
sensors

Article

Location-Aware Resource Discovery and QoR-Driven Resource
Selection for Hybrid Web Environments

Lara Kallab 1,*, Richard Chbeir 2 and Michael Mrissa 3,4

����������
�������

Citation: Kallab, L.; Chbeir, R.;

Mrissa, M. Location-Aware Resource

Discovery and QoR-Driven Resource

Selection for Hybrid Web

Environments. Sensors 2021, 21, 6835.

https://doi.org/10.3390/s21206835

Academic Editor: Paolo Bellavista

Received: 23 August 2021

Accepted: 5 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Open Group, 92300 Levallois Perret, France
2 Department of Computer Science, E2S UPPA, LIUPPA, University Pau & Pays Adour, 64600 Anglet, France;

richard.chbeir@univ-pau.fr
3 InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; michael.mrissa@innorenew.eu
4 Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska,

Glagoljaška 8, 6000 Koper, Slovenia
* Correspondence: lara.kallab@open-groupe.com

Abstract: In the Web of Things (WoT) context, an increasing number of stationary and mobile
objects provide functions as RESTful services, also called resources, that can be combined with other
existing Web resources, to create value-added processes. However, nowadays resource discovery and
selection are challenging, due to (1) the growing number of resources providing similar functions,
making Quality of Resource (QoR) essential to select appropriate resources, (2) the transient nature
of resource availability due to sporadic connectivity, and (3) the location changes of mobile objects in
time. In this paper, we first present a location-aware resource discovery that relies on a 3-dimensional
indexing schema, which considers object location for resource identification. Then, we present
a QoR-driven resource selection approach that uses a Selection Strategy Adaptor (SSA) to form
i-compositions (with i ∈ N∗) offering different implementation alternatives. The defined SSA allows
forming resource compositions while considering QoR constraints and Inputs/Outputs matching
of related resources, as well as resource availability and users different needs (e.g., optimal and
optimistic compositions obtained using a scoring system). Analyses are made to evaluate our service
quality model against existing ones, and experiments are conducted in different environments setups
to study the performance of our solution.

Keywords: hybrid Web environments; location-aware resource discovery; QoR-based selection;
i-compositions

1. Introduction

Nowadays, the REpresentational State Transfer (REST) architectural style [1] has be-
come the most adopted solution for designing and developing Web services, also called
RESTful services, i.e., self-contained and self-describing resources published to the Web.
This is due to several advantages, among them, its simplicity, scalability, and support
for different data formats, e.g., JSON (JavaScript Object Notation, http://json.org/) and
XML (Extensible Markup Language, https://www.w3.org/standards/xml/core/). As the
Web has become a major medium of communication [2], integrating objects (e.g., smart
sensors) into the Web and taking advantage of its open popular standards, e.g., HTTP (Hy-
pertext Transfer Protocol, https://tools.ietf.org/html/rfc7231/), has created a new concept:
the Web of Things (WoT), which improves the interoperability and usability of the Internet
of Things (IoT) [3]. In the WoT, objects can be (i) stationary (having invariant location), or
(ii) mobile (their position changes over time), and are abstracted also as RESTful services
(resources). Each resource is identifiable by a Uniform Resource Identifier (URI), and
provides functions invokable using HTTP methods (e.g., GET, POST, PUT, and DELETE).
A resource can be (i) dynamic, i.e., it may be connected to and removed from the Web
environment at different instances, or (ii) static, i.e., it is established to be always connected

Sensors 2021, 21, 6835. https://doi.org/10.3390/s21206835 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4112-1426
https://orcid.org/0000-0002-2330-1004
https://doi.org/10.3390/s21206835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://json.org/
https://www.w3.org/standards/xml/core/
https://tools.ietf.org/html/rfc7231/
https://doi.org/10.3390/s21206835
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206835?type=check_update&version=1

Sensors 2021, 21, 6835 2 of 27

to the environment. In this paper, a Web environment that allows one to connect static and
dynamic resources is referred to as a “hybrid” environment.

There are many cases, in which, a single resource can not meet a specific client request,
and often, answering some requests requires the combination of two or more resources,
forming a composition that achieves the desired outputs. To form a composition, resource
discovery [4] and resource selection [5] are performed. However, several challenges arise:

1. Identify WoT resources based on their object location: Objects, in mobile Web envi-
ronments, may have variant or invariant locations. To collect relevant data from these
objects, and provide pertinent results, it is important to consider their location to select
their exposed resources that are the most appropriate for user demand. However, the
huge number of objects that can be connected providing different resources functions,
and their location changes in time, make the resource discovery process complex,
especially when treating requests that need fast responses. Therefore, discovering
resources, while considering their relative object location, in an effective manner and
with acceptable delays, is necessary to satisfy user requests.

2. Select the appropriate resource for a needed function: Large Web environments can
connect numerous candidate resources that provide the same function. With the huge
number of candidate resources that may be connected, selecting the most relevant one,
while taking into consideration user constraints (whenever they are given), becomes a
complicated task for end-users. In this context, it is important to differentiate between
the resources having the same function, to select the suitable resource for a function.
This is done by considering Quality of Resource (QoR) attributes [6] (e.g., Availability
and Cost). However, with the growing number of candidate resources having various
QoR attributes [7], it is essential to have an automatic selection approach that can
facilitate the task for end-users, and accelerate the process. In addition, and to provide
compositions solutions that fit more efficiently the user’s demands, it is important
to consider the matching of the input and output (I/O) of the related resources in
a composition.

3. Form several composition alternatives: In hybrid Web environments, where dynamic
resources can be connected, the selected dynamic resource(s) for a composition may
be unavailable (e.g., disconnected from the environment) during the execution pro-
cess. To prevent re-executing both the discovery and selection processes to create
a new appropriate composition, it becomes essential to provide, during resource
selection, i-compositions (i ∈ N∗), i.e., a set of compositions with different implemen-
tation alternatives. Such compositions achieve the workflow (which represents the
dependencies between different functions to be satisfied by multiple resources) that is
necessary to realize user demand by using, each, a different resource set. This gives
the possibility to substitute a resource composition, in which some or all resources
are no longer available (due to a disconnection from the environment for instance),
by other compositions containing available resources. Thus, a selection approach that
considers resource dynamicity is necessary. Also, in some cases, some users need
optimal compositions having the highest scores, others may require optimistic compo-
sitions with acceptable scores but obtain with better delays, and in other cases, users
ask for solutions having acceptable scores while considering resource dynamicity
(whenever a dynamic resource is unavailable during a composition execution, there
is always another composition consisting of available resources that can take over).
Therefore, providing compositions solutions that answer different user requirements
becomes important.

Web service discovery has received much attention in the literature [4,8–12]. However,
none of the existing approaches are designed to handle both static and dynamic aspects of
services. For example, works [4,8–10] focused on the discovery of services exposed by Web
applications (i.e., static), without considering services dynamicity and mobility. Others [11,12]
handled the discovery of mobile and dynamic services but neglected the existence of static
ones. Also, many approaches addressed service selection [5,13–16]. Some works [5,13,15,17]

Sensors 2021, 21, 6835 3 of 27

considered Quality of Services (QoS) to select the most appropriate ones based on user
constraints, without dealing with I/O matching between the related services and service
dynamicity. Other approaches [16,18,19] handled the service selection problem as an AI
planning problem to aim at finding a sequence of services that starts from some given
inputs parameters and ends with the desired outputs parameters, with no consideration
to services QoS and dynamicity. Moreover, and to the best of our knowledge, none of
the existing composition approaches [20–22], is adaptive to provide various compositions
types that answer different user demands (e.g., compositions with the highest scores,
compositions with acceptable scores but formed with better delays, etc.).

To address the aforementioned challenges and existing limitations, we first present,
in this paper, a location-aware resource discovery that relies on a 3-dimensional indexing
schema for resource identification. The indexing schema, which maps the resources (static
and dynamic), supporting HATEOAS (Hypermedia As The Engine Of Application State),
which consists of including within resources responses, links to other resources, during
their design, to identify the next possible resources to call based on the current resource
state [1], to their functions and to the location of their relative objects (if they are exposed
by objects), allows the identification of the data collection resources that are necessary to
the required location relevant to the user request and enhances resource search in large
Web environments. Then, we present a QoR-driven resource selection approach that uses
a selection strategy adaptor that allows one to create different composition alternatives
(i-compositions), while considering users QoR constraints, the matching between I/O
parameters of related resources, as well as resource dynamicity and the composition
type requested by the user. The proposed resource discovery and selection processes are
automatic. This is done by using semantic annotations that are embedded into resources
descriptions, which are expressed in this paper using Hydra [23] vocabulary.

In the following, we present our motivating scenario in Section 2, and present the
handled main challenges and covered needs. Then, we discuss related work in Section 3. In
Section 4, we detail our proposed resource discovery and selection approaches. Section 5
compares our defined QoR model against existing works and evaluates the performance of
our solution. Finally, Section 6 concludes the paper and gives future directions.

2. Motivation, Challenges, and Needs

Our work targets hybrid Web-based environments that connect static resources, i.e., es-
tablished to be always available on the Web, and/or dynamic resources, i.e., can be con-
nected to and removed from the environment at different instants. The resources can be
provided by Web applications or Web objects. There are many applications examples where
our proposed resource discovery and selection approaches can be applied. As such, in the
smart city context [24], we can found several use cases, e.g., Road Traffic Management,
Smart Parking, Crowd-sensing, and Energy Efficient Buildings, which require huge data
sensed from many connected devices, as well as preparing and processing the collected
data using data preparation and analysis resources (services). The big number of data
collection resources (exposed by mobile/stationary objects) that can be provided by such
environments, the existence of numerous candidate resources having the same function,
and the dynamic aspect of some of the resources, make resource discovery and selection
challenging tasks to answer different user needs. The same challenges appear also in new
application domains, such as Agriculture and Breeding [25], where there have been enor-
mous changes in the technologies and methodologies for performing agricultural activities,
among them, the incorporation of smart devices and the use of advanced processing data
services for monitoring greenhouse conditions, smart farming, smart factory for reducing
the maintenance cost, etc.

