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Abstract: With advancements in technology, more and more research is being focused on enhancing
daily life quality and convenience. Along with the increase in the development of gesture control
systems, many controllers, such as the keyboard, mouse, and other devices, have been replaced
with remote control products, which are gradually becoming more intuitive for users. However,
vision-based hand gesture recognition systems still have many problems to overcome. Most hand
detection methods adopt a skin filter or motion filter for pre-processing. However, in a noisy
environment, it is not easy to correctly extract interesting objects. In this paper, a VLSI design with
dual-cameras has been proposed to construct a depth map with a stereo matching algorithm and
recognize hand gestures. The proposed system adopts an adaptive depth filter to separate interesting
foreground objects from the background. We also propose dynamic gesture recognition using depth
and coordinate information. The system can perform static and dynamic gesture recognition. The
ASIC design is implemented in TSMC 90 nm with about 47.3 K gate counts, and 27.8 mW of power
consumption. The average accuracy of each gesture recognition is 83.98%.

Keywords: VLSI; ASIC; FPGA; hand gesture recognition; SAD matching; object labeling

1. Introduction

In this explosion of the digital information era, computers and many appliances play
important roles in our lives to make them more convenient. As technology is advancing,
more and more research is being focused on gesture recognition. Gesture recognition helps
us to connect with deaf and people who cannot speak using sign language, control robots,
and home appliances without a controller. In human–computer interfaces (HCI), gesture
recognition is an important topic in which breakthrough work needs to be achieved [1].
Traditional gesture recognition devices are not convenient and are constrained by the
environment, such as needing data gloves [2]. As a result, a great deal of research has been
recently focused on vision-based gesture recognition [3]. Through sensors, hand gesture
recognition algorithms can provide a more intuitive and convenient way for users to learn
a device for a specific application. Other than helping users to control devices without a
physical interface, it will save users from feeling irritated through the new intuitive control
technology. The products with have cheap prices, higher stability, and small sizes, which
will help to achieve more adaptability from users. Gesture recognition is an important
topic that has a high potential value in HCI academic research.

Gesture recognition has a wide range of applications, such as:

• Helping the hearing impaired;
• Recognizing sign language;
• Helping mobile drivers to control some devices without looking at them;

Sensors 2021, 21, 6724. https://doi.org/10.3390/s21206724 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7524-0621
https://doi.org/10.3390/s21206724
https://doi.org/10.3390/s21206724
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206724
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206724?type=check_update&version=1


Sensors 2021, 21, 6724 2 of 17

• Improving public health (by eliminating the need to touch public devices);
• Manipulating in virtual environments.

The research on hand gesture recognition based on vision is always categorized into
two groups. The first uses a single image sensor to capture video. In this category of
research, an interesting part, i.e., the hand, is separated using a clean background [4] or
motion information [5]; however, it is not an efficient method for developing a real-world
product, because it is difficult for users to perform gestures when there is only a clean
background or without moving the face. However, in the case of using a single CMOS
camera, the traditional gesture recognition algorithm has a very poor recognition rate in
complex scenes, and hand gestures can only be recognized in a simple scene.

The other category of gesture recognition methods uses an infrared camera, such as
Kinect or a dual-camera like the ZED Camera [6], to obtain the depth information. When
developing a dual-camera hardware architecture system, a depth map is constructed to
acquire more information about the environment. It can deal with the environment when
there is no clean background, or even in some complex environments. With this concept,
many products have been developed and are on the market and are being used in many
types of research so far, such as Kinect and Real Sense. Both of these products use an
infrared camera to construct a depth map and develop different information. However,
these products are always have a relative size from the user’s view and are too expensive.
For all environments, especially in outdoor scenes, depth-sensing devices may not be
suitable at all times of the day.

