict the location of objects in 3D space. Mono3D [33] is the pioneering work on
monocular 3D object detection. It is based on Fast RCNN [37], which is a popular 2D
object detector plus many handcrafted features to predict 3D bounding boxes. These
methods [35,36] try to predict 2D key points on the RGB image and then by combining
with some constraint for each specific vehicle it can infer other points in 3D to get the
final 3D bounding boxes. Pseudo-LiDAR [34] presents a new way of representing data. It
generates a pseudo-point cloud by simply converting the predicted depth map from the
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image. Then it can leverage any LiDAR-based method for detection on the pseudo point
cloud. In contrast, LiDAR provides the 3D point cloud data from which very accurate depth
information from ego-vehicle to objects can be obtained. LiDAR-based methods [38–42]
usually give very good results for perception tasks and have received much attention in
recent years. PointRCNN [38] is a two stage detector which attempts to extend Faster
RCNN [43] and Mask RCNN [44] to the point cloud representation. VoxelNet [40] and
PointPillars [42] try to encode the point cloud into 3D cells (voxel or pillar), similar to
images but with a height channel, and then use the 3D CNN to extract features. Meanwhile,
methods [45–47] that attempt to combine both images and point cloud have yet to really
stand out from the LiDAR methods, despite taking in both streams of information. F-
PointNet [46] or F-ConvNet [47] firstly use the 2D bounding box of objects detected from
images to find the frustum region in 3D space. Then, PointNet segmentation [48] is used to
find objects in each frustum. MV3D [45] uses point cloud to generate 3D proposal boxes,
plus sensor fusion layers to refine final 3D bounding boxes. The point cloud is represented
as images (bird’s eye view and front view). These methods are usually quite cumbersome
and cannot yet run in real time.

2.2. Datasets in Adverse Weather Conditions

Most common existing datasets have been collected in good conditions such as
KITTI [16], Cityscape [49], or in different lighting conditions such as BDD100K [19],
Waymo [50], NuScenes [18]. More recent attention has focused on the perception abil-
ity of self-driving cars in adverse weather conditions, because such conditions negatively
affect the quality of the camera and LiDAR sensing, resulting in degraded performance.
Consequently, some datasets have been collected in foggy conditions including Foggy
Driving [23], Foggy Zurich [31], SeeingThroughFog [27], nuscenes [18], BDD100k [19],
Oxford dataset [20,21], [22], [51], rain [51,52] or snow [51,53,54] condition.

However, data collection under such conditions is not easy, and it may cause post-
processing problems such as imbalance issues or labeling errors. In contrast, synthetic
datasets are increasingly close to real data and can avoid such problems. Synthetic datasets
can be divided into two categories: physics-based such as Foggy Cityscapes [23], RainCi-
tyscapes [55], Foggy Cityscapes [31], Rain augmented [24,56,57] and generative adversarial
network based (GAN-based) such as [56,58].

Despite the usefulness of these datasets above, KITTI dataset [16] is commonly used
in the literature, and it’s easy to work on. We decide to use this dataset as a base dataset
for further fog rendering on it. While most synthetic datasets focus only on images
[23,24,31,55,56], this work aims to take into account fog for both image and point cloud
starting from a good weather dataset [16]. We use the physics-based procedure proposed
in [27] to retain physical properties like real fog.

2.3. Perception in Adverse Weather Conditions

While outdoor perception algorithms are usually more sensitive under varying light-
ing conditions than indoors [59,60], perception under extreme weather conditions is even
more challenging [23,24,27] because of sensor degradation, lower contrast, limited visibility
and thereby causing errors in the prediction. In fact, previous research has shown how
performance drops in segmentation [23–26,31], 2D object detection [23,26,27] and depth
estimation [26]. Some studies have also shown that performance may be improved by
learning with synthetic data [23,24,26,31], dehazing [23] or using late-based fusion [25,27].

Like previous works [23–27,31], this research aims to analyze the perception algo-
rithms of self-driving cars under foggy scenes, with a special emphasis on the 3D object
detection task. Indeed, performance is greatly reduced for 3D object detection in foggy
scenes but by training both with a normal and a synthetic dataset, performance may be
improved. Overall, these findings are consistent with those reported in [23,24,26,31].
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3. Methods

This section presents the definition of the fog phenomenon, how fog is modeled to
generate the proposed Multifog KITTI dataset, mentioned later in Section 4. Then, we
extend our previous 3D object detection work [32] to investigate its performance under
foggy weather conditions.