Although the different application examples, in this paper, we consider the following
scenario that is related to a Web platform called “OpenCEMS” (Connected Environment
& Distributed Energy Data Management Solutions: https://opencems.sigappfr.org/).
OpenCEMS, which is currently under development, offers several solutions to manage the

https://opencems.sigappfr.org/

Sensors 2021, 21, 6835 4 of 27

energy data in connected environments (e.g., smart buildings, cities, and factories). It can
connect (1) objects (with variant/invariant location) providing static or dynamic resources,
and (2) Web applications, which are established to be always available in OpenCEMS, and
thus, published as static resources. The resources, described in Hydra and registered in
a triplestore, are mainly used for: collecting heterogeneous on-site data, preprocessing
collected data, and analyzing data. In our scenario, a building manager desires to predict his
office temperature, to check if the installed temperature-controlled system works properly.
His demand, which is expressed using the ATP (Air Temperature Prediction) function, can
be sent via 2 requests types: (1) rnca, which refers to a non-context aware request, where
the necessary data for his demand is collected using objects (devices) that are in his office,
without considering his position, and (2) rca, a context-aware request, in which the required
data for his demand is provided by devices dependant from where he is standing in his
office (e.g., from the 3 nearest devices located in his office with a 2m range). To satisfy the
building manager’s request, it is important to identify the required resources and select
the appropriate ones to answer his demand. Nevertheless, as illustrated in Figure 1, the
following challenges emerge:

1. Discover the suitable resources that collect the required data. To have accurate data
for the building manager demand, identifying the resources that are (i) located in his
office, or (ii) the nearest to his standing point in his office, is important. For instance,
object om5 provides a resource offering the ATC (Air Temperature Collection) function,
which is necessary to collect the necessary air temperature data, but it is not located
in the office of the building manager. Therefore, the provided resource would be
unuseful for the request rnca at instants t and t + n. However, at instant t, there are
5 objects (os1, os2, os5, om3, and om4) satisfying ATC that are located in the building
manager office and can answer rnca more efficiently. As for rca, i.e., Range-KNN
type [26], at instant t, os1, om3, and om4 are the most appropriate to use (as they are
the nearest to the building manager standing point and within the required 2m range),
while at t + n, os1, om3, and om6 are more convenient. Nevertheless, the existence of
numerous mobile data collection resources, makes their discovery a time-consuming
task. Thus, finding suitable resources in a huge Web environment with an acceptable
response time is important to answer user requests efficiently.

Figure 1. Examples of rnca and rca in OpenCEMS.

2. Select the necessary resources forming an appropriate composition. With the existence
of several candidate resources providing identical required functions for the building
manager request, such as ATC, selecting the most interesting one is a tedious task
to do, as it requires time and expertise. Therefore, and to facilitate such task, QoR
are used to differentiate between the candidate resources and to help in choosing
the appropriate ones. For instance, object os1 can be better than the others as it
may have: (i) a high capacity of the battery, which denotes a high availability, (ii) a
stable connection to the attached Web environment (as it is static), (iii) no cost when

Sensors 2021, 21, 6835 5 of 27

executing it, and (iv) a better usage rate comparing to other (as it may have been used
several times in other scenarios). Considering the QoR, i.e., Availability, Dynamicity,
Cost, and Usage in this work, allows one to select the suitable resources among all
other candidates. Since numerous resources providing the same function can be
offered by OpenCEMS with different QoR values, an automatic resource selection
solution is essential to ease the selection task and make it faster. In addition, and
to ensure composition results that are more efficient to user demands, the solution
should consider the matching between the I/O parameters of the related resources
forming a composition.
Moreover, in some cases, the building manager may require:

(a) Results provided by the qualified resources among all others. In such case,
the resources that are to be selected are those with the highest quality aspects
values among others. This is done independently of the response time of the
selection process and may be useful in many cases as in when the building
manager requires, for instance, to regulate the temperature of his office for a
business meeting that will be held the next day.

(b) Fast but acceptable results. As the building manager may feel very hot where
he stands in his office, he requires fast predicted results to adjust the ambient
temperature. To do so, it is important to select suitable resources that can
answer his request without checking all the others. Despite demanding fast
predictions, it is essential to ensure efficient results. This can be done by
selecting resources that have acceptable (minimal) quality aspects values.

(c) Results obtained at any time. In such case, the building manager is required
to receive predicted results at any time of demand, even though some se-
lected dynamic resources may not be available anymore (disconnected from
OpenCEMS for instance). To do so, it is important to find resources that are
always available to satisfy the building manager demand at any instant.

In addition, and for each of these previous requirements, the building manager may
have other particular needs, such as:

• Results obtained with no cost, which can be obtained by selecting resources
having zero cost.

• Results that are effective, which can be acquired by selecting resources having a
high rate of availability.

• Results that are efficient, which is done by selecting resources having a high usage
rate, i.e., they have been used many times before in other different scenarios. As
such, the more a service is called to answer different user demands, the more it
proves its efficiency in various scenarios.

• Results that are reliable, which can be obtained by selecting resources that are
can be linked properly together by considering their I/O parameters matching.

To satisfy different user needs, it is necessary to consider his constraints and adapt
resource selection accordingly.

3. Form multiple resource compositions alternatives. Due to their dynamic aspects, some
dynamic resources that are selected in a composition cannot be available anymore for
execution. For example, at instant t and for rnca, 5 objects (having a variant position)
are located in the office of the building manager, and expose dynamic resources
offering the ATC function. If we consider that object om4 provides the most suitable
resource among all the other objects, as it may have the highest qualify aspects values,
for instance, it shall be selected to be in the necessary composition to answer the
building manager request. However, at any instant (at t + n for example), om4 can
be unavailable (disconnected from OpenCEMS). At this point, the composition will
no longer be efficient when executing it after >t + n, as it misses a selected resource
providing a required function. The same scenario happens to rca in which om4 is not
available anymore. To prevent re-executing the resource discovery and the resource

Sensors 2021, 21, 6835 6 of 27

selection processes, and create another appropriate composition solution formed by
available resources, identifying several composition alternatives (i-compositions with
i ∈ N∗) during resource selection becomes important.

In the following section, we present the most interesting approaches related to our
scope of work (resource discovery and selection) and evaluate them according to the
aforementioned challenges and needs.

3. Related Work
3.1. Discovery Approaches

In the Web service domain, several works addressed service discovery. In [27], a solu-
tion is defined for the discovery of static resources supporting HATEOAS and connected
WoT dynamic resources. The solution models the resources in a single resource graph,
and adapts graph algorithms to explore resource descriptions, to identify the resources
answering a user request. In [8], a resource discovery approach based on the Breadth-First
Search algorithm is proposed. It explores semantically annotated resources descriptions to
identify the resources realizing the required functions. In [9], a Web service description
and interaction approach for automatic Web service discovery is proposed. It is based on
Notation3 Resource Description Framework syntax to describe REST services and uses
operational semantics of Notation3 to allow a flexible discovery. In [4], a service descrip-
tion model is defined to generate a graph capturing state transitions in an activity layer,
resources, transitions, and response semantics in a semantic layer. Using graph queries, the
graph is traversed to discover the services. The work in [10] proposes a solution for auto-
matic discovery and consumption of data sources at Web scale. The solution is based on a
SPARQL (a query language for RDF format, https://www.w3.org/TR/rdf-sparql-query/)
Service Description (SD) document to describe micro-services. The SD document is linked
to a SHACL shapes graph (https://www.w3.org/TR/shacl/) that describes the resources
manipulated by the micro-service, and to other vocabularies as Hydra to have a richer
functional description. The SD can be also dynamically transformed into a Web page
enabling its discovery using common Web crawlers.

Resource discovery is also an active research area in other domains. As such, in
the Internet of Things [11] and Mobile Cloud Computing [12] solutions mainly allow
the discovery of resources based on their location and context properties (e.g., Accuracy
and Precision). Other works related to agents and workflow scheduling also considered
service discovery. In [28], agents and services are assembled into a multi-agent framework
called Agent-Oriented Resource mAnagement (AGORA). Each AGORA provides specific
services, and several AGORAs can be combined forming a graph. Service discovery begins
in the requested AGORA. If the latter does not support the required services, the other
linked AGORAs are used. As for workflow scheduling-based solutions [29,30], they consist
of mapping the required workflow tasks to the most existing suitable resources while
considering user constraints.

Discussion: Although the work [27] discovers static and dynamic resources, it does
not consider objects location during resource identification. The works [4,8–10], focus on
the discovery of resources that are exposed by Web applications, and not WoT objects,
thus, neglecting the mobility and dynamicity aspect of resources. In the works [11,12]
focus more on the resources exposed by connected objects, without considering their
possible relations with the resources exposed by Web applications (i.e., static). In [28],
where resource discovery is done through traversing an AGORA-based graph instead of a
resource-based graph, resource dynamicity and location are not handled. As for [29,30],
they do not consider resources dynamicity and location.

3.2. Selection Approaches
3.2.1. QoS-Based Approaches

Authors in [5] present a quality-driven resource selection approach, in which each
resource is described using Hydra, and several quality aspects of resources are embedded

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/shacl/

Sensors 2021, 21, 6835 7 of 27

into the hydra-based resources descriptions. The solution uses a skyline-based algorithm
to reduce the number of candidates resources having identical task. In [14], a QoS-aware
Web service composition problem is solved by proposing a heuristic. In the approach,
a backtracking algorithm is applied to the results calculated using a Linear Program
relaxation, and user constraints, which are defined to the overall service composition, are
considered. The work in [15] presents a service selection process that considers qualitative
and quantitative user QoS preferences, as well as services trust properties. The proposed
solution can be used in Big Data Web-based environments, which include a huge number
of services (i.e., business applications) that are migrated to the cloud. In [31], a QoS-aware
service composition is proposed based on QoS correlations. The solution allows one to
generate the optimal composite service by considering service plans along with sequence
structure. The work in [13] presents an enhanced algorithm based on Artificial Bee Colony
(ABC) to deal with the QoS-aware Web service selection process problem. The enhancement
is based on a two steps process: using neighboring nodes to enhance the performance of
the ABC algorithm by encouraging exploration in early iterations, and randomly swapping
portions among the best two solutions randomly to exploit the characteristics of the best
solutions to generate new solutions.