As CMOS technology develops rapidly, single- or dual-camera can be made as small
and as cheaply as possible. As high integration on the system-level design trend, the
CMOS-based VLSI design is easy for designers to make a system-on-a-chip. The dual-
camera architecture system proves that it can reach the level of efficiency of other products
and reduce system costs. In addition to being used to control appliances, it can also be used
in a virtual environment; however, a dual-camera system is dominated by the vision-based
algorithm. Additionally, to design hardware architecture with a dual-camera system, not
only is the system quality an issue, but the computation power is as well.

To let users feel unrestrained and comfortable when using the product, a hardware
architecture system is developed using a dual camera. In [7] and [8], skin color detection
and multi-scale color detection were used to find a target. However, the high complexity of
the algorithm and the large computation burden were drawbacks. It will consume extensive
resources in hardware implementation. In our previous work [9,10], an implementation
of FPGA for a 3D hand gesture architecture system under a complicated environment
is provided.

In this paper, a hardware architecture system is proposed to improve the execution
speed while maintaining a high efficiency. It can recognize one static gesture as “fist”, five
dynamic gestures as “up, down, left, right” and 3D gestures as “push”, respectively. The
two dynamic gestures can interact with each other, so the system can recognize gestures
like “push up”, “push down”, etc. On the other hand, the design is implemented in the
SMIMS development board using Xilinx Artix-7 to demonstrate the HCI system.

The remainder of the paper is organized as follows. Section 2 includes some related
works on depth extraction, the area of interest detection, and hardware designs. In Section 3,
details of the proposed architecture system are discussed. In Section 4, the experimental
results and specifications of the proposed architecture system are shown. The conclusions
are provided in the last part of the paper. Overall, the contributions of this paper are
listed as:

• We use a lower-priced dual-camera device to construct a depth map and achieve
real-time 3D hand recognition;

• We implement the whole system in VLSI design and demonstrate the HCI system to
verify the overall architecture.
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2. Related Works

As vision-based hand gesture recognition has become a hot research topic, more and
more products and algorithms are being proposed targeting it. In the field of gesture
recognition research, hand segmentation is an important element. The completeness of
segmentation and the removal of noise will seriously affect the difficulty of recognition. The
most common method is to use a skin color detector to filter the background. Color filters
are usually used to detect areas of skin, and some research has added depth information to
acquire more information about the environment.

2.1. Depth Information Extraction

There are several devices that can be used to construct the depth map; these devices
fall into two categories. The first one is infrared cameras, such as Kinect and RealSense.
Kinect is used in many types of research due to the high quality of the image and its speed
efficiency. However, the price is high and the device is large, so it is difficult to set it up
in real-world applications. The second category of devices includes dual-camera systems.
These construct a depth map using the same concept as human eyes. Two sensors are used
to calculate the same object’s coordinates to acquire the disparity and then the disparity is
transformed into a depth map.

The algorithm of environment construction through a dual-camera system can be
classified into two methods. The first is a dense disparity map, which has two classifica-
tions. The second method is the global method algorithm, which has a high accuracy but at
the cost of a high computing time. Therefore, these methods are difficult to implement in
embedded systems. The global method contains belief propagation [11], scanline optimiza-
tion [12], and dynamic programming [13]. The disadvantage of the local method algorithm
is that it is a block-based matching algorithm, so it will sometimes cause matching errors
and will result in a reduction in accuracy for the depth map. The common methods to
calculate sparse disparity map include SAD (sum of absolute differences), graph cut [14],
SSD (sum of squared differences), etc. These methods are used to perform edge and corner
detection. A sparse disparity map has a low complexity, but the efficiency of the depth
map is not good.

2.2. Area of Interest Detection

In a gesture recognition system, the area of interest detection is the key area that
needs a good gesture recognition rate with a high accuracy. The simplest way to achieve
area of interest detection is through background subtraction [15]. Mesbahi et al. [16]
proposed a gesture recognition method using background subtraction and convexity
defects. First, background subtraction is used to delete useless information, then the
contour segmentation of the hand image needs to be determined, and the contour image to
calculate convex hulls and convex defects is then calculated. It also uses feature analysis and
identification parameter extraction for classification and recognition. Through comparison
of the area of interest with the background model, the accuracy of the segment in the
foreground object becomes high. However, the disadvantage of such a method is that the
system needs to save the information of the background model and the foreground cannot
contain other moving objects. It is difficult to use this method in a complex environment.

