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Abstract: Sensor monitoring networks and advances in big data analytics have guided the reliability
engineering landscape to a new era of big machinery data. Low-cost sensors, along with the evolution
of the internet of things and industry 4.0, have resulted in rich databases that can be analyzed through
prognostics and health management (PHM) frameworks. Several data-driven models (DDMs) have
been proposed and applied for diagnostics and prognostics purposes in complex systems. However,
many of these models are developed using simulated or experimental data sets, and there is still
a knowledge gap for applications in real operating systems. Furthermore, little attention has been
given to the required data preprocessing steps compared to the training processes of these DDMs.
Up to date, research works do not follow a formal and consistent data preprocessing guideline for
PHM applications. This paper presents a comprehensive step-by-step pipeline for the preprocessing
of monitoring data from complex systems aimed for DDMs. The importance of expert knowledge is
discussed in the context of data selection and label generation. Two case studies are presented for
validation, with the end goal of creating clean data sets with healthy and unhealthy labels that are
then used to train machinery health state classifiers.

Keywords: data preprocessing; machinery data; big data; monitoring sensor data; data reduction;
machine learning; deep learning; diagnosis; prognostics and health management

1. Introduction

Cost reduction in sensor monitoring networks and the massive amounts of data gen-
erated by them has propelled the application of data-driven models (DDMs) to prognostics
and health management (PHM) frameworks. In this regard, most recent research has
focused on developing machine learning (ML) and deep learning (DL) techniques for
diagnostics and prognostics purposes. At the same time, very few works are dedicated to
the study of the data preprocessing steps needed to train these models. Data acquisition
and processing are crucial steps in any PHM framework, particularly when DDMs are
involved [1]. However, this analysis is frequently left out when comparing or reviewing
DDMs applied to PHM [2]. In this paper, we present a preprocessing pipeline for data
collected from complex system’s sensor monitoring networks for ML and DL applications
to PHM.

In PHM, diagnostics and prognostics tasks are commonly addressed through three
different approaches: model-based, data-driven, or a combination of these through hybrid
algorithms [3]. In complex systems, the availability of the physics of degradation models
is rare, and if available, they are highly localized and component-specific [4]. Therefore,
implementing model-based approaches is usually not feasible when analyzing complex
systems with multiple components and failure modes. Alternatively, DDMs have been
widely applied to systems lacking explicit degradation models, since these are not system-
specific and only rely on robust and reliable data sets. In this regard, significant advances
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have been achieved in diagnostics and prognostics using DDMs [5]. Nevertheless, the
published literature has commonly focused on the development of algorithms using bench-
mark data sets, such as the rolling elements vibrational data from the Machinery Failure
Prevention Technology (MFPT) society, the Case Western Reserve University’s Bearing
data set [6], and the turbofan C-MAPSS data set [7]. These data sets do not accurately
represent real-life scenarios since they lack defects commonly observed in data collected
from complex systems. Noise contamination, missing data points, feature redundancy, and
poor data quality are only a few of the challenges encountered when dealing with data
sets obtained from real systems. As such, processing monitoring data from real systems to
obtain representative data sets still remains a challenge from a DDM perspective.

Furthermore, the rapid evolution of ML and DL algorithms as well as developments in
hardware capacity, have often led researchers to focus on adjusting the models’ complexity
rather than directly addressing the preprocessing and analysis of the raw data from the
system under study. As a result, the importance of the latter is often underestimated,
not considering its great impact on the final results [8,9]. The low number of studies
explicitly addressing data preprocessing procedures can be mostly linked to benchmark
data sets. Some of these are often provided ready to ‘plug-and-play’, while others require
minimal preprocessing for their use [10]. In the case of PHM frameworks developed
for non-benchmarks data sets, the data processing stages converge to system-specific
solutions instead of developing standard guidelines. This, despite the common aspects
complex systems share when dealing with sensor monitoring data, regardless of the specific
system under study. Thus, developing standard preprocessing methods (i.e., cleaning and
preparation) for data sets originating from diverse monitoring sensor networks can facilitate
the further adoption of ML or DL prognostics and diagnostics models at the industry level.