3.1. Fog Phenomenon

Fog is the phenomenon of water vapor condensing into tiny cloud-like particles
that appear on and near the ground instead of in the sky. The Earth’s moisture slowly
evaporates, and when it does, it moves up, cools, and condenses to form fog. Fog can be
seen as a form of low clouds.

Physically, fog is a phenomenon that causes dispersion. Light is scattered by the
suspended water droplets before falling into the image sensor. This scattering phenomenon
has two primary effects. First, the chief ray is attenuated before falling into the sensor,
and second, a signal floor of scattering light is present. These effects reduce contrast, as
shown in Figure 2, the intensity range is filled with intensity values (a single value for a
gray-level image for each pixel) that decrease with the intensity of the fog (clear, 80, 50,
20 m). Therefore, the contrast of the image is inversely proportional to fog density, and
it may cause driving difficulties both for human drivers and sensor-based autonomous
systems or driving aids.

Im
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Clear, L = 255 V = 80 m, L = 255 V = 50 m, L = 255 V = 20 m, L = 255

(a) From left to right, image and point cloud are shown for “Clear” sample and simulated fog samples (64-beam) through different
levels of visibility. Point clouds are shown in bird’s eye view (BEV) representation. 64-beam point clouds are used here to more clearly
see the effect of fog (visualization purpose), but the point cloud used in the experiment (Section 5) is 4-beam.

Figure 2. Cont.
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(b) The image histogram shows the pixel intensity distribution of four images in (a) which are converted to gray scale images here for
simplicity.

Figure 2. The distortion of the image and point cloud according to different levels of visibility in a foggy scene. As visibility
decreases, the contrast of the image and the range of the point cloud also decrease significantly, as shown in (a,b).

The meteorological optical range (MOR), also called visibility and denoted by V, is
the distance in meters where contrast is no longer distinguishable on a white and black
target. A white and black target is perceived by the human eye as uniformly gray when
moving away in the fog. A limit contrast level of 5% has been defined in the standard [61].
The lower the MOR, the denser the fog. By international agreement, the term fog is used
when visibility V is less than 1 km [62].

3.2. Fog Rendering

Datasets under extreme weather conditions are numerically less numerous than those
under normal conditions (clear weather). Firstly, adverse weather conditions do not occur
frequently. Secondly, it is more difficult to clean and label this kind of data. It causes
an imbalance problem for real datasets between different types of weather conditions.
Therefore, the generation of synthetic datasets is useful to develop a system that works in
adverse weather conditions.

There are different ways to generate artificial data under foggy weather conditions:
(a) acquisition under controlled conditions [63] or (b) augmentation on a normal condition
dataset. For the second type, there are also different ways to model fog, such as physics-
based [23,24,31,55,56] or GAN-based [56] modeling. In this paper, we use the physics-based
method [23,27,64] as it can keep the physical properties of the weather, and it has been
researched for a long time.

While radar is not significantly affected by fog [65], data collected from LiDAR and
cameras are quite distorted as shown in Figures 1 and 2. The following describes how point
clouds (LiDAR) and images (camera) are modeled and tested later to show the influence of
fog on these sensors and the performance of 3D object detection algorithms.

3.2.1. Camera in Fog

Based on Koschmieder Law [64] in 1924, Sakaridis et al. [23] formulated the equation
to obtain an observed foggy image I f oggy(u, v) at pixel (u, v) as follows:

I f oggy(u, v) = t(u, v)Iclear(u, v) + (1− t(u, v))L, (1)
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where Iclear(u, v) denotes a latent clear image, L the atmospheric light which is assumed to
be globally constant (generally valid only for daytime images), and in case of a homoge-
neous medium, the transmission coefficient is:

t(u, v) = exp(−βD(u, v)), (2)

where β is the fog density (or attenuation) coefficient, and D(u, v) is the scene depth at
pixel (u, v).