Another method uses skin-like color detection and motion information to segment
the area of interest. Hasan et al. [17] used two different methods to segment the input hand
image; subdivision of skin color using an HSV color model and thresholding technology to
capture the shape of hands and their features. An improved direction analysis algorithm
was used to determine the relationship between statistical parameters from the data, and
through hand gesture direction to calculate the slope and trend of the hand. It is a good
way to detect the hand part and the complexity is low in this case. However, this method
cannot be used in environment where too many objects have skin-like colors.

Haar-like feature with Adaboost is a robust method to segment the hand part. A two-
level real-time hand gesture recognition has been introduced, combining Haar-like features
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to implement pose detection and the AdaBoost algorithm was based on stochastic context-
free grammar [18]. Machine learning is being used in many systems at the moment;
however, due to the high computational resource demands, it is difficult to develop hard-
ware gesture recognition work in an embedded system. With the depth map of dual-camera
and Kinect, however, researchers can use the information to segment the hand part as
the nearest object [19–21]. This is an efficient way to find an area of interest, even when
the scenario is in a complex environment, which is one of the reasons why the proposed
system adopts a stereo matching module.

2.3. Hardware Design

There are some related works in which the stereo vision algorithm is used in gesture
recognition. Raj et al. [22] used skin color detection to perform hand segmentation and
convert the image into a binary signal and find the centroid of a hand. The hand recognition
is done by counting the number of zero-to-one (black-to-white) transitions from left to right
to determine the number of fingers. Because the number of fingers can be identified by
spreading the fingers, as long as the number of fingers is the same, different gestures may
be seen as the same gesture.

Cho et al. [23] used a median filter to reduce the noise present in an image. This
enhanced the accuracy of gesture recognition using skin color detection, and an optical
flow gradient operator was then proposed to render the shape of a hand to improve
results in hand gesture recognition. A Kalman filter can be used to track hands, and hand
recognition is finished using the hidden Markov model (HMM). This method, however, is
only applied when there is a simple background.

Wang et al. [24] proposed a new Gaussian model and median filtering model of binary
images. Parallel and pipelined hardware architecture were used to reduce the complexity
and make hardware implementation easy. However, in most gesture recognition systems,
the forearm is considered to be a redundant object that must be removed as the area of the
forearm will cause changes in extracted features. This work ignores the removal process of
the forearm and thus creates a limitation in the application.

Nunez-Prieto et al. [25] presented a real-time gesture recognition system using a regu-
lar phone camera for hand-data acquisition using FPGA implementation as an accelerator.
In their work, a CNN was used for classification. However, the most important problem in
implementing a neural network in FPGA is that the calculated throughput and memory
bandwidth may not match. Due to the insufficient utilization of hardware resources, or the
memory bandwidth, existing designs cannot achieve optimal performance.

3. The Proposed System

The hand gesture recognition system proposed by us contains several important
modules. The design flow is shown in Figure 1. We captured the two camera inputs as a
stereo video for processing. After a series of computation tasks, we could acquire static and
dynamic hand gestures. The hardware block diagram is illustrated in Figure 2. The input
of the proposed system is YUV data, which were processed by the software when recording
the data [26]. Two kinds of memory were used in the system. Off-chip memory (RAM) was
used to save the Y value of the left and right image pixels, as well as the U and V values of
the right image pixels. A memory wrapper was used to read the images from the RAM.
Two 256 × 20 register-file memory modules were used to save some static numbers. The
entire design shared these six memory modules to save the different results. More details
of the image preprocessing, stereo matching, skin detection, hand segmentation, object
labeling, and hand gesture recognition are discussed later. The overall implemented FPGA
system will be discussed in Section 4.
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3.1. Image Preprocessing