Discussion: The aforementioned works use QoS aspects while selecting services, and
most of them consider user constraints/preferences. However, the services dynamicity
aspect, and I/O parameters matching between the related services, are neglected. In
addition, none of the solutions allows the generation of different service composition types
that can answer the different user’s demands.

3.2.2. I/O-Based Approaches

In [16], a graph-based framework to automate service composition is proposed. The
framework can generate a service composition consisting of minimum services number.
This is done by focusing on the semantic matching of the I/O parameters services, and
thus, several compositions can be retrieved to answer user demand expressed using
inputs and outputs terms. The work in [18] provides a formal model for an AI planning-
oriented service composition. In the solution, the I/O semantic similarity between the
services is calculated based on causal links. The latter are logical dependencies between
the inputs and outputs parameters of the different services. Authors in [19] propose a
method that increases the expressiveness of the Web services parameters, by describing
them with properties and defining binary relations (inheritance) between them. The work
describes how Web service parameters, whose properties can be inherited, are used to
form, automatically, valid compositions.

Discussion: All of the aforementioned works consider I/O services semantics to
select the services for a composition. However, this is done without taking into account the
functions provided by the possible linked services. In addition, the solutions neglect the
services dynamicity aspect, as well as QoS aspects and user constraints or preferences.

3.2.3. K-Compositions Approaches

Authors in [20] present an automatic service composition approach to retrieve the
top-k compositions. For this matter, the work applies the MapReduce concept, by mapping,
into several tasks, the top-k compositions which can be run in parallel. In the solution,
only one QoS metric, i.e., Response time, is used, and similarities between I/O services
are computed for services filtering. The work in [21] proposes an approach that allows
one to compose the top-k DaaS (Data as a Service) services. The formed top-k service
compositions are produced using a fuzzy score that is associated with every service and
service composition, along with the given fuzzy user preferences, which are defined by
fuzzy terms (e.g., “cheap" for services price). Authors in [22] resolve the QoS-aware service
composition problem through a relational database. The proposed solution generates all
possible service combinations and stores them in a relational database. Based on a given

Sensors 2021, 21, 6835 8 of 27

user request, SQL queries are composed to search in the database and return the top-K Web
service compositions having the best QoS.

Discussion: All of the aforementioned works generate multiple service compositions
and take into consideration QoS aspects. Nevertheless, they do not deal with service
dynamicity, and they do not allow the generation of various composition services types to
satisfy different user demands.

4. Location-Aware Resource Discovery and QoR-driven Resource Selection
for i-Compositions
4.1. General Overview

Figure 2 shows an overview of our resource discovery and selection processes, appli-
cable in hybrid Web environments providing static and/or dynamic resources.

f, P, k, C

Optimal
Optimistic

Etc.

Figure 2. Overview of the resource discovery and selection processes.

Based on user request and user request type, the two processes allow forming i-
compositions satisfying user needs. The user request type can hold 3 main different
composition types to be formed:

• Optimal, which refers to resource compositions with the highest scores.
• Optimistic, which refers to resource compositions with minimally acceptable scores

(see Section 4.4.2), and obtained in satisfactory delays.
• Hybrid, referring to resource compositions with acceptable scores, but in which, at

any instant of the Web environment runtime, the existence of a resource composition
is ensured, by considering the dynamicity aspect of resources.

Optionally, the main composition types may be followed by other composition sub-
types (e.g., trusted, which refers to resource compositions that consist only of static re-
sources, and cost-free, which denotes resource compositions that consist of resources with
no charge). Besides specifying the composition types and subtypes, the user defines his
demand through a spatial request, r, presented in our work to be applied in WoT-based
environments, where objects (e.g., smart devices) can be connected. r can be (1) context
aware request, rca, in which the location of the requesting user device is considered during
the processing, or (2) non-context aware request, rnca, where the position of the requesting
user device is not included into the process.

In this work, rca = rca
range|rca

knr|r
ca
rknr , with: rca

range is a range request type [32], rca
knr is a K

Nearest Resource (KNR) request type [33], where the nearest resources are provided by the
nearest objects to the requesting device location, and rca

rknr is a Range-K Nearest Resource
(R-KNR) request type [26]. More formally, we define r as:

Definition 1. r = (f , P, k, C), where:

• f, is the user requested function, selected from a generated list of functions, F, that can be
provided by the resources connected to the Web environment at the current instant. F ∈ FG,
where FG refers to the directed acyclic function graph that defines the order dependencies of F.

Sensors 2021, 21, 6835 9 of 27

• P, refers to the parameters set required to execute f, such that P =
⋃N∗

i=1{pi}, where pi =
(key:value), and with: key, denoting the name of the parameter, and value, referring to the
user given value of the parameter. We define in P: (i) a location parameter, Location:value,
where value denotes the required location (e.g., office), and (ii) a scope parameter, Scope:value,
with a value representing a range ∈ R+. Using the location and the scope parameters, the
user can define if the processing of his request considers data collected from objects that are:
(1) positioned in a given location, or (2) positioned in a specified location and covering a given
scope, or (3) located in a scope limited by a circle with a specific radius and whose center is the
location of the user requesting device.

• k ∈ N, refers to the number of objects used to collect data and that is the nearest to user
location at request time. k also refers to the number of the necessary resources to be discovered
that provide functions other than collecting data. When k = 0, all of the resources providing
the necessary functions to fulfill f, as it is defined in FG, are to be discovered.

• C, is the given user constraints according to which, i-compositions are obtained. C = Qc ∪
i∪W ∪ d, with:

◦ Qc = Qres
c ∪Q f

c , refers to the set of constraints given to the resources (Qres
c) and to their

provided functions (Q f
c), with Qres

c =
⋃n

i=1
{

qres
i
}

, and Q f
c =

⋃m
j=1

{
q f

j

}
, and where:

- n denotes the number of attributes describing a resource (we use “Dynamicity” and
“Availability” in this paper), and m refers to the number of attributes used to describe
the resource provided functions (we use “Cost” and “Usage” in this work).

- qres
i |q

f
j = [mini|j-maxi|j], where mini|j, maxi|j denotes, respectively, the mini-

mum values and maximum values defined by the user for qres
i and q f

j .

◦ i ∈ N∗, refers to the user desired compositions number. By default, it is equal to 1 and
can be specified only for the resource compositions that are either optimal or optimistic.
As for the hybrid resource compositions, their number depends on the dynamicity aspect
of the resources (see Section 4.4.2).

◦ W =
{

wqor , wio
}

, are the weight values given respectively to the score sum of the
resources in a composition (based on their QoR attributes) and to their I/O matching,
while computing compositions score (see Section 4.4). wqor , wio ∈ R+ and are bounded
by [0, 1]. By default, W = {1, 1}.

◦ d, refers to the value rate degree (expressed in %) of a calculated threshold, T (see
Section 4.4.2), which denotes the acceptable minimal score of the optimistic and hybrid
i-compositions.

As illustrated in Figure 2, our solution consists mainly of (1) the Discovery Process
(DP), and (2) the Selection Process (SP). First, when DP receives the user request, r, it uses
a 3-dimensional indexing schema that consists of 3 dimensions: Function, Resource, and
Location, to identify: (i) the necessary resources that provide data collection functions
(whenever required for r) in the needed location (i.e., defined in a location map), or (ii)
the necessary resource(s) that will be used by DP to crawl the Web graph of resources
(whenever there are no data collection functions that are needed). The traversal of the
Web resources graph is done by using a graph-based algorithm, e.g., Breadth-First Search
(BFS) and Depth First Search (DFS) [34], from the algorithms library. With respect to the
HATEOAS principle in REST, which consists of linking the resources together, the Web
resource graph, denoted in our work as RES graph, is formed by the hypermedia resources
links embedded in resources descriptions (expressed with Hydra in this work). This allows
DP to dynamically navigate to the next resources and discover the ones providing the
functions required for r. Such functions form a Workflow Model (WM) that is defined in
the function graph (FG). When there are no candidate resources that are discovered for
the required functions in WM, only one composition is returned. If there are candidate
resources for at least one required function, SP is executed.

Sensors 2021, 21, 6835 10 of 27

In the selection process, SP, the resources having a similar function are grouped into the
same resource group, RG. Each resource in an RG can be linked to the resources included
in the RG related to the next function, as defined in the Workflow Model (WM), forming
a Directed Resource Acyclic Graph, DRAG. DRAG is traversed by a Selection Strategy
Adapter (SSA) that adapts to user needs (the user request and the user request type) to
form the required i-set of resource compositions. SSA allows producing optimal resource
compositions with the highest scores, and resource compositions with minimally acceptable
scores, i.e., >a computed threshold, T, obtained with better delays. T is calculated and used
for the optimistic and hybrid composition types.

4.2. Preliminaries

In our work, a resource, res, can be static, ress, or dynamic, resd, and is formally
defined as:

Definition 2. res = (c, id, loc, F, L, Qres):

• c, is the Web address of the context containing terms that are linked to existing data models
(e.g., ontologies). These terms map the properties of the resources to concepts that are defined
in their relevant data models.

• id, refers to the Web address (URI) of the resource res.
• loc, denotes the location of the object that exposes the resource res (whenever it is the case).
• F =

⋃N∗
i=1{fi}, refers to the set of the functions that are provided by the resource res, where:

fi = (n, I, O, m, Q f), and with:

◦ n denotes the name of the function fi.
◦ I refers to the the input(s) of the function fi.
◦ O refers to the the output(s) of the function fi.
◦ m denotes the HTTP verb that is used to invoke the function fi.
◦ Q f =

⋃N∗
i=1{(q fi : v fi)}, refers to the quality attributes set related to the function fi,

with q fi denoting the attribute name (Cost and Usage in this paper), and v fi ∈ R+.

• L, the set of links (if they exist) to other resources. ress can be directly linked to another ress,
however, the linking between ress and resd is done using virtual resources, similar to the work
in [27].