Fog thickness is controlled by β. Using Koschmieder’s Law, visibility V, can be
described by equation [61] (page I-9.4):

CT = exp(−βV) (3)

or,

V = − ln(CT)

β
, (4)

where CT is the contrast threshold. According to the International Commission on Illu-
mination (CIE) [66], CT has a value of 0.05 for daytime visibility estimation. We can also
express t(u, v) as a dependency on visibility V and the depth map D as follows:

t(u, v) = exp(
ln(CT)D(u, v)

V
). (5)

3.2.2. LiDAR in Fog

Gruber et al. [27] assume that beam divergence is not affected by fog. In this model,
a returned pulse echo is always registered as long as the received laser intensity is larger
than the effective noise floor. However, severe back-scatter from fog may lead to direct
back-scatter from points within the scattering fog volume, which is quantified by the
transmissivity t(u, v). Then, the observed foggy LiDAR L f oggy(u, v) can be modeled using
the following equation [27]:

L f oggy(u, v) = t(u, v)Lclear(u, v), (6)

where Lclear(u, v) and L f oggy(u, v) are the intensity of the light pulses emitted from LiDAR
and the received signal intensity, respectively.

Modern scanning LiDAR systems implement adaptive laser gain to increase the signal
for a given noise floor, resulting in the maximum distance:

dmax =
1

2β
ln
(

n
Lclear + g

)
, (7)

where n is the detectable noise floor.
This section has shown how to digitally add fog to a dataset initially acquired in clear

weather. The 3D object detection method applied to this dataset is presented next.

3.3. 3D Object Detection Algorithm

Here, we use our previous 3D object detection algorithm, called SLS-Fusion [32] and
inspired by the work of Qiu et al. [67]. Figure 3, shows a block diagram for this 3D detector.
It takes a pair of stereo images and the re-projected depth map of simulated 4-beam LiDAR
on the left and right image as input. It uses late-fusion and is divided into 3 parts: depth
estimation, converting data representation, and LiDAR-based 3D object detection.
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Figure 3. Overview of the SLS-Fusion framework.

The model takes stereo images (Il , Ir) and the corresponding simulated stereo images
by projecting 4-beam LiDAR, for the left and right side (Sl , Sr). Sl and Sr are simulated
using the formula proposed in [68]. An encoder-decoder network is used to extract features
from both images and point clouds. The proposed network has a weight-sharing pipeline
for both LiDAR and images, (Il , Sl) and (Ir, Sr), instead of only using left and right images
as proposed in [68,69]. Once the left and right features are obtained from the decoding
stage, they are passed to the Depth Cost Volume (DeCV) proposed in [68] to learn the depth
information. Here, as in [68], the smooth L1loss function is used:

∑
(u,v)∈Il

|d(u, v)− D(u, v)|, (8)

where d(u, v) denotes the valid depth ground truth. The predicted depth map is D, where
D(u, v) is the depth corresponding to the pixel (u, v) in the left image Il . Then, pseudo
point clouds are generated using a pinhole camera model. Given the depth D(u, v) and
camera intrinsic matrix, the 3D location (Xc, Yc, Zc) in the camera coordinate system for
each pixel (u, v) is given by:

(depth) Zc = D(u, v) (9a)

(width) Xc =
(u− cU)× Zc

fU
(9b)

(height) Yc =
(v− cV)× Zc

fV
(9c)

where cU and cV are the coordinates of the principal point and fU and fV are respectively the
focal length in pixel width and height. Following [68], 4-beam LiDAR are used to reinforce
the quality of the pseudo point cloud. Then each point (Xc, Yc, Zc, 1) is transformed into
(Xl , Yl , Zl , 1) in the LiDAR coordinate system (the real world coordinate system). The
pseudo point cloud is filled by adding reflectance as 1. Given the camera extrinsic matrix
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C =

[
R t
0 1

]
, where R and t are respectively the rotation matrix and translation vector. The

pseudo point cloud can be obtained as follows:


Xl
Yl
Zl
1

 = C−1


Xc
Yc
Zc
1

. (10)

Once the pseudo point cloud is obtained, it can be treated like a normal point cloud,
although its accuracy depends on the quality of the predicted depth. Similar to Pseudo-
LiDAR++ [68], the input (4-beam point clouds) is used to correct for errors in the pseudo
point cloud. This is a refinement step to obtain a more accurate point cloud. Then, the
depth map is converted into a pseudo point cloud. The idea is to leverage the performance
of current leading LiDAR-based methods such as PointRCNN [38] to detect objects.