The proposed system uses a dual-camera with a stereo matching algorithm to construct
a depth map. Many factors affect the accuracy of the depth map, so three preprocessing
methods, downsampling, histogram equalization, and image rectification, were applied to
enhance the matching efficiency in this system. The image captured by the system’s dual
camera was an RGB color image with a size of 1280 × 720. Then we downsampled the
image size to 160 × 120 and converted the image information to YUV. Depth information
was created and used with grayscale information and did not require color information.
Thus, the conversion to the YUV format could further reduce the size of the data file. When
a dual-camera device captures an image, it is usually affected by light because the two
sensors have different positions, and, as a result, they acquire the different strengths for
light, which affect the Y value. To reduce the light effect in the different cameras and to
make the pixel value distribution of the two cameras similar, histogram equalization was
used to preprocess both images. This process was performed in the first module of the
system. The equation of histogram equalization is shown below:

sk = T(rk) = (L− 1)∑k
j=0 pr

(
rj
)
= L−1

MN ∑k
j=0 nj,

0 ≤ rk ≤ 1 k = 0, 1, . . . , L− 1,
(1)

For the equation, nj is the histogram for rj pixel, L is 256 as the range of the pixel value
is 256, MN is the total number of pixels in a frame, and sk is the final gray pixel. Using this
formula, all pixels can be assigned a new value. The architecture for histogram equalization
is illustrated in Figure 3. The register-file memory was used to save the static numbers.
Constant C is used to round the numbers and the shifter is used to replace the divider.
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The third module is for image rectification. Due to the stereo matching operation, the
system needed to fit the left and right images in the epipolar geometry. Image rectification
is quite important, especially in dual-camera systems, as it directly affects the accuracy
when matching pixels. In this system, we assumed that there is only a horizontal difference
between the two cameras. Thus, the system rectifies the left image, i.e., it move up or down
to fit the epipolar line in the same horizon. The proposed image rectification algorithm
has a low complexity for rectifying the two images. Eight horizontal lines of the right
image are selected to match the left image. Each of the horizontal lines of the right image
has to match the eleven horizontal lines of the left image. The equations are shown as
Equations (2)–(4) [27]. E is the total horizontal summation in one row. Ed is the minimum
difference in the left and right images for each horizontal line. The system will calculate
each minimum difference number for ten lines. Then, the shift level value is calculated
through the eight Ed numbers to rectify the left image. The hardware architecture is
demonstrated in Figure 4. After calculation of the shift level, a line buffer is used to rectify
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the image. This module only needs to calculate the shift level in the first frame. For all
other frames, the same shift level value is used to rectify the left image.

E =
n

∑
k=0

I(k), n = 1280 (2)

Ed(b) = min{abs|Er(b)− El(bm)|}, b = 1 ∼ 8 and m = −5 ∼ 5 (3)

Shi f t Level =
∑8

b=1 min{abs|Er(b)− El(bm)|}
8

=
∑8

b=1 Ed(b)
8

(4)
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3.2. Stereo Matching

After preprocessing, the system has two left and right images. Depth information is
the key point to determine the area of interest and recognize 3D gestures. In our system,
we used the SAD algorithm with a low complexity for stereo matching to construct the
depth map [28]. This is because the accuracy of the depth map is not very important; it
can tolerate the accuracy of the SAD algorithm in terms of results and can recognize hand
gestures. The proposed stereo matching module deals with a 1280 × 720 resolution image
with a disparity of 64 with a window size of 5× 5 pixels for each block. The minimum error
value of the SAD algorithm was considered as the disparity of the pixel, and the equation
is as (5) [29,30] to illustrate the disparity in the pixels. IR and IL are the coordination pixels
in the left and right images. Component d means the disparity of the system, so here d
is 64. After calculating the disparity, the system will replace the disparity value in map
depth pixel in the range of 0 to 255 using (6). The uniform formula is adopted because
the non-uniform formula needs dividers to calculate the result. To avoid the usage of the
divider, the value of the right-hand side of (6) was utilized through the look-up table while
calculating v. Znear is the nearest disparity value, Zfar is the farthest disparity value, Zv is
the current disparity value, v is the final depth pixel, and N is 256.