• Qres =
⋃N∗

i=1{(qresi : vresi)}, the set of quality attributes related to res, with qresi is the
name of the attribute (Dynamicity and Availability in this work), and vresi ∈ R+.

In the literature, there are multiple QoR attributes, e.g., Availability and Cost, that are
used to differentiate between the candidate resources providing similar functions [6]. In
this work, some attributes are related to the resources themselves (Qres), and some others
are related to the resources provided functions (Q f):

• Dynamicity, is the quality attribute that denotes whether a resource is established to
be available, i.e., a static resource (ress), or not, i.e., dynamic resource (resd). Dynam-
icity = 0, if the resource is static, and Dynamicity = 1, if the resource is dynamic. Users
in their request, r, can specify whether they require dynamic and/or static resources
while forming the i-compositions. In this context, and for the values that are given to
the Dynamicity attribute (qres

1) in Qres
c , when qres

1 is:

◦ [1-0], only the static resources can be part of the necessary compositions.
◦ [1-1], both static and dynamic resources can be used to form the necessary

compositions.
◦ [0-1], dynamic resources can only be part of the necessary compositions.

• Availability, refers to the degree (expressed in %) to which a resource res is opera-
tional or is ready for immediate use. For the resources that are exposed by connected
objects (e.g., devices), the Availability attribute refers to their battery capacity.

Sensors 2021, 21, 6835 11 of 27

• Cost, denotes the amount of money that is required to be paid (in a specific currency)
to use a resource function. The Cost attribute can be either defined by the provider of
the resource (i.e., the person or organization that developed/created the resource) or
by the provider of the object exposing the resource (i.e., the one that is connecting the
object to the Web environment).

• Usage, refers to a value that increases when a function of a resource is used. By default,
the Usage attribute is equal to 0. To prevent the re-initialization of the Usage value
every time a dynamic resource, resd, is disconnected, for instance, we define for each
function of a dynamic resource, a Time To Live (TTL) value that denotes the maximum
time during which a dynamic resource can be unavailable before decreasing the Usage
value by 1.

Based on res definition, we extended Hydra-based resource description to additionally
include: (i) the location of a resource exposed by an object (See Section 4.3), and (ii) the
QoR values. An example of an extended Hydra resource description is shown in Figure 3.

Figure 3. Example of an extended Hydra-based resource description.

QoR attributes are categorized as (i) maximization attributes, which are to be max-
imized (e.g., Availability), and (ii) minimization attributes, which are to be minimized
(e.g., Cost). The QoR attributes are used for computing, for each provided function of a
resource, a global score defined as: score(res f) = ∑N∗

i=1{vresi}+ ∑N∗
i=1{v fi}, where vresi

(excepting the Dynamicity attribute) and v fi are normalized based on the Equation (1)
or (2) presented below. As such, and due to the QoR different units and dimensions, it
is essential to normalize their values while computing the score(res f). Similar to [35],
Equations (1) and (2) are used to normalize the attribute values of group (i) and group (ii)
respectively, with qi = vresi|v fi, denoting the attribute value that is related to a resource,
or the attribute value corresponding to a resource provided function. In the equation below,
a normalised attribute value, q

′
i, is equal to 1 if max(qi)−min(qi) = 0, with max(qi)

and min(qi) refers respectively to the maximum and minimum values of qi among the
identified resources in the Directed Resource Acyclic Graph (DRAG):

q
′
i =

qi−min(qi)

max(qi)−min(qi)
(1)

q
′
i =

max(qi)− qi

max(qi)−min(qi)
(2)

4.3. Location-Aware Resource Discovery

To identify the suitable resources used for collecting data, and which are relevant
to the specified location in the user request, r, we consider, in this work, that there is a
location map that describes the geographic area related to the Web environment. Such a
location map contains different location levels defined in a specific geographic hierarchy.
As an example, in the motivating scenario, presented in Section 2, and which is related to

Sensors 2021, 21, 6835 12 of 27

connected environments, i.e., smart buildings in our case, we assume that Zone
isPartO f
−→

Floor
isPartO f
−→ Building, where Zone, Floor, and Building are entities that refer to location

types (subclasses of “Location”), as it is shown in Figure 4a. Zone is the smallest location
granularity, such that Zone = Zi, with i ∈ N. In this paper, we consider that the location
of an object is periodically updated according to a defined time interval. To discover the
resources realizing r, and locate the suitable data collection objects with acceptable response
time, we define an indexing schema, IdS, that consists of 3 dimensions: Function, Resource,
and Location, as presented in Figure 4b. IdS is formally defined as

Definition 3. IdS = (F, R, L):

• F={x}, refers to the x-axis that holds abscissa values denoting: (i) the indices of the functions
provided by the static resources, and (ii) the data collection functions offered by the dynamic
resources. Each x value has a “fsignature" that consists of the indices of the functions that are
necessary to realize f, as it is defined in FG.

• R={y}, refers to the y-axis that holds ordinate values denoting the set of all of the static
resources and the dynamic resources that provide functions for collecting data. Each y value
referring to a static resource, ress, has a “rsignature" which consists of the indices of the
resources that are related to it through the semantic relations “isSimilar" and “isComple-
mentary" [27]. As dynamic resources can be disconnected at different instants from the Web
environment, they do not have any defined related resources. Thus, signatures are not specified
for dynamic resources.

• L={z}, refers to the z-axis that holds the applicate values representing the set of the smallest
location granularity (zone for example) of the connected objects providing static or dynamic
resources used for data collection.

Figure 4. An example of a geographic hierarchy VS The indexing schema.

Using IdS, the resource discovery process, described in Algorithm 1, can identify the
resources providing terminal functions that are independent of any other (data collection
functions in this work), and relative to the necessary location, in an efficient manner.

Algorithm 1 presents the resource discovery process having the following input data:

− algoType (string): denotes the algorithm type to be used (i.e., BFS or DFS in this
work), that is adapted to traverse RES graph formed by the linked resources following
the HATEOAS principle.

− f (string): is the user requested function.
− P (array of [string, string]): is the set of the values of the parameters relative to the

location and to the scope specified by the user for data collection objects.
− k (integer): is the maximum number of the discovered resources providing identical

functions.

Sensors 2021, 21, 6835 13 of 27

Algorithm 1: The Discovery Process (DP)
input: algoType string
input: f string
input: P array of string
input: k integer
output: discovered array of [string, string]
dataCollectionRes: array of [string, array of string]
resToExploreNext: array of string
discRes: array of [string, string]
dataCollectionRes = IdS(f,k,P)
discovered = funResMap(dataCollectionRes)
foreach func in dataCollectionRes do

foreach id in dataCollectionRes[func][1] do
Descriptor desc = getResDesc(id)
if not id.L.empty() then

resToExploreNext.insert(id.L)
end

end
if dataCollectionRes[func][1].empty() then

outputMessage (“no resources are identified in the required location”)
end

end
discRes = discover(algoType, resToExploreNext)
discovered.insert(discRes)
return discovered

The algorithm output is the discovered array, which contains the pairs [f, id] corre-
sponding to the identified resources that are necessary to provide f. The process of resource
discovery consists of the following main functions:

• IdS (string, integer, array of [string, string]), is used to identify the k number of the
resources that provide the data collection functions necessary to realize f, and which
are relevant to the location specified by the user, using the indexing schema.

• funResMap (array of [string, array of string]), is used to produce an array of [string,
string] that maps each connected resource to its corresponding function.

• getResDesc (string), is used to get the descriptions of the resources, each identified by
its own id (i.e., URI), and the set of the related resources, which can be traversed next.

• discover(string, array of string), is used to traverse the RES graph. This is done by
starting from the set of the identified resources from the indexing schema and passing
by their related resources that are necessary to realize f. Its algorithm is presented in
Appendix A.

The discovery process (DP) begins by discovering the resources that provide the
required data collection functions for the user requested function (f), and which are po-
sitioned in the necessary location, by calling the IdS(f,k,P) function (line 9). The set of
the required functions used for collecting data along with their corresponding discovered
resources are saved in the dataCollectionRes array. The funResMap(dataCollectionRes)
function is then used to map every function to its relevant resource, and stores the outputs
in the discovered array (line 10). For each resource in dataCollectionRes, DP gets its
relevant resource description (which is expressed in Hydra vocabulary in this work) by
calling the getResDesc(id) function (line 13), to retrieve their linked resources ids that are
to be traversed next. These resources ids, that are stored in the resToExploreNext array
(line 15), are used later by the discover(algoType, resToExploreNext) function, which is
presented in Appendix A, to discover the resources providing the required other functions.
If no resource is identified providing a required data collection function in the necessary lo-
cation, DP will return a message (lines 16–17). When the first identified resources are stored
into resToExploreNext array, they are used by the discover(algoType, resToExploreNext)
function as the resources from which discover(algoType, resToExploreNext) will start the

Sensors 2021, 21, 6835 14 of 27

traversal of the resource graph, to discover the rest of the necessary resources to satisfy
f (line 18). As stated in line 19, the identified resources that provide all of the required
functions are stored in the output discovered array (line 19). If there are no overlapped
resources for any required function in WM, one resource composition is returned. If not,
the discovered resources will take part in the Selection Process (SP).

4.4. QoR-Driven Resource Selection
4.4.1. Formal Resource Graph Model for i-Compositions

The functions that are necessary to answer a user request define a Workflow Model,
WM, such that WM⊂ FG. Based on the order of the dependent functions that are defined in
WM, the identified resources by the discovery process (see Section 4.3) are linked together,
forming a Directed Resource Acyclic Graph, DRAG, that is defined as:

Definition 4. DRAG = (DRES, Rel, fDRES, fRel):

• DRES, the set of the discovered static/dynamic resources.
• Rel, the set of relations linking the resources together.
• fDRES, the function computing the score of each resource function based on QoR values.
• fRel , the function linking the resources together, and computing their link score based on their

I/O similarities.