4. Experiments
4.1. Datasets and Evaluation Metrics
4.1.1. Datasets

This part presents the datasets that have been used for this work, and it introduces
a new synthetic dataset in foggy situations for both image and LiDAR-based on the
KITTI dataset [16]. As the detector [32] is based on the pseudo-LiDAR pipeline [34], the
training procedure is divided into two parts: depth prediction and 3D object detection. The
corresponding dataset for each part is introduced as follows. The Scene Flow dataset [70],
a large-scale synthetic dataset, is used first for training the depth estimation part. It has
35,454 images of size 960 × 540 for training and 4370 images for testing.

The KITTI object detection dataset [16] is then used for both fine-tuning the depth
estimation part and for training the 3D object detection part. To avoid confusion, from
now it is referred to as Clear KITTI dataset. It is the most common dataset for driving
scenes collected in the daytime and under good weather conditions. It has 7481 training
samples and 7518 testing samples for both stereo and LiDAR. Like most other studies, here
the training dataset is divided into a training part (3712 samples) and a validation part
(3769 samples) as proposed in [45].

The proposed Multifog KITTI dataset is generated by using the equations given in
Section 3 for different visibility levels from 20 to 80 m. As the depth map is required
in Equation (5) to calculate the transmission coefficient t(u, v) and then I f oggy(u, v) in
Equation (1) and L f oggy(u, v) in Equation (6) for each frame, the algorithm proposed in [71]
is applied to the depth map D corresponding to each image on the left side Il and the
same for the right image Ir. This method takes an RGB image and a sparse depth image as
input and results in an image where the value of each pixel is the depth information. The
default configuration proposed in [27] is used, with g = 0.35 and n = 0.05 for the Velodyne
HDL64 S2 LiDAR used in the KITTI dataset. Figure 4 shows the number of samples for
each visibility level for the training and validation sets of the Multifog KITTI dataset. This
dataset is used similarly to the Clear KITTI dataset for both depth estimation and 3D object
detection parts. The proposed Multifog KITTI dataset contains 7481 training samples and
7518 testing samples for stereo images, 64-beam LiDAR, and 4-beam LiDAR. The 64-beam
LiDAR data were not used in this work.
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Figure 4. Distribution of MOR of different parts in the Multifog dataset.

4.1.2. Evaluation Metrics

To measure the performance of the 3D object detection task, average precision (AP) is
computed across 11 recall positions values between 0 and 1 as proposed in [72] for both
3D and bird’s eye view (BEV) levels with intersection over union (IoU) thresholds at 0.5
and 0.7.

According to [16], objects are divided into three levels of difficulty: Easy, Moderate
and Hard, depending on the 2D bounding box sizes, occlusion, and truncation extent
appearing on the image. This study focuses on detecting “Car” objects because the car is
one of the main objects and occupies the largest percentage in the KITTI dataset.

4.2. Experimental Protocols

To clearly present the different steps of the experiments, this part presents the list of
experiments carried out and explains why they were undertaken.

As said earlier, for 3D object detection, SLS-Fusion [32] was used. Satisfactory results
have been achieved with this algorithm on the KITTI dataset. To verify whether the model
is still satisfactory when dealing with foggy weather conditions, the model which is trained
on Clear KITTI is evaluated on MultiFog KITTI.

Secondly, the opposite of the above test is tested. The model is trained on the Multifog
KITTI and then evaluated on Clear KITTI and Multifog KITTI dataset. The purpose of this
experiment and the one above is to verify whether the model performance is affected by
swapping the training and the evaluation datasets.

Then, we train on both Multifog and Clear KITTI together and then evaluate on each
dataset to see whether performance is improved.

Finally, the proposed algorithm is compared with the leading low-cost sensors based
method, Pseudo-LiDAR++ [68] which uses both images and 4-beam LiDAR as input. The
results are presented on the Clear KITTI and the Multifog KITTI datasets.