Zv = argmin[
160

∑
x=1

120

∑
y=1
|IR(x, y)− IL(x + d, y)|] (5)

v
N − 1

=
Zv

Znear − Z f ar
(6)

Although the hardware architecture is proposed to speed up the system, the stereo
matching module still takes too many clock cycles. Many types of research are attempting
to determine how to reduce the overall cycles in a system while calculating SAD error
values [31]. The basic concept is that many pixels in the left image are reused when
matching with the right image. This allows memory access through the reusing scheme for
the left and right images. Based on this scheme, the proposed architecture is applied by
shifting the pixel value for the next SAD computation. The proposed system also consists
of a parallel architecture with five processing engines. The implementation scheme for the
proposed stereo matching is shown in Figure 5. Five engines were used as there are five
pixels in one address and this helps to reduce the complexity of the memory data controller
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and speeds up the overall system. As a result, the overall number of calculation cycles is
greatly reduced. The data controller controls the memory and fetches the required pixels to
calculate the sum of the difference. The depth control unit controls the stereo matching
module, which needs to shift the address to read a new row or shift data values to calculate
the disparities of the subsequent five pixels. The disparity LUT is used when transforming
a disparity value to a depth value without using a divider.
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3.3. Skin Detection

After acquiring the depth information, skin detection was performed to remove noise.
The system removes non-skin-like colors using the range of the YUV data. In this way,
information can be extracted that is related to hands and faces. The range of skin detection
values is illustrated by Equation (7) Then, the skin data was passed to the next module.
Till now, the system still cannot recognize the hand part because of the face and other
skin-like noises.

skin(x, y) =


1, i f


65 < Y < 170
85 < U < 140
85 < V < 160

0, else

(7)

3.4. Adaptive Dynamic Threshold

After removing the non-skin-like color, the system will find the area of interest, i.e.,
the hand. Using skin and depth information, hand segmentation can be performed. The
proposed hand segmentation checks the statistics of skin color’s depth value. We designed
the system to calculate the adaptive dynamic threshold to separate hands and faces through
depth information. The horizontal axis is the depth value of the skin color and the vertical
axis is the statistic number of each depth value. Through the statistic value, the two higher
parts can be seen as the hand and head in the frame; thus, we need to separate them.

The proposed system will pick the six pixels that have the highest probability peaks to
calculate the threshold and segment the nearest hand. A schematic diagram of this is shown
in Figure 6. We can segment the hand using (8), where p is the pixel value after performing
the statistics. d1 and K are constants to handle the situation where hand occlusion with face
happens or there is only one face or hand in the frame. Using this scheme, the system can
still segment the nearest object correctly, regardless of whether there are multiple skin-like
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color objects or not. The proposed hand detection architecture is illustrated in Figure 7.
The statistics are saved in the threshold memory so that the system can find the probability
peaks and calculate the threshold.

Threshold =

{
Ppmax − d1 , i f

(
Ppmax − Ppmin

)
< K

Ppmax −
Ppmax−Ppmin

2 , else
(8)
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3.5. Object Labeling

The system has acquired the area of interest, i.e., the nearest hand; however, there is
still some noise as the foreground object. Object labeling is performed to label foreground
objects. In this way, it can help, not only to remove the rest of the noise, but also to calculate
the coordinate, length, and width of the hand for the gesture recognition module. For
the labeling procedure, the four connected pixels label scheme is applied to perform label
assignment. The equation for the labeling scheme is listed in (9). A replacement situation
occurs if the X is foreground data and the four connected pixels have more than one label
value. Thus, the replacement situation will be saved in the register file memory. After label
assignment, some connected labels need to be integrated via label fusion. The proposed
system can completely fuse all label values using the following method. First, the memory
data are initialized as zero. Then, the replacement situation label value is saved to the
original label value address. After that, a table of all the replaced values is generated. The
values can be automatically updated by finding the data in the memory through memory
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addresses. If data are zero, it means that the label value is minimum and does not need to
be replaced.