The identified resources having the same function, form together a resource group,
RG f , that is specific to that function, with: RG f =

⋃m
i=1

{
res(f ,i)

}
, such that m refers to the

candidate resources number providing f, and res(f ,i) represents the resource, resi, realizing
f. A resource composition, RC, that is able to satisfy a user request, is formed by a set of
resources, belonging each to a different RG f , and such that: RC =

⋃n
f=1

{
res(f ,i)

}
, with n

denoting the number of functions defined in WM, and i ∈ m, where m refers to the number
of resources in the relevant RG f . During the resource selection process, the matching
between the I/O parameters of the linked eligible resources (which align with the required
user constraints) is calculated, to form the score of the link relating these resources. This

score is computed as: sim(res(f ,i), res(f ′,j)) = ∑U
u=1 ∑V

v=1 sim(outres(f ,i)
u , inres(f ′,j)

v), with:

• res f ,i, res f ′,j, denote resources that belong, respectively, to RG f and RG f ′ , where f
precedes f' in WM.

• outu, is an output of res f ,i, and U is the total number of res f ,i outputs.
• inv, is an input of res f ′,j, and V is the total number of res f ′,j inputs.

The score of the matching between an output of a resource and an input of another
resource can be calculated by adopting any function for similarity measure between key-
words (like Jaccard measure [36] for instance), such that sim(res(f ,i), res(f ′,j)) ∈ [0, 1].
Each resource composition (RC) in DRAG has a score, score(RC), with: score(RC) =
Score(RES) + Score(Rel), and where:

• Score(RES) = ∑n
f=1 score(res(f ,i)), is the sum of the scores of the involved resources

realizing the required functions, with n is the total number of functions in WM.
• Score(Rel) = ∑ sim(res(f ,i), res(f ′,j)), is the sum of I/O similarity scores of each 2

eligible linked resources in RC, where: f precedes f’ in WM, and sim(res(f ,i), res(f ′,j))
∈ [0, 1].

Score(RES) and Score(Rel) can be multiplied respectively by wqor and wio, i.e., weight
values that are defined in W included in user-given constraints, C, allowing users to assign
them a priority during compositions score calculation.

Figure 5 presents a DRAG example that is formed by identified resources. As shown
in the figure, the resources discovered by the discovery process are grouped in different
resource groups, such that each resource group, RG (represented by a rectangle), holds the
resources providing identical function. This is done based on the Workflow Model (WM)
which defines the dependencies between the functions required to answer the requested

Sensors 2021, 21, 6835 15 of 27

user function f5. Each resource in DRAG has a specific score that is calculated based on the
quality attributes values related to the necessary function provided by the resource, i.e.,
v fi, and the attribute values related to the resource itself, i.e., vresi. The link between every
two related resources has a computed similarity measure score (e.g., sim(res(3,2), res(5,2))
which is relative to the link score between res3,2 and res5,2). For each possible resource
composition (RC) in DRAG that is represented by a path (see for example the resources
circled in red in Figure 5) linking one resource included, each, in a different resource group,
has an assigned score, score (RC). Next, we present the Selection Strategy Adapter that
uses DRAG to generate the necessary resource compositions to satisfy user needs.

(a)

(b)

Figure 5. An example of a DRAG showing the scores defined for a possible composition, each of the
involved resources and their I/O matching. (a) A workflow model example; (b) The corresponding
DRAG example.

4.4.2. Selection Strategy Adapter for i-Compositions

To satisfy different users needs, we define a Selection Strategy Adaptor (SSA) that
allows one to generate 3 main types of resource compositions:

1. Optimal, denotes the resource compositions with the highest score, score(RC).
2. Optimistic, denotes resource compositions having minimally acceptable scores,

i.e., computed based on a specific threshold, and formed in satisfactory delays.
3. Hybrid, refers to resource compositions that have minimal; acceptable scores, and

where the dynamicity aspect of resources is considered, to ensure that, at any time,
there is always a resource composition consisting of available resources, providing all
the required functions for the user request.

Optionally, each of the above resource compositions types may be followed by other
compositions subtypes:

(A) Trusted, designates resource compositions that consist only of static resources
having Dynamicity = 0.

(B) Cost-free, refers to resource compositions composed of resources with no charge of
use (i.e., their Cost = 0).

(C) Efficient, refers to resource compositions that are formed by resources having a
high normalized Usage value (i.e., Usage > 0.75).

(D) Effective, denotes resource compositions that include resources having a high
normalized Availability value (i.e., Availability > 0.75).

(E) Qualified, refers to resource compositions that consist of resources, having each,
and for a required function, a score(res f) > [(n× 0.75) + (m× 0.25)], such that n
denotes the number of the QoR attributes (that are to be maximized) related to each

Sensors 2021, 21, 6835 16 of 27

resource and its provided required functions (except the Dynamicity attribute), and
m refers to the QoR attributes (that are to be minimized), e.g., Cost.

(F) Reliable, denotes resource compositions in which Score(Rel) > (l× 0.75), where l
is the number of dependency links that existed in the necessary functions defined
in WM.

As shown above, the compositions subtypes are defined according to either: (i) a
specific QoR attribute value (e.g., Availability for effective compositions), or (ii) a set of
QoR attributes values (e.g., Availability, Cost, and Usage for qualified compositions), or
(iii) a minimal Score(Rel) (as for reliable compositions), computed based on “l”, which
is the number of dependencies links between the required functions in WM. However,
in addition to these constraints, both optimistic and hybrid compositions types should
respect other QoR attributes and Score(Rel) values, as presented in Table 1, to ensure having
compositions with an acceptable score(RC), and thus, good compositions results.

Table 1. QoR values and Score(Rel) necessary to form optimistic and hybrid compositions subtypes.

Resources Dynamicity Resources Availability Resources Cost Resources Usage Score(Rel)

Trusted 0 >0.5 60.25 >0.5 >(l× 0.5)

Cost-free 0 or 1 >0.5 0 >0.5 >(l× 0.5)

Efficient 0 or 1 >0.5 60.25 >0.75 >(l× 0.5)

Effective 0 or 1 >0.75 60.25 >0.5 >(l× 0.5)

Qualified 0 or 1 >0.75 60.25 >0.75 >(l× 0.5)

Reliable 0 or 1 >0.5 60.25 >0.5 >(l× 0.75)

When end-users request optimal resource compositions subtypes, such as optimal
cost-free compositions for instance, which consist of resources with no cost for use, SSA
applies a filtering process before computing the highest scores of the possible compositions
and retrieving the suitable ones. The filtering process is done according to constraints that
are specifically defined for the different resource compositions subtypes as follows:

• Optimal Trusted: denotes resource compositions consisting only of static resources
and having the highest compositions scores.

• Optimal Cost-free: refers to resource compositions that include either static or dynamic
resources with Cost = 0, and have the highest compositions scores.

• Optimal Efficient: represents resource compositions that are formed by static or
dynamic resources having the maximum Usage attribute value among all DRAG
resources, and have the highest compositions scores.

• Optimal Effective: denotes resource compositions consisting of static or dynamic
resources having the maximum Availability attribute value among all DRAG resources,
and having the highest compositions scores.

• Optimal Qualified: refers to resource compositions that are formed by static or dy-
namic resources with the maximum Score(RES) among all DRAG resources, and have
the highest compositions scores.

• Optimal Reliable: represents resource compositions that include static or dynamic
resources having the maximum value of Score(Rel), and have the highest composi-
tions scores.

Based on the request type specified by the user, SSA forms i-compositions satisfying
his demand. The value of i (∈ N∗) may be defined by the user in his request, r, only for the
2 main resource compositions types: optimal compositions and optimistic compositions.
For the hybrid resource compositions, the value of i depends on the dynamicity aspect of
the resources contained in DRAG. As such, whenever optimal resource compositions are
needed, SSA works on computing all of the possible resource compositions scores (after
applying a filtering process if required) to get the i-compositions solutions with the highest
compositions scores. Whenever optimistic resource compositions are requested, SSA keeps
computing the scores of the possible compositions until reaching the i-compositions having

Sensors 2021, 21, 6835 17 of 27

the minimally acceptable scores. If hybrid resource compositions are requested by the
user, SSA will generate the compositions having acceptable minimal scores, until having a
resource composition that contains only static resources, to ensure that there is always, at
any instance of the runtime environment, an available composition realizing user demand.
It is to be noted that whenever the user in his request, r, specifies constraints that do not
align with the user constraints related to the requested resource compositions subtype, the
latter will be considered. In Figure 6, we present the flowchart of the resource selection
process along with its relative SSA, used to form the required i-compositions satisfying
user request and user request type.

If optimistic or hybrid resource compositions are requested by the user, several steps
are applied by SSA:

1. Computing the minimum acceptable score of a suitable composition. A resource
composition is considered to be acceptable, if it has a score(RC) that is >a specific
computed Threshold, T.
Whenever resource compositions of optimistic or hybrid types are required without spec-
ifying a subtype, T is computed as: T = [(n× Avg(Qc)) + (l× 0.5)]× (d/100), with:

• n denotes the number of functions presented in WM.
• Avg(Qc) refers to the average value of the QoR normalized constraints that

are specified in r (except the Dynamicity attribute). In case Qc are not defined
by the user, the average of each QoR is computed based on their maximum
values among all DRAG resources. In Figure 6, we present the flowchart of the
resource selection process along with its relative SSA, used to form the required
i-compositions satisfying user request and user request type.

• l, refers to the number of the links (dependencies) relating to the functions in the
Workflow Model. In our work, we assume that, at least, and between any two
related resources, there is an I/O similarity match equal to 0.5.

• d, denotes the value of the resource composition acceptance degree (expressed
in %) that is specified by the user in his request.

If the user requires subtype resource compositions, T is calculated as follows: Tsubtype
= [(n× Q) + (l× s)]× (d/100), where Q consists of the minimum resources at-
tributes values as defined in Table 1 (except the Dynamicity attribute), and s ∈ [0,1]
refers to the minimum value of the I/O matching similarity score between any two
related resources in a composition. It is to be noted that s = 0.75 when subtype =
reliable, and s = 0.5 for all other compositions specified subtypes.

2. Computing the score of a resource composition that consists of eligible resources. For
this matter, SSA uses a generator to retrieve the set of all possible resource composi-
tions without computing their scores. While generating each resource composition,
several conditions are applied:

(i) If a resource in a composition is not eligible (i.e., it does not align with the
required user constraints), it will be registered in an array (arr_notEl), and
another resource composition will be formed.