The main goal of a PHM framework is to provide decision-making tools to optimize
reliability, performance, and maintenance policies for systems and their components.
Hence, providing tools to preprocess and analyze monitoring data is crucial to close the gap
between theoretical models developed in academia and their application in industry. For
example, it has been reported that over €2.2B are spent yearly repairing unexpected failures
in the wind turbine industry [11], while maintenance services can represent up to 35% of
the total power generation costs. In the United States alone, remediating corrosion damage
in oil and gas pipelines costs over $2 billion [12]. On the other hand, manufacturers are
expected to spend over $7 billion per year recalling and renewing defective products [13].
Implementing PHM frameworks to these real systems can be a key step to enhance the
optimization of efficient and safe maintenance policies. These are expected to reduce
downtime and cost, while increasing the overall availability of the system [14]. In this
context, developing robust frameworks for the processing of raw sensor data is essential,
as data containing errors or inconsistencies can result in prognostics models with poor
performance and, in turn, affect the decision-making process [15,16].

This paper proposes a preprocessing methodology for big machinery data focused on
DDMs applied to PHM. As a first step, data cleaning and preparation are discussed and
presented in detail. Then, different preprocessing strategies and the effect of additional
metadata describing the work conditions of the monitoring system are discussed. It is
shown that a successful preprocessing methodology could only be implemented through
continuous feedback between data scientists and field engineers. Finally, feature impor-
tance analysis and dimensionality reduction algorithms are employed to extract the most
informative parts of the data set.

Two case studies from real complex systems are analyzed: a vapor recovery unit
(VRU) at an offshore oil production platform and a copper mining crusher (CMC) system.
The data preprocessing pipeline can be used as an end-to-end methodology to prepare
data from raw sensor readings to create diagnostic models. The pipeline can also be used
as a baseline for more complex tasks, such as prognostics and remaining useful life (RUL)
estimation [17], or to complement other data types such as vibration signals or acoustic
emissions. In both case studies the analysis is focused on mechanical failures, which are
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expected to have a long-term degradation behavior. Hence, this excludes fast developing
faults such as the ones found in electrical systems.

The proposed methodology is aimed at an analysis of data collected from sensor
networks data in mechanical systems. These consist of measurands such as temperature,
pressure, displacements, and flow. Measurements such as the ones found in electrical
systems (e.g., voltage and current), as well as time-frequency signals (e.g., vibrations and
acoustic emissions) [18], can also be analyzed as regular sensors. It should be noted that
high frequency signals processing techniques for feature extraction are not considered in
the proposed pipeline. Similarly, input/output signals commonly encountered in control
systems are also not part of the analysis. These types of data are of great importance in com-
plex systems such as urban traffic [19] or structures dependent on controlled systems [20].
However, they rarely present enough variability to be considered in PHM DDMs, and they
are not expected to be related to the failure mechanisms of the system.

The main contributions of this work can be summarized as follows:

1. A step-by-step guide for the preprocessing of big machinery data in the context
of PHM.

2. A methodology to create health state labels based on the system’s operational time
and available maintenance logs.

3. Two case studies from different real systems showcasing the proposed preprocess-
ing pipeline.

4. The proposed pipeline is a step towards bridging the gap between theoretical and
practical applications of DDMs to PHM.

The remainder of this paper is structured as follows: Section 2 presents and discusses
the current literature on machinery data processing and PHM frameworks. Section 3
presents and describes the two case studies used to exemplify the proposed preprocessing
pipeline. Section 4 details the proposed data preprocessing procedure for condition-
monitoring data in complex systems. Section 5 provides a description of how to generate
health state labels. Section 6 illustrates results of ML and DL models. Finally, comments
and conclusions are presented in Section 7.

2. Preprocessing Sensor Monitoring Data for Prognostics and Health
Management Models

Data preprocessing is an essential step of PHM frameworks [21,22]. Nevertheless,
the preprocessing stages are frequently not considered as components that increase the
performance and effectiveness of the framework. There are no comprehensive, up-to-date
protocols or guidelines on how to handle, organize, and prepare sensor monitoring data
to train and implement DDMs in PHM frameworks. Even among reliability researchers,
crucial information regarding methods for collecting, handling, and processing data is
scarce [23]. Consequently, it is common to encounter published literature that does not
give a detailed description of the data preprocessing before training PHM models [24,25].
This knowledge gap can effectively hinder the applications of DDMs to real systems. This
calls for the detailed development of procedures for processing raw sensor monitoring
data for using DDM-PHM frameworks in industry settings.