4.3. Implementation Details

Both training and evaluation processes are carried out similarly through the experi-
ments presented in Section 4.2.

The 4-beam LiDAR used in the input of the network is simulated based on the HDL-
64E LiDAR sensor to resemble the ScaLa sensor as proposed in [68].

For both training and evaluation, the depth estimation part, which is written in the
pytorch framework, is trained and evaluated first, on the Scene Flow dataset. As Scene
Flow does not contain point cloud data, the input LiDAR is set to zeros. Then the network
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is fine-tuned on the KITTI dataset (Clear or Multifog) for 100 epochs with a batch size
of 4 and a learning rate of 0.001. For the detector part, the common LiDAR-based object
detector PointRCNN [38] is employed using the default configuration for both training
and evaluation. PointRCNN is a LiDAR-based method with high performance and used
by many other methods and used in this work to detect objects based on point clouds.
As it was designed to take into account sparse point clouds, the dense point cloud is
sub-sampled to 64-beam LiDAR. Then, the released implementations of PointRCNN is
used directly, and their guidelines are followed to train it on the training set of the KITTI
object detection dataset. Like our previous work, we only train for the “Car” class because
car is one of the main objects and occupies the largest percentage in KITTI dataset, which
causes the imbalance between “Car” and other classes, as solving this imbalance problem
is not the goal of this work.

All experiments in this paper were run on 2 NVIDIA GeForce GTX 1080 Ti GPUs with
11 GB memory and on the Ubuntu operating system.

5. Results

As shown in Tables 1 and 2, the results of different tests using our SLS-Fusion method
are respectively shown for IoU (Intersection over Union) of 0.5 and IoU of 0.7. In each cell
of these tables, a pair of numbers A/B corresponds to the results obtained with the APBEV
and AP3D metrics on the Clear KITTI or Multifog KITTI datasets (Table 1 for IoU of 0.5 and
Table 2 for IoU of 0.7). These two tables show the results and methods achieved through
different experiments on the training dataset and the testing dataset. Similarly, Tables 3
and 4 compare SLS-Fusion [32] with Pseudo-LiDAR++ [68].

Table 1. APBEV/AP3D results with training and testing on the Clear KITTI or Multifog KITTI datasets
for “Car” objects with IoU = 0.5 on three levels of difficulty: Easy, Moderate and Hard.

Method Training Set Test Set
APBEV /AP3D@0.5

Easy Moderate Hard

Our Clear Clear 93.16/93.02 88.81/86.19 83.35/84.02
Our Clear MultiFog 72.66/66.60 47.11/41.86 41.24/37.97
Our MultiFog MultiFog 90.27/90.15 79.17/78.01 76.12/70.21
Our MultiFog Clear 57.33/55.00 39.10/38.38 33.55/32.58
Our MultiFog + Clear Clear 95.36/95.10 86.90/85.04 84.75/79.10
Our MultiFog + Clear MultiFog 89.94/89.82 79.13/78.19 76.36/75.05

Table 2. APBEV/AP3D results with training and testing on the Clear KITTI or Multifog KITTI datasets
for “Car” objects with IoU = 0.7 on three levels of difficulty: Easy, Moderate and Hard.

Method Training Set Test Set
APBEV /AP3D@0.7

Easy Moderate Hard

Our Clear Clear 87.51/76.67 76.88/63.90 73.55/56.78
Our Clear MultiFog 44.57/30.89 29.76/21.23 26.50/18.61
Our MultiFog MultiFog 83.42/69.57 62.79/48.19 56.84/44.85
Our MultiFog Clear 41.54/30.07 27.74/21.10 23.87/18.37
Our MultiFog + Clear Clear 86.23/72.14 72.15/55.67 67.40/53.57
Our MultiFog + Clear MultiFog 84.30/69.07 63.12/47.95 57.84/45.50

5.1. SLS-Fusion Algorithm Evaluation in Foggy Conditions

In this section, the SLS-Fusion 3D object detector is evaluated for different cases of
training data and test data, and the results are reported in Table 1 (IoU = 0.5) and Table 2
(IoU = 0.7). In both tables, the first row shows the detection results for our SLS-Fusion
method [32] when the network is trained and evaluated on the Clear KITTI dataset.
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The following row (number 2 in both tables) shows that the detection performance
is drastically reduced when using weights trained on Clear KITTI and then evaluated
on Multifog KITTI (foggy dataset). This shows that the method, trained only on clear
weather datasets, does not respond well to degraded conditions. Note that these data are
not dehazed before it is put to the model.