(ii) If all of the resources of a composition are eligible, the resource composition
score, score(RC), will be computed. When score(RC) > T, the relevant re-
source composition is saved in an array containing all of the suitable resource
compositions, arr_suitRC, if not, another possible resource composition will
be generated.

During the analysis of each generated resource composition, if it contains a resource
that is already present in arr_notEl, another possible composition will be generated.
If it is not the case, both conditions (i) and (ii), mentioned above, are applied. We
note that whenever optimistic resource compositions are requested by the user, the
generator will stop its process when getting i-compositions having a score respecting
T. However, when hybrid resource compositions are required, the process of the
generator will end when reaching a resource composition whose score respects T, and

Sensors 2021, 21, 6835 18 of 27

which consists of static resources only (always available resources). The retrieved
resource compositions from SSA are put in arr_suitRC.

Figure 6. Flowchart of the selection process and its related SSA.

5. Evaluation and Discussion

In this section, we first compare our QoR model to existing works that considered
services attributes in their service selection solution, and then, we evaluate the performance
of the resource discovery and selection in a simulated Web environment provided by
OpenCEMS. OpenCEMS offers 2 types of operation: real and simulated. As the real
environment is currently being developed with a limited number of resources, in this paper,
we evaluated our work in the simulated functioning of OpenCEMS. The evaluation in the
real environment will be presented in a dedicated work. However, to prove the feasibility
of our approach in the real world, we integrated Hydra-based descriptions for several
resources implemented in OpenCEMS used for data collection, data preprocessing, and
data energy prediction. Hydra-based descriptions of the implemented resources in the
real OpenCEMS environment are available online: https://tinyurl.com/yarlsslp. During
the integration, and for each provided function in a resource description, we added an
image link to allow composition visualization in OpenCEMS. Based on the user requested
function (as EDP which stands for Energy Demand Prediction) and given QoR constraints,
OpenCEMS can provide the user with the required visual composition answering his
request, as shown in Figure 7. Details about the basic requests sent to the OpenCEMS
server with their relative responses are available in Figure 8.

https://tinyurl.com/yarlsslp

Sensors 2021, 21, 6835 19 of 27

Figure 7. The visual representation obtained in OpenCEMS of the composition example related to
our motivating scenario.

Figure 8. Requests vs Responses in OpenCEMS.

For the resource discovery evaluation, we tested the approach according to the “Loca-
tion” dimension [27] evaluates the discovery based on Function and Resource dimensions,
while varying (1) the number of the needed data collection resources in the required loca-
tion, (2) the number of locations relative to r, i.e., a non-context aware request (rnca), and
(3) the number of required data collection functions provided by resources in the necessary
location. As for the selection, the tests were conducted on different DRAG graphs, while
varying (1) the number of candidate resources per function, and (2) the number of required
functions. The experiments have been conducted by using a Linux Debian (64 bits) virtual
machine, having 1 dedicated Intel® Core™ i7-46000 CPU @ 2.10GHz 2.70GHz processor,
and 1 GB of RAM. In the results, we present, for each test, the response time (expressed in
ms), computed according to 5 sequential executions on average.

5.1. Comparison with Existing QoR Models

Our QoR model is designed in a way that it can support any number and type of QoR
attributes, as long as these attributes can be added to the resource description. Therefore,
we do not consider the number or the type of QoR taken into account when highlighting
our contribution with respect to related work [5,13–15].

In [5] the performance, availability, and reputation attributes are considered, and
simple weighted attribute comparison enables resource selection. Such work does not
allow optimistic/hybrid compositions to have acceptable overall service scores, in addition,
it ignores I/O matching of the linked services. Also, and due to the missing normalization

Sensors 2021, 21, 6835 20 of 27

operations of QoR attributes, the work allows the selection of services having very high
values for some attributes and very low values for others, over services with average values
for all attributes.

Other work [14], defines constraints such as response time or availability over the
whole composition instead of individual services, and use aggregation functions to compute
the acceptability of each solution based on weighted services attributes. In contrast, we
assign user constraints to individual services and allow weights to be set to the score of the
overall service of a composition, as well as to the overall I/O score that is not considered
in [14].

We also follow a different approach than [15], as they generate a score based on a
weighted sum of utility functions for each service attribute, to select, for a specific task, the
service having the highest score. However, in our work, we generate a global composition
score and include I/O matching, currently ignored in [15].

The work in [13] selects services based on 4 attributes: Cost, Response Time, Through-
put, and Reliability, to form one service composition. Contrary to our work, user QoS
constraints are not considered, as user requirements are expressed only in terms of tasks
workflows. The approach returns the service composition having the highest fitness value
computed based on aggregation functions related, each, to a specific attribute. Apart
from not considering I/O matching between the related services, the solution forms the
optimal composition without allowing to have other compositions with acceptable scores
answering different user needs.

In Table 2, we present the evaluation summary of the aforementioned existing works
based on the following service/composition quality-related criteria:

- QoS Normalization, indicates if the QoS attributes, that are considered during the
service selection process, are normalized.

- Overall Composition Score, indicates if an overall score is calculated and assigned
to every possible composition.

- Service Score, indicates if a score is calculated and assigned to every service.
- I/O Matching, indicates whether the Input/Output (I/O) matching of the related

services in a service composition is considered during the service selection process.
- Weights, indicates if weights can be assigned for each QoS attribute during the service

or composition score computation.

In the below table, we used the “+” symbol to express a positive coverage for a
criterion, and the “-” symbol to express a lack of criterion coverage.

Table 2. Evaluation summary of existing works w.r.t. the service/composition quality-related criteria.

QoS Normalization Overall Composition Score Service Score I/O Matching Weights

[5] - - - - -

[14] + + - - +

[15] + - + - +

[13] + + - - -

5.2. Resource Discovery Evaluation

The resource discovery process aims to allow the identification of all the resources
needed to fulfill the functions required to satisfy user request, r (i.e., we considered that
k = 0 in r). The process includes the discovery of the resources that provide the necessary
functions for collecting data, while taking into account their locations, and the resources
providing the other needed functions (useful for the processing of the collected data)
required for r. Our experiments for the resource discovery process have been conducted by
using a generated Function Graph, FG, that contained 50 randomly ordered functions. From
these functions, we assigned one function for each simulated resource in the generated
resource graphs on which we conducted our tests. In the results tests, we show the response
time of the discovery process, which corresponds to the time taken to (1) identify the data

Sensors 2021, 21, 6835 21 of 27

collection resources using IdS (the Indexing Schema), and (2) to crawl the resource graph
based on the identified resources from IdS using the Depth First Search (DFS) algorithm to
discover the rest of the necessary resources.

In our tests, we studied the evolution of the resource discovery response time while
varying 3 metrics: (1) the number of the needed data collection resources in the required
location for user request, (2) the number of locations relative to the user request (a non-
context aware request, rnca), and (3) the number of required data collection functions
provided by the resources in the required location for the user request. For each of these
metrics, we applied different scenarios by generating various resource graphs and dis-
tributing the data collection resources to a different number of locations. This is done to see
how well our solution can perform according to each metric. For instance, for the metrics
related to the number of resources in the required locations, we distributed the resources
on 12 locations, as we aimed to test the performance of our solution while increasing the
number of resources that are included in the required location for user demand. However,
for the second metric, where our objective was to test the performance of our solution
while varying the number of required locations necessary for user demand, our resources
were distributed on up to 50 locations (instead of 12 locations). Therefore, we needed to
have a fixed bigger number of resources in the targeted Web environment (formed by the
generated resource graph) to emphasize more on the metric that is being considered.

Concerning the first scenario (see Figure 9a), we worked with 2000 resources (1000 static
and 1000 dynamic), providing, each, a function from the function graph, and data collection
objects were distributed on 12 different locations corresponding to building zones. We
explain the response time increase with the number of the required resources to be identi-
fied in the necessary locations, and the number of HATEOAS links to be followed from
these resources.

Concerning the second scenario (see Figure 9b), we worked with 5 generated graphs
containing, each, 4000 resources (2000 static and 2000 dynamic), and up to 50 locations,
each of them including 20 resources for data collection. Similarly, we observe here that the
cost is due to the number of necessary resources used for collecting data to be discovered
along with the HATEOAS link crawling.

Concerning the third scenario (see Figure 9c), we considered 2000 resources (1000 static
and 1000 dynamic), among which the resources used for collecting data were distributed
on 12 locations, with a varying number of data collection functions necessary to satisfy user
requests in the required location. The increase of response time, in this case, is explained
by the number of discovered resources that provide additional needed functions. We also
observe that in this scenario the impact is more important than in the previous ones.

(a) (b)

(c)

Figure 9. Response time of the resource discovery.

Sensors 2021, 21, 6835 22 of 27

As shown in Figure 9, the generated graphs in all of the 3 scenarios show a promising
and positive linear curve, denoting that the time of the resource discovery process increases
linearly with the number of resources in the required location, the number of locations
relative to the user request, r, and the number of required data collection functions. This
indicates a proportional relation and a constant increase between the different variables
used and the response time of our resource discovery process. The results also highlight
the important impact of the growing number of locations relative to the user request, on
the increase of the resource discovery response time, comparing to the other variables for
which the graphs have a smaller slop.

5.3. Resource Selection Evaluation

For the selection process evaluation, we conducted several tests by considering two
cases: (1) varying the number of candidate resources per a required function (with the
Workflow Model, WM, consisting of 5 functions), and (2) varying the number of functions
required in WM (here the number of resources per function is fixed to 5). In the tests,
we considered that the requested composition type = hybrid. This is done for two main
reasons: (a) to focus on how our selection approach performs when considering resources
dynamicity forming the compositions, which is one of the key aspects that distinguish our
work from existing ones, (b) to the fact that it can cover the case where optimal compositions
are requested when all DRAG resources are dynamic and eligible (see the scenario (iii) in
the below tests). For each of the 2 cases, we applied several scenarios:

(i) All static resources in DRAG are eligible (match the required user constraints).
(ii) 50% of the static resources in DRAG are eligible.
(iii) All DRAG resources are dynamic and eligible.