Label(X) = min (label (P), label (Q), label (R), label(S)) (9)

Then, two more data values are read from the memory to decide which label value
needs to be replaced by a proper label value. A label value similar to the example needs to
be replaced, as shown in Figure 8. If one of the two data values is zero, the original value
will be replaced with zero; if it is not, the system will update the minimum value of the two
values and repeat process again until one of the values is zero. The architecture of object
labeling is illustrated in Figure 9. The left part is a label assignment with four connected
pixels and the replace situation is saved in a Merger Table.
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After finishing the object labeling module, the system has the width, length, and
coordination of each object. With this information, the system can remove noise by saving
the biggest object to find the hand. Because there is a hand and a small amount of noise at
this stage, there is an efficient way to remove noise.

3.6. Hand Segmentation

In this module, the system utilizes the information from the hand part and the object
labeling module to develop hand gesture recognition information. The proposed system
has one static and five dynamic gestures. The static gesture is a fist gesture, which is
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judged by its contour information through object labeling. Recognition of the fist gesture is
elaborated in (10).

Fist =

{
1 Object length < Object width ∗ 1.5
0 Otherwise

(10)

In the proposed system, two dynamic gestures are recognized only with the “fist”
situation. The fist gesture can be treated as a trigger of dynamic gestures. When the status
is a fist, the system will record the current depth value and calculate the threshold of the
push gesture adaptively by adding constant and depth values. If the depth value exceeds
the threshold, the system will regard it as a push gesture. The method that updates the
initial gesture depth value follows Algorithm 1:

Algorithm 1. Pseudocode for the algorithm to determine push gesture threshold

Input: fist, current depth
Output: threshold
Initialization: count = 0
Begin
1: for i = 1:n do
2: if(fist = 1 & count = 0)
3: threshold = current depth +c
4: count = 1
5: else if (fist = 1)
6: threshold = threshold
7: else count = 0
8: end

With the coordinate information from the hand part, the system can continuously
record hand trajectory to recognize “up, down, left, right” gestures using a fist gesture.
When the status is not the fist gesture, the system will calculate the weight of the four
directions to judge a gesture’s status. The system can also judge the variety of depths to
construct a push gesture through the depth information. Whenever the status is the fist
status again, the threshold will be updated. The two dynamic gestures can interact with
each other to construct “push up”, “push down”, etc. With these signals, products can use
our hand gesture recognition to easily control some appliances.

4. Experimental Results

In this section, a discussion regarding the two parts of the experiment results is
included. The first part includes details about the ASIC design with different specifications,
a comparison of the design with other research, and a discussion of the results for each
gesture. The second part includes the FPGA implementation and a demonstration of the
HCI system.

4.1. ASIC Design

The video input of the proposed system was recorded using a general dual-camera
PC cam. After the data were rearranged and transformed into the YUV format by the
software, the data were used as the input pattern. To demonstrate the experiment results
and verify all the gestures, several video streams were used to test and verify the system. In
the proposed system, the most significant goal was to capture the nearest hand and retrieve
information about it. To enhance memory efficiency and reduce power consumption, the
two stereo frames were not saved after finishing all the modules. With the trade-off of
memory usage, power consumption, and chip efficiency in mind, the resolution of the
system was chosen to be 1280 × 720. Figure 10 demonstrates the gesture of “up, down,
left, right”, where the left part is the start frame and the right part is the final frame. The
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gestures from top to bottom are up, down, left, and right, respectively. There are also
some images on the right to demonstrate the status. When the system recognizes that the
gesture is up, the fist spot will be highlighted, similar to the other gestures. The push and
four-direction gestures can interact with each other, so the spot can also help us to verify
the gesture of push-up, push-left, and so on.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

 

four-direction gestures can interact with each other, so the spot can also help us to verify 
the gesture of push-up, push-left, and so on. 