Table 3. Comparison with Pseudo-LiDAR++ [68] method, with IoU = 0.5, best results shown in bold.

Method Training Set Test Set
APBEV /AP3D@0.5

Easy Moderate Hard

PL++ Clear Clear 90.3/90.3 87.7/86.9 84.6/84.2
Our Clear Clear 93.16/93.02 88.81/86.19 83.35/84.02

PL++ MultiFog + Clear MultiFog 88.77/88.65 78.39/77.21 75.23/69.59
Our MultiFog + Clear MultiFog 89.94/89.82 79.13/78.19 76.36/75.05

Table 4. Comparison with Pseudo-LiDAR++ [68] method, with IoU = 0.7, best results shown in bold.

Method Training Set Test Set
APBEV /AP3D@0.7

Easy Moderate Hard

PL++ Clear Clear 88.2/75.1 76.9/63.8 73.4/57.4
Our Clear Clear 87.51/76.67 76.88/ 63.90 73.55/56.78

PL++ MultiFog + Clear MultiFog 82.47/70.22 62.54/48.34 56.87/45.74
Our MultiFog + Clear MultiFog 84.30/69.07 63.12/47.95 57.84/45.50

Subsequently, the objective is to investigate the detection performance when under
fog (row number 3). The training part of the Multifog KITTI dataset is used as training
data, and the test part of Multifog KITTI is used for testing. It shows that detection
performance increases markedly whether, for the Easy, Moderate, or Hard cases compared
to the Clear/MultiFog test (row number 2).

We now want to check that the weights trained for the Multifog KITTI (row number 3)
remain relevant in the case of clear conditions. For this, we test it on Clear KITTI dataset
(row number 4). The results are quite poor, which is understandable because the dataset
in testing (Clear) is different compared to the one in training (Multifog) (similar to the
Clear/ Multifog test). This shows that the training dataset must clearly be adapted to all
meteorological conditions, whether good or bad.

Finally, the last tests (rows 6 and 7 of the two tables) consist in using training datasets
as broadly as possible. In this case, we used the Multifog and Clear KITTI datasets for
training, and tested on the Clear and Multifog datasets independently. In general, it was
found that the results were better compared to the experiments trained on the individual
datasets (either Clear KITTI or Multifog KITTI). A trade-off between the performance
on both datasets (Clear and Multifog KITTI) and the number of training times can also
be made.

Consequently, a way to correctly address the problem of fog conditions was found,
which was initially very problematic (extremely low scores on row number 2) by adapting
the training process. We have shown that this training must take into account all weather
conditions to be effective. Finally, we managed to maintain performance under normal con-
ditions, which is very positive. Figure 5 presents some illustrative results of car detection,
showing 3D predicted bounding boxes. It is consistent with the results reported above that
training on Clear and Multifog gives better results.
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Figure 5. Qualitative results of our SLS-Fusion method for 3D object detection on the Clear KITTI dataset and the proposed dataset
(Multifog KITTI). 3D bounding boxes in red and in green denote the ground truth and the prediction for objects in the scene, respectively.
Note that the point cloud is shown in BEV representation.

In the next part, our SLS-Fusion method is compared with the leading method for low
cost based 3D object detection method, Pseudo-LiDAR++ [68].



Sensors 2021, 21, 6711 14 of 18

5.2. Comparison with Pseudo-LiDAR++ Method

Here, the SLS-Fusion method is compared with the leading method Pseudo-LiDAR++
(images and+ 4-beam LiDAR as inputs) on Clear KITTI dataset (normal weather conditions
scenes). It was found that SLS-Fusion provided better results on several metrics, as shown
in Tables 3 and 4. Better results are in bold. These tables, have all the comparisons
(APBEV/AP3D) for IoU = 0.5 (Table 3) and IoU = 0.7 (Table 4).