For (i) and (ii), where DRAG contains static resources, the first generated possible
compositions (without score calculation) included dynamic resources, thus, the selection
process continued generating compositions until having one that consists on only static
resources with an acceptable composition score. In the best case of these two scenarios,
static resources are traversed first, and the selection process responds more rapidly. This is
shown in the Figure 10 results that present linear curves in the resource selection response
time, with a small slope. Such slope slightly increases with the evolution of the number of
resources providing the same required function for user request.

In (iii), the selection process computes the score of all the possible resource composi-
tions since the DRAG graph includes dynamic resources that are eligible. The obtained
result is close to where the requested subtype = optimal, in which all of the possible re-
source compositions are calculated. However, in the latter case, i-compositions having the
highest scores are retrieved instead.

0

50

100

150

200

250

2 3 4 5

T
im

e
 (

m
s)

Number of functions

Response time of SP where resource number
per function = 5

0

50

100

150

200

250

300

350

2 3 4 5

Ti
m

e
(m

s)

Number of functions

Response time of SP where resource number
per function = 20

Figure 10. Response time (in ms) of SP while varying resource number per function and the number
of required functions.

In the tests, we used a function graph of 50 functions, assigned 2 inputs and 2 outputs
for each resource, and specified some user constraints for the Dynamicity, Availability,
Cost, and Usage attributes. In our experiments, both static and dynamic resources can
participate in the returned resources compositions. We also assumed an I/O similarity

Sensors 2021, 21, 6835 23 of 27

score > 0.5 between the related resources, to allow them to be considered in the possible
returned resource compositions having an acceptable minimum score.

6910
73,270

275,588

633,416

4081 46,418

198,078

459,084

0

200000

400000

600000

5 10 15 20

Ti
m

e
(m

s)

Number of resources per function

(a) Eligibility of Static Resources

50% of the static resources are eligible All static resources are eligible

14,203
137,099

537,528

1,105,616

2000

202000

402000

602000

802000

1002000

1202000

5 10 15 20

Ti
m

e
(m

s)

Number of resources per function

(b) Eligibility of Dynamic Resources

All resources are dynamic and eligible

Figure 11. Response time while varying the number of resources.

Figure 11 shows the evolution of the resource selection response time with respect to
the number of candidate resources per function. When comparing Figure 11a to Figure 11b,
we can observe that the presence of eligible static resources improves response time as
it shortens the selection process, which stops when a composition of static resources is
found. However, this is not the case when the resources in DRAG are all dynamic and
eligible. As such, in Figure 11b, we observe how our solution performs in a context where
only dynamic and eligible resources are identified during the resource discovery process
to form DRAG. Such a context requires all the compositions to be computed and is more
costly in terms of response time, as there will be no composition that will consist of only
static resources.

In Figure 12, we show the evolution of the resource selection response time with
respect to the number of the required function necessary to answer user requests (i.e., the
number of functions forming the Workflow Model). As shown in Figure 12a, it is expected
that the response time will increase together with the number of required functions. Sim-
ilarly to Figure 11, we can observe early completion of the selection process when static
resources are available before generating all possible compositions, comparing to when
DRAG includes only dynamic and eligible resources.

1529 14,251

95,587

388,128

0

100000

200000

300000

400000

500000

600000

2 3 4 5

Ti
m

e
 (

m
s)

Number of functions

(b) Eligibility of Dynamic Resources

All resources are dynamic and eligible

859 6910

48,744

185,859

544 4081
20,687

98,888

0

50000

100000

150000

200000

2 3 4 5

Ti
m

e
 (

m
s)

Number of functions

(a) Eligibility of Static Resources

50% of the static resources are eligible All static resources are eligible

50,000

200,000 600,000

500,000

100,000

Figure 12. Response time while the varying number of functions.

As such, in Figure 12b, we can see the significant increase in response time as the
DRAG contains dynamic eligible resources, making it necessary to compute all the scores.

Our conducted experiments demonstrate the value of the existence of static eligible
resources in DRAG (when type = hybrid) because the selection process stops when forming
a composition that consists of static resources with an acceptable score. As such, from
the test results, we can observe that whenever the resources in DRAG are all dynamic,
our resource selection process will compute all of the scores of the composition (as no
composition will consist of static resources), and thus, the response time will be the same
as if optimal compositions are required (since all the compositions in such case will also be
computed to return the ones having the highest scores). As the dynamicity criteria need
to be included in the presence of dynamic resources, we can see that it negatively affects
response times with respect to the increase of the number of resources in DRAG, as well as

Sensors 2021, 21, 6835 24 of 27

to the increase of the number of required functions in the Workflow Model necessary to
answer user demand. The results, however, show that the growing number of resources
has a bigger impact on the response time, comparing to the evolution of the number of
functions. We note that in case the user desires not to consider the dynamicity aspect of
resources while generating the necessary compositions for his demand, he can specify the
optimistic composition type in his demand, and thus, the response time of the selection
process will depend on the number of the compositions desired by the user in his request.

6. Conclusions

In this paper, we present a solution for location-aware resource discovery that consid-
ers object location during resource identification, using a 3-dimensional indexing schema.
The defined schema facilitates resource discovery in large Web environments connecting
numerous resources. We also propose a QoR-driven resource selection approach that relies
on a Selection Strategy Adaptor to form i-compositions (with ∈ N∗) offering different
composition alternatives, and answering different user needs.

We defined optimal, optimistic, and hybrid composition types, as well as trusted,
cost-free, efficient, effective, qualified, and reliable composition sub-type, based on various
QoR constraints such as Dynamicity, Cost, Availability, or Usage, and data matching (input
and output data of related resources), allowing for a better answer to different users needs.
Our solution is relevant to Web environments that include both static (always available)
and dynamic (frequently disconnected) resources. In addition to the theoretical foundation,
we provide experiments and comparisons with existing solutions, that show the advantage
and applicability of our solution.

Our experiments show promising good performance for our resource discovery ap-
proach, as the response time in all of the conducted scenarios increases linearly with the
increased number of the resources in the required locations, the locations in which re-
sources are distributed, and the required functions for the user request. As for our resource
selection performance, our tests show that the more dynamic resources are connected to
the Web environment, the more the response time increases (whenever the dynamicity
of resources is to be considered). This highlights the importance of the existence of static
resources. As for the comparisons with existing solutions, they show our coverage for
several interesting criteria when computing services and compositions scores, comparing
to the other related works.

In the future, we plan to experiment with other setups (e.g., varying simultaneously
the number of resources and required functions, consider other compositions types and sub-
types) and test the proposed solution in the real Web environment offered by OpenCEMS.
We also seek to enhance the selection by removing the non-eligible resources during discov-
ery, and later on, propose an automatic orchestration to execute the formed compositions.

Author Contributions: Conceptualization, L.K. and R.C.; Formal analysis, L.K.; Software, L.K.;
Investigation, R.C. and M.M.; Supervision, R.C.; Validation, R.C. and M.M.; Writing—original draft
preparation, L.K.; Writing—review and editing, L.K. and M.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was co-funded by the InnoRenew project (Grant Agreement #739574) under
the Horizon2020 Widespread-Teaming program and the Republic of Slovenia (Investment funding of
the Republic of Slovenia and the European Regional Development Fund). It was also co-funded by
the Slovenian Research Agency ARRS through the project J2-2504.

Acknowledgments: The authors gratefully acknowledge the European Commission for funding
the InnoRenew project (Grant Agreement #739574) under the Horizon2020 Widespread-Teaming
program and the Republic of Slovenia (Investment funding of the Republic of Slovenia and the
European Regional Development Fund). They also acknowledge the Slovenian Research Agency
ARRS for funding the project J2-2504.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 6835 25 of 27

Appendix A. The Discover(String, Array of String) Function

For each resource that is not yet visited (i.e. not included in currentId), the correspond-
ing Hydra description is retrieved using the getResDesc() function (line 12). In case the
function of the provided resource operation matches a function of F’, through calling the
functionMatch() function (line 14), the algorithm checks if the current analysed resource is
a virtual one (i.e., it includes the dynamic resources providing its same function) or if it
is a static resource (lines 15 to 20). Whenever the resource is virtual, the ids (URIs) of the
dynamic resources that are embedded in the virtual resource description (line 16) are stored
with their relative provided function within the discRes array. Whenever the resource is
static, its id is inserted into the discRes array along with its relative provided function
(line 21). Once the number of the identified resources providing the current function
reaches k (lines 18 and 22), the function is pulled out from F’. This number is computed by
calling the resFound() function that is implemented apart. In order to continue discovering
other necessary resources, the algorithm process explores the annotated links, which are
included in the resources descriptions (lines 24 to 26).

Using the specified algorithm type, algoType, the discover function, which is included
in Algorithm A1, will traverse the Web resources graph, by starting from the resources
stored within the resToExploreNext array. The variable currentId includes the resource id
that is currently being processed. Initially, it corresponds to the the first resource held in
the resToExploreNext array.