Fist No fist

Up

Down

Left

Right

 
Figure 10. Four directional gesture results. 

A comparison with different studies is listed in Table 1. Our design of the FPGA is 
synthesized using the same modules from our previous work [10]. Compared with [10], 
we changed the data flow to reduce the burden of accessing SRAM and optimized the 
data arrangement. Referring to previous works, [20], [21] both used the number of spread-
ing fingers for recognition, which is not accurate for gesture recognition. Although dy-
namic gestures can be recognized (as in [22]), they can only operate in a simpler back-
ground. The work in [23] was designed using a CNN for hand recognition. It used a great 
deal of hardware resources and the FPS was lower than that in other work. Our work can 
recognize dynamic gestures without being affected by the environment. The Table 1 
shows that, when the resolution is 1280 × 720, our FPS was similar to that of other meth-
ods. The results showed that it can recognize correct gestures in complex environments 
while using fewer Slice LUTs than other methods. This means that the proposed architec-
ture can acquire depth information and recognize some gestures on low-cost devices with 
high efficiency. The specifications of the proposed system are illustrated in Table 2. ASIC 
design was synthesized for the TSMC 90 nm technology, the operation frequency was 420 
MHz to run at 60 frames per second. The gate count and power were 47.3 K and 23.63 
mW, respectively. The layout of the chip area was 1.58 × 1.61 mm, with 102 pins, as 
shown in Figure 11. The total memory requirement was 1.25 kilobytes to temporarily save 
data during data processing. 

  

Figure 10. Four directional gesture results.

A comparison with different studies is listed in Table 1. Our design of the FPGA is
synthesized using the same modules from our previous work [10]. Compared with [10],
we changed the data flow to reduce the burden of accessing SRAM and optimized the data
arrangement. Referring to previous works [20,21], both used the number of spreading
fingers for recognition, which is not accurate for gesture recognition. Although dynamic
gestures can be recognized (as in [22]), they can only operate in a simpler background.
The work in [23] was designed using a CNN for hand recognition. It used a great deal
of hardware resources and the FPS was lower than that in other work. Our work can
recognize dynamic gestures without being affected by the environment. The Table 1 shows
that, when the resolution is 1280 × 720, our FPS was similar to that of other methods.
The results showed that it can recognize correct gestures in complex environments while
using fewer Slice LUTs than other methods. This means that the proposed architecture
can acquire depth information and recognize some gestures on low-cost devices with high
efficiency. The specifications of the proposed system are illustrated in Table 2. ASIC design
was synthesized for the TSMC 90 nm technology, the operation frequency was 420 MHz
to run at 60 frames per second. The gate count and power were 47.3 K and 23.63 mW,
respectively. The layout of the chip area was 1.58 × 1.61 mm, with 102 pins, as shown
in Figure 11. The total memory requirement was 1.25 kilobytes to temporarily save data
during data processing.
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Table 1. The comparison of each researcher.

Raj [20] Cho [21] Wang [22] Núñez-Prieto
[23] This Work

Camera Single-camera Single-camera Single-camera Single-camera Dual camera

Platform Virtex-4 ML402
ALTERA

Cyclone II
EP2C70

Virtex-5
XC5VLX50T xcku060 SMIMS

VEXA7-200

Remarks

Skin-detection
Centroid

calculation
Finger count

determination

Skin-color-
detector

Optical flow
operator

Kalman filter

Skin-detection
Median filter

Fingertip
detection

CNN
ZynqNet

SAD
Skin-detection

Object-Labeling
Trajectory-
detection

Image size – 640 × 480 640 × 480 – 1280 × 720

Frequency – 125 MHz N/A 200 MHz 420 MHz

Frame rate – 75FPS 60FPS 23.5FPS 60FPS
(180FPS@640*480)

Throughput
(pixel per second) – 230.4 M 180.3 M 15.4 M 553 M

Slice Register 14,053 7251 6421 71,000 6051 (2%)

Slice LUTs 39,540 16,806 12,633 293,000 8204 (6%)

Bonded IOBs 463 447 22 – 178 (44%)

Gesture classes 5 static 2 static
4 dynamic 5 static 29 static

1 static,
5 dynamic

(2Dx4 + 3Dx1)

Table 2. Specification of the proposed system.