2.1. Big Machinery Data

Big data are often referred to as databases of a great size. A more accurate characteri-
zation can include the description of tools and methods required for managing a database,
determining the computational power needed to store and process the data. Whether to
consider a data set as big data or not will depend on the stored data and the desired
applications, not just its size in gigabytes. One common concept used to categorize a data
set as big data is the 3 V’s: Volume, Variety, and Velocity [26]. Volume refers to the size of
the data set in terms of memory and the contained number of data points. For instance,
processing one terabyte of audio files is not the same as processing a data set of videos of
the same size in terms of the contained data points. Variety indicates how heterogeneous
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the data are when looking at its variables and structure. Combining different types of
stored data (e.g., audio and video on the same data set) will increase the Variety of the data
set given its lack of structure. The last V refers to Velocity, denoting the data acquisition
frequency and the speed at which the information needs to be processed.

Developments and cost reductions in sensor technologies have allowed complex
engineering systems to be highly sensorized. That is, systems are equipped with sensor
monitoring networks that oversee the system’s operational conditions in real time. These
networks can record data logs at high frequencies for numerous sensors simultaneously.
The constant acquisition of the system’s operational data results in data sets of immense
volumes and complexity. This brings advantages and drawbacks to the table. On the one
hand, if monitored correctly, the collected data are expected to contain information on the
system’s state of health. On the other hand, having great volumes of complex data is of no
use if there are no adequate methods to process it, especially if there is no clear task for
what the data can be used for.

Processing data sets collected from monitoring systems can hence be considered as
a big data problem. Multiple sensors strategically located at different components of the
system result in data with a high variety. Sensor networks with high sampling frequencies,
like the ones studied in this paper, collect thousands of data points in short periods of time.
These networks can also contain dozens or hundreds of sensor features. Hence, we refer to
these data sets collected from sensor monitoring data as Big Machinery Data.

2.2. Processing Data for DDM Applied to PHM

Prognostics and health management seeks to provide frameworks for analyzing
condition-monitoring data from an end-to-end perspective. PHM is commonly divided
into sequential stages, as described in Figure 1 [5]. These stages encompass everything from
the data collection process through the sensor network to the system’s maintenance policy
optimization. Regardless of the system and available data, all PHM frameworks have a
diagnostics and prognostics stage. Here, DDMs have gained significant research attention
in the last decade since physics-based models are generally not available to describe the
degradation processes occurring in complex systems [3]. In this regard, several ML and DL
architectures have been applied to a variety of case studies, aiming to extract the maximum
amount of information from the available big machinery data. The data preprocessing
stage is essential in constructing reliable ML and DL models, normally encompassing
greater time and effort than training the models themselves [27].

Figure 1. Example of the main stages in a PHM Framework.

Preprocessing data involves various steps before training a model, from selecting
features that best represent the system under study to normalizing feature values. Depend-
ing on the available data and the selected DDM, different preprocessing steps might be
needed. Thus, the data curation and preparation processes are often seen as a case-by-case
scenario rather than as a defined methodology. For diagnostic tasks, a common source of
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measurements are temporal signals in the form of vibration or acoustic emissions. These
signals have traditionally required manual feature crafting based on expert knowledge de-
pending on the signal, resulting in loss of information and time consumption. The extracted
features are then used to train regression or classification models, whose performance
strongly depends on the features’ representability of the system. To this end, particular
signal and data processing techniques have been proposed to reduce information loss and
to improve models’ performance [28]. As an example, the capabilities of convolutional
neural networks (CNNs) [29] to extract abstract features from raw data have proved to
yield better performance than models trained on manually crafted features in diagnosis
classification tasks [30]. As such, vibration signals can be transformed into spectrograms or
scalograms to obtain a diagnostics model through CNNs [6].

Many regression and classification algorithms do not require a specific format for their
input data when analyzing sensor monitoring data. Examples of these are support vector
machines (SVMs) [31], random forest (RF) [32], and neural networks (NN) [33], where
only one value per feature and a label are needed. The latter is required when training
supervised models, while unsupervised models only require an input value. In sequential
analysis, models such as recurrent neural networks (RNN) require sensor value inputs to
be formatted as time windows; however, the sensor values themselves do not need special
treatment [34]. Therefore, these algorithms can be trained for RUL estimation or other tasks
without many complex preprocessing requirements [17,35]. This can be observed for ML
and DL models developed for fault, error, and anomaly detection [36–39]. Likewise, CNNs
can also be implemented for prognostics tasks, in which RUL estimation is performed
based on time windows created from sensor monitoring data, similar to the ones used for
RNNs [40].