Algorithm A1: The Discover(agloType, resToExploreNext) Function
input: algoType string
input: resToExploreNext array of string
output: discRes array of [string, string]
visited: array of string
F’: array of string
currentId = resToExploreNext[0]
F’= FunG(f)
runAlgoType(algoType):
while not F’.empty() do

if not currentId in visited then
visited.insert(currentId)
Descriptor desc = getResDesc(currentId) foreach operation in desc.Operation do

foreach f in F’ do
if functionMatch(operation.function, f) then

if not desc.RESD.empty() then
foreach adhoc in desc.RESD do

discRes.insert([f, id])
if resFound(discRes, f) = K then

F’.remove(f)
end

end
end
else

discRes.insert([f, currentId])
if resFound(discRes, f) = K then

F’.remove(f)
end

end
end

end
end
foreach link in desc.Link do

if (link.relationType = isSimilar or link.relationType = isComplementary or link.relationType = isRelated)
then

resToTraverse.insert(link.entrypoint)
end

end
currentId = resToTraverse.selectNext()

end
else

currentId = resToExploreNext.next()
end

end
return discRes

Sensors 2021, 21, 6835 26 of 27

References
1. Fielding, R.T.; Taylor, R.N. Architectural Styles and the Design of Network-Based Software Architectures; University of California:

Irvine Irvine, CA, USA, 2000; Volume 7.
2. Zeng, D.; Guo, S.; Cheng, Z. The web of things: A survey. JCM 2011, 6, 424–438. [CrossRef]
3. Almeida, F.L. Concept and Dimensions of Web 4.0. Int. J. Comput. Technol. 2017, 16, 7040–7046. [CrossRef]
4. Alarcon, R.; Saffie, R.; Bravo, N.; Cabello, J. REST web service description for graph-based service discovery. In Proceedings of the

International Conference on Web Engineering; Springer: Rotterdam, The Netherlands, 2015; pp. 461–478.
5. Bennara, M.; Mrissa, M.; Amghar, Y. Linked Service Selection Using the Skyline Algorithm. In Proceedings of the International

Conference on Model and Data Engineering; Springer: Almería, Spain, 2016; pp. 88–97.
6. Wang, L.; Shen, J.; Yong, J. A survey on bio-inspired algorithms for web service composition. In Proceedings of the 2012 IEEE

16th International Conference on Computer Supported Cooperative Work in Design (CSCWD 2012), Wuhan, China, 23–25 May
2012; pp. 569–574.

7. Kaewbanjong, K.; Intakosum, S. Qos attributes of web services: A systematic review and classification. J. Adv. Manag. Sci. 2015,
3, 194–202. [CrossRef]

8. Bennara, M.; Mrissa, M.; Amghar, Y. Semantic-Enabled and Hypermedia-Driven Linked Service Discovery. In Proceedings of the
International Conference on Model and Data Engineering; Springer: Almería, Spain, 2016; pp. 108–117.

9. Verborgh, R.; Steiner, T.; Van Deursen, D.; De Roo, J.; Van de Walle, R.; Vallés, J.G. Description and Interaction of Restful
Services for Automatic Discovery and Execution. 2011 FTRA International workshop on Advanced Future Multimedia Services
(AFMS 2011). Future Technology Research Association International (FTRA). 2011. Available online: https://biblio.ugent.be/
publication/2003291/file/2003308 (accessed on 22 August 2021).

10. Michel, F.; Faron-Zucker, C.; Corby, O.; Gandon, F. Enabling automatic discovery and querying of web APIs at web scale using
linked data standards. In Proceedings of the 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019;
pp. 883–892.

11. Perera, C.; Zaslavsky, A.; Liu, C.H.; Compton, M.; Christen, P.; Georgakopoulos, D. Sensor search techniques for sensing as a
service architecture for the internet of things. IEEE Sens. J. 2013, 14, 406–420. [CrossRef]

12. Zhou, B.; Dastjerdi, A.V.; Calheiros, R.N.; Srirama, S.N.; Buyya, R. A context sensitive offloading scheme for mobile cloud
computing service. In Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing, New York, NY, USA,
27 June–2 July 2015; pp. 869–876.

13. Dahan, F.; Mathkour, H.; Arafah, M. Two-step artificial bee colony algorithm enhancement for QoS-aware Web service selection
problem. IEEE Access 2019, 7, 21787–21794. [CrossRef]

14. Berbner, R.; Spahn, M.; Repp, N.; Heckmann, O.; Steinmetz, R. Heuristics for qos-aware web service composition. In Proceedings
of the 2006 IEEE International Conference on Web Services (ICWS’06 2006), Chicago, IL, USA, 18–22 September 2006; pp. 72–82.

15. Wang, H.; Yu, C.; Wang, L.; Yu, Q. Effective bigdata-space service selection over trust and heterogeneous QoS preferences. IEEE
Trans. Serv. Comput. 2015, 11, 644–657. [CrossRef]

16. Rodriguez-Mier, P.; Pedrinaci, C.; Lama, M.; Mucientes, M. An integrated semantic web service discovery and composition
framework. IEEE Trans. Serv. Comput. 2015, 9, 537–550. [CrossRef]

17. Xu, X.; Sheng, Q.Z.; Wang, Z.; Yao, L. Novel artificial bee colony algorithms for QoS-aware service selection. IEEE Trans. Serv.
Comput. 2016, 12, 247–261.

18. Lécué, F.; Léger, A. A formal model for semantic web service composition. In Proceedings of the International Semantic Web
Conference; Springer: Athens, GA, USA, 2006; pp. 385–398.

19. Netedu, A.; Buraga, S.C.; Diac, P.; Ţucăr, L. A Web Service Composition Method Based on OpenAPI Semantic Annotations. In
International Conference on e-Business Engineering; Springer: Shanghai, China, 2019; pp. 342–357.

20. Deng, S.; Huang, L.; Tan, W.; Wu, Z. Top-k Automatic Service Composition: A Parallel Method for Large-Scale Service Sets. IEEE
Trans. Autom. Sci. Eng. 2014, 11, 891–905. [CrossRef]

21. Benouaret, K.; Benslimane, D.; Hadjali, A. Top-k web services compositions: A fuzzy-set-based approach. In Proceedings of the
ACM—Symposium on Applied Computing (SAC), Taichung, Taiwan, 21–25 March 2011; pp. 1038–1043.

22. Li, J.; Yan, Y.; Lemire, D. Full solution indexing for top-k web service composition. IEEE Trans. Serv. Comput. 2016, 11, 521–533.
[CrossRef]

23. Lanthaler, M.; Gütl, C. Hydra: A Vocabulary for Hypermedia-Driven Web APIs. LDOW 2013, 996, 35–38.
24. Perwej, Y.; Haq, K.; Parwej, F.; Mumdouh, M.; Hassan, M. The internet of things (IoT) and its application domains. Int. J. Comput.

Appl. 2019, 975, 182. [CrossRef]
25. Khanna, A.; Kaur, S. Internet of Things (IoT), applications and challenges: A comprehensive review. Wirel. Pers. Commun. 2020,

114, 1687–1762. [CrossRef]
26. Shao, Z.; Taniar, D.; Adhinugraha, K.M. Range-kNN queries with privacy protection in a mobile environment. Pervasive Mob.

Comput. 2015, 24, 30–49. [CrossRef]
27. Kallab, L.; Chbeir, R.; Mrissa, M. Automatic K-Resources Discovery for Hybrid Web Connected Environments. In Proceedings of

the 2019 ICWS, Milan, Italy, 8–13 July 2019; pp. 146–153.
28. Khan, A.B.; Matskin, M. Agora framework for service discovery and resource allocation. In Proceedings of the ICIW 2010,

Barcelona, Spain, 9–15 May 2010; pp. 438–444.

http://doi.org/10.4304/jcm.6.6.424-438
http://dx.doi.org/10.24297/ijct.v16i7.6446
http://dx.doi.org/10.12720/joams.3.3.194-202
https://biblio.ugent.be/publication/2003291/file/2003308
https://biblio.ugent.be/publication/2003291/file/2003308
http://dx.doi.org/10.1109/JSEN.2013.2282292
http://dx.doi.org/10.1109/ACCESS.2019.2894683
http://dx.doi.org/10.1109/TSC.2015.2480393
http://dx.doi.org/10.1109/TSC.2015.2402679
http://dx.doi.org/10.1109/TASE.2014.2306931
http://dx.doi.org/10.1109/TSC.2016.2578924
http://dx.doi.org/10.5120/ijca2019918763
http://dx.doi.org/10.1007/s11277-020-07446-4
http://dx.doi.org/10.1016/j.pmcj.2015.05.004

Sensors 2021, 21, 6835 27 of 27

29. Arabnejad, H.; Barbosa, J.G. A budget constrained scheduling algorithm for workflow applications. J. Grid Comput. 2014,
12, 665–679. [CrossRef]

30. Fard, H.M.; Prodan, R.; Barrionuevo, J.J.; Fahringer, T. A multi-objective approach for workflow scheduling in heterogeneous
environments. In Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), Ottawa, ON, Canada, 13–16 May 2012; pp. 300–309.

31. Deng, S.; Wu, H.; Hu, D.; Zhao, J.L. Service selection for composition with QoS correlations. IEEE Trans. Serv. Comput. 2014,
9, 291–303. [CrossRef]

32. Barrientos, R.J.; Gómez, J.I.; Tenllado, C.; Matias, M.P.; Marin, M. Range query processing in a multi-GPU environment. In
Proceedings of the 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, Leganes,
Spain, 10–13 July 2012; pp. 419–426.

33. Lee, J.M. Fast k-nearest neighbor searching in static objects. Wirel. Pers. Commun. 2017, 93, 147–160. [CrossRef]
34. Russel, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall: Upper Saddle River, NJ, USA, 2003; Volume 2.
35. Murakami, Y.; Lin, D.; Ishida, T. Services Computing for Language Resources; Springer: Saarland, Germany, 2018.
36. Niwattanakul, S.; Singthongchai, J.; Naenudorn, E.; Wanapu, S. Using of Jaccard coefficient for keywords similarity. In Proceedings

of the International Multiconference of Engineers and Computer Scientists, Hong Kong, China, 13–15 March 2013; pp. 380–384.

http://dx.doi.org/10.1007/s10723-014-9294-7
http://dx.doi.org/10.1109/TSC.2014.2361138
http://dx.doi.org/10.1007/s11277-016-3524-1

	Introduction
	Motivation, Challenges, and Needs
	Related Work
	Discovery Approaches
	Selection Approaches
	QoS-Based Approaches
	I/O-Based Approaches
	K-Compositions Approaches

	Location-Aware Resource Discovery and QoR-driven Resource Selection for i-Compositions
	General Overview
	Preliminaries
	Location-Aware Resource Discovery
	QoR-Driven Resource Selection
	Formal Resource Graph Model for i-Compositions
	Selection Strategy Adapter for i-Compositions

	Evaluation and Discussion
	Comparison with Existing QoR Models
	Resource Discovery Evaluation
	Resource Selection Evaluation

	Conclusions
	The Discover(String, Array of String) Function
	References