In Table 3 (IoU = 0.5), rows 1 and 2 show results reported at [32] for the experiment on
Clear KITTI. It can be noticed that SLS-Fusion is better in some categories, such as AP3D
for Easy level objects (93.02% against 90.3%). For Moderate level objects, the algorithm
achieves 88.8% against 87.7% (APBEV). The results are similar for Table 4 (IoU = 0.7)
where the results are better for Easy and Moderate level objects such as AP3D for Easy
level objects (76.7% against 75.1%), AP3D for Moderate (63.9% against 63.8%) and slightly
worse for Hard level objects. SLS-Fusion, tends to achieve better results for Easy and
Moderate level objects which are closer and less overlapped. This is explained by the
backbone of SLS-Fusion which fuses both features from images and the 4-beam point
cloud, while Pseudo-LiDAR++ uses only images as input for feature extraction. However,
4-beam LiDAR is very sparse and has almost no points for distant or occlusion objects, its
contribution is almost non-existent while the number of parameters in the model is still
more. This leads to lower results for Hard level objects.

For the experiment on Multifog KITTI, Table 3 (rows 3 and 4) shows that the SLS-
Fusion algorithm outperforms Pseudo-LiDAR++ in all comparisons, regardless of the
object difficulty. For example, for 3D detection comparison (AP3D), the method achieved
89.82% versus 88.65% for Easy, 78.19% versus 77.21% for Moderate and 75.05% versus
69.59% for Hard level objects. It indicates that the SLS-Fusion model is better trained when
the both Clear and Multifog KITTI are used. The extraction step of SLS-Fusion is better than
Pseudo-LiDAR++. However, in Table 4 (rows 3 and 4), it can be seen that the algorithm is
still better on the APBEV metric for every level of difficulty objects such as 84.30% against
82.47% for Easy, 63.12% APBEV against 62.54% for Moderate or 57.84% against 56.87% for
Hard, but it is worse on the AP3D metric compared to Pseudo-LiDAR++ method. This
IoU level (0.7) is more difficult in terms of localization, so our method does not produce
superior results.

6. Conclusions

The main objective of this research was to analyze the effect of fog on 3D object
detection algorithms. To do this, a novel synthetic dataset was created for foggy driving
scenes. It is called Multifog KITTI dataset. This dataset was generated from the original
dataset, KITTI dataset, by applying fog at different levels of visibility (20 to 80 m). This
dataset covers the left and right images, 4-beam LiDAR data and 64-beam LiDAR data,
although the foggy 64-beam data are yet to be exploited.

This work found that the addition of fog to the images and the LiDAR data leads to
irregularities (lower contrast) in the images and distortions in the 3D point clouds of the
LiDAR targets. The objective was then to test the robustness of the SLS-Fusion algorithm
in dealing with the degradation of image and LiDAR data. The first list of tests consisted
in verifying the negative effect of fog on the detection algorithm. Processing foggy data as
input and using normal data in training leads to a degradation of results. Thus, the degra-
dation of the detection of 3D objects is observed (detection rate decreasing from 63.90% to
21.23% for Moderate level objects). The second major finding was that the performance of
the 3D object detection algorithm can be improved by directly training with both the KITTI
dataset and the synthetic Multifog KITTI dataset, even without dehazing. These results
add to the rapidly expanding field of perception in adverse weather conditions, specifically
in foggy scenes.

Another test consisted in comparing our SLS-Fusion algorithm with the leading low-
cost sensors based method, which is Pseudo-LiDAR++. It was discovered that our method
outperforms the Pseudo-LiDAR++ method on different metrics for the proposed Multifog
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KITTI dataset. This result is very satisfactory because it shows the robustness of the method
when dealing with foggy datasets.

The scope of this study was limited in terms of the effect of point clouds. As the data
used in the experiments are 4-beam point clouds, its features are not as rich as the features
from images or 64-beam point clouds. These findings provide the following insights for
future research: testing 64-beam LiDAR-based 3D objects detection algorithms on the
Multifog KITTI dataset to show more clearly the effects of the fog on point clouds. We
also plan to deal with the case of when either cameras or LiDAR are damaged due to the
influence of the weather.
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