Among the published literature describing the preprocessing steps taken to prepare
big machinery data for DDM-PHM frameworks, there tend to be important differences in
the implemented methods. This occurs even when applying similar techniques to the same
case study or data set [41,42]. Although this variety of preprocessing approaches for the
same data is not inappropriate, these examples show that there is no consensus within the
reliability community on how sensor monitoring data should be treated for training DDMs.
Discrepancies on the preprocessing methodology become an issue when trying to compare
or replicate results from different techniques applied to the same data set. The most
common examples of this phenomenon are the results reported for the C-MAPSS data set [7].
This benchmark data set has been repeatedly analyzed through multiple preprocessing
techniques and DDMs reporting significantly varying results between articles [31,40,41,43].
This could imply that a proposed ML model or DL architecture might present better results
due to a more consistent preprocessing methodology than to the models’ architecture.
Another possible scenario is that the improved performance on a new DDM is due to an
improper preprocessing methodology. For instance, the cross-contamination of the training,
validation, and test sets, resulting in misleading results due to the overfitting of the models.

2.3. Differences in Preprocessing Sensor Monitoring Data from Real and Benchmark Data Sets

Sensor monitoring data from experimental setups or simulations have characteristics
that are not realistic when compared to data from real systems. In the former, data
acquisition frequencies can be coordinated to register sensor logs simultaneously. Sensor
layouts can be optimized to enhance the quality of the collected data, where its volume
solely depends on the available computational power or time to run the experiment and the
sampling frequency. The number of observed failures will also depend on the available time
to run simulations. Experimental setups are usually isolated from other elements, while
simulating the degradation effects caused by interactions between the components is a
challenging task. Noise is commonly added as a Gaussian variable, which does not consider
external factors, nor the presence of other components. These ideal conditions are rarely
seen in data collected from real systems, where sensor readings originate from monitoring
multi-component systems, each with its internal physical processes. Here, interactions
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between sensors can create a high level of noise as well as highly correlated variables.
Failure events can be rare for some components and therefore, collecting representative
degraded data is unfeasible. Further, as discussed in this paper, expert knowledge is
needed to analyze and process the data.

Measured physical variables have a temporal component that needs to be considered.
In this context, preprocessing techniques based on statistical analysis, such as the ones
utilized in data mining [44], cannot be directly implemented to these data sets. This is due
to the need to incorporate expert knowledge to ensure that the data represents the system.
As an example, resampling among sensor variables can create inconsistencies within the
data set. Indeed, components operate following known laws of physics, e.g., heat exchang-
ers are based on the laws of thermodynamics for heat and mass transfer. Resampling can
create sensor log sequences that do not follow these laws. Individually resampling each
sensor feature would contaminate the data set, thus affecting the performance of a DDM
trained on it. On the other hand, DDMs are also highly dependent on the quality and
variety of the collected data. Real-world data sets often originate from diverse sources,
in environments that add uncertainty and noise-contamination to the data. These data
sources can also have different sampling frequencies and sensor or connectivity failures,
causing missing values to appear in the collected data set. As such, these non-structured,
multi-modal, and heterogeneous data sets cannot directly be used to train DL models,
requiring preprocessing and expert knowledge to be analyzed.

Another important difference between benchmark data sets and real systems is the
existence of maintenance logs. Information on the stoppages of the system, the details
on the failure mechanism and failure modes, and the relationship between components
and failures can provide valuable information to develop diagnostics and prognostics
models. These metadata can help select data to train the models and label it without specific
knowledge for all the components.

2.4. Current Challenges in DDM-PHM Applied to Complex Systems

Data scarcity and data quality are two factors that currently hinder the practical ap-
plications of DL models to PHM based on big machinery data [5,45]. On the one hand,
complex DL models are defined by many parameters (normally among the thousands or
millions). This causes DL models to be data-hungry since, to avoid an overrepresentation
of the data (i.e., overfitting), the number of data entries used to train a DL model needs to
be greater than its number of trainable parameters [46]. Techniques such as data augmenta-
tion [47] and transfer learning [48] have been studied to address these limitations; however,
their applications are normally bound to a specific case study rather than a generalized
methodology. For instance, to compensate the lack of accurately labeled data, Li et al. [49]
used data augmentation to generate training sets for a DL fault detection model using
experimental machinery vibration data. This approach improved the label representation
of the faulty data; however, its implementation cannot be directly extrapolated to similar
diagnosis tasks based on different case studies.