Item Specification

Technology TSMC 90 nm

Voltage 1.0 V / 3.3 V (Core / IO)

Operation frequency 420 MHz

Chip area 1.580 mm × 1.610 mm

Core area 1.020 mm × 1.048 mm

Gate count 47.3 K

Memory requirement 1.25 KBytes

Power consumption 27.7736 mW

Total pins 102 pins
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We used some techniques to reduce power consumption. Figure 12 illustrates the
power reduction, step-by-step, using some techniques. Estimation was evaluated using
Synopsys Primepower. As shown in Figure 12, the original power consumption was
28.5442 mW. We applied gated clock technology to reduce the power consumption. The
AND logic gate was used to multiply the enable signal and clock. We also used the high Vt
replacement to reduce leakage power and dynamic power reduction was also used. Finally,
the power consumption of the proposed design was only 27.7736 mW.
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4.2. FPGA Implementation and Demonstration

To verify the overall system, hardware architecture was implemented in the SMIMS
VEXA7-200 development board. The system architecture of FPGA implementation is
shown in Figure 13. The development board contained an FPGA with Xilinx Artix-7 and
two FMC daughter boards to control the input and output information. Because the image
data captured by the cameras were quite large, the system saves the image data in DDR3
memory and outputs the DDR3 data via HDMI to a monitor. Due to the limited bandwidth
and operation frequency of DDR3, our design was modified for a resolution of 160 × 120
to meet the constraint limits of DDR3. FIFO was utilized to synchronize the speed of input
and the output images and to prevent image data loss. The proposed architecture uses the
same multiplexer with two IPs to control the DDR3 controller. Thus, the lowest priority of
the proposed system is to prevent input and output image overflow, which would cause a
system breakdown.

The resource usage of the FPGA is illustrated in Figure 14. The average accuracy of the
proposed system is 83.98%, and is shown in Table 3. To test the system gesture recognition
rate, there were 10 different users for measuring the system gesture recognition rate and
each gesture was performed 100 times.

A real demonstration system for the overall proposed work was constructed, as shown
in Figure 15. It was implemented in the SIMIS development board. A dual-camera device
was used to capture the video. After the entire process, the output result is shown on a
monitor to achieve the goal of the HCI. Note that we did not have a clean background to
make hand segmentation easier. We ran the program in an environment with a complex
background.
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In this paper, a VLSI hardware architecture system with a dual-camera is proposed. 
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noise. Several gestures in the video have been simulated in this system. We have created 
a complete VLSI design with each architecture module. This whole system is also imple-
mented in FPGA with the SMIMS development board to demonstrate the HCI system and 
to verify the overall architecture. The dynamic gestures can be combined with each other 
so they can be applied with to some home appliances and control them easily. The average 
accuracy of all gesture recognition is 83.98%. Based on the proposed system, several hand 
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5. Conclusions

In this paper, a VLSI hardware architecture system with a dual-camera is proposed.
We construct the depth map with a stereo matching algorithm and recognize hand gestures
to meet the goal of 3D hand gesture recognition. The preprocessing module is selected to
increase the accuracy of stereo matching. The SAD algorithm is applied to match the pixels
and construct the depth map. We calculate the adaptive threshold to separate hands and
faces using the depth information, and also remove most of the noise. Then object labeling
processing was performed on the information to remove the rest of the noise. Several
gestures in the video have been simulated in this system. We have created a complete VLSI
design with each architecture module. This whole system is also implemented in FPGA
with the SMIMS development board to demonstrate the HCI system and to verify the
overall architecture. The dynamic gestures can be combined with each other so they can be
applied with to some home appliances and control them easily. The average accuracy of all
gesture recognition is 83.98%. Based on the proposed system, several hand gestures can be
recognized, even in a complicated environment.
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