The evolution of smart sensors, the internet of things (IoT), and industry 4.0 are
expected to alleviate the data scarcity and quality problems, given that sensor networks
can generate big sets of data points in a short period of time through a coordinated
system [50]. Nevertheless, preprocessing and labeling these data for diagnostics and
prognostics tasks remains a challenge due to the need for expert knowledge and time to
process the information. Furthermore, since complex systems tend to operate for long
periods before a failure is observed, a class imbalance between healthy and unhealthy data
points is likely to negatively affect the data set’s variety. Indeed, new engineering systems
need to comply with more demanding safety and security norms, to thus become more
reliable and develop towards degraded states at a lower rate frequency. With few data
points related to failures or degraded states, it is difficult to train a DDM with generalizing
capabilities that can discern between a system’s future healthy or degraded state.
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In summary:

• Massive implementation of sensor networks, the IoT, and industry 4.0 have launched
a new era of Big Machinery Data from which PHM can take a big advantage;

• Few studies focus on the preprocessing of sensor monitoring data for PHM compared
to other data sources such as signals and images. This leads to inconsistencies in
published results and hinders the replicability of works;

• Benchmark data sets have allowed the development of high-performance DDMs, but
these do not present the challenges nor the need for extensively preprocessing the
data collected from real systems;

• Obtaining high quality data when analyzing real systems with DDMs still remains a
challenge. Few failure events lead to unbalanced classes for healthy and degraded
states, and accurate labels are still not widely available for complex systems. Thus,
expert knowledge is crucial to preprocess big machinery data in the context of
PHM frameworks.

3. Case Studies

To demonstrate the challenges presented in the preprocessing of real machinery data
and the effectiveness of the proposed preprocessing pipeline, we present two case studies
from completely unrelated systems. Degraded state labels are created for one component
per system, selecting the one that presented the highest number of failures. Namely, the
scrubber from the VRU and the crusher from the CMC.

3.1. Case Study 1: Vapor Recovery Unit

As a first case study, we analyze a vapor recovery unit, a subsystem at an offshore
oil production platform. This process unit is responsible for recompressing hydrocarbons
separated from the oil stream during the primary processing stages. The VRU is a complex
system that integrates many components such as condensate abatement vessels, heat
exchangers, and auxiliary systems for sealing and lubrication. Among these, dry screw
compressors with two compression stages can be found. The compressors carry gas from
an input pressure of 100 kPag (first stage suction) and 600 kPag (second stage suction) up
to approximately 1900 kPag. The gas is then compressed in the main compressors of the
VRU. There are two independent compression trains operating simultaneously in parallel.
The system is powered by an electric motor of 13.8 kV and 2.6 MW. The design flow of the
first stage is 150,000 Nm3/d and 750,000 Nm3/d for the second stage. Figure 2 shows the
layout of the system.

Figure 2. Layout of a vapor recovery unit (VRU).
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To ensure its correct operation, the VRU unit is equipped with a sensor network
comprised of 189 sensors of different kinds such as flowmeters, thermocouples, pressure
gauges, and accelerometers. Sensor data logs are registered at a sampling time of 15 s
from 1 January 2019, until 18 February 2020. For sensor reliability purposes, the sensor
network is composed of multiple redundant sensors and thus, many variables are highly
correlated. The collected data come from a real-world operational environment; therefore,
it presents noise contamination and missing data logs, among other defects. Along with
the sensor readings, a separate file is provided with information regarding the stoppages
of the system. Here, for each time the system was stopped, a label and an observation
describe the cause of the shutdown. Table 1 shows the possible values for observation and
labels. The data set contains a total of 2.4 million points. One of its columns corresponds to
Time, while the rest corresponds to the described sensor readings.

Table 1. Tag description for VRU stoppages.

Observation Labels

Undefined, Normal, Stand-by, External, Failure

Undefined, Normal Stop, External cause,
Instrument Failure, Mechanical Failure,

Electrical Failure, High Suction Pressure,
Unidentified Cause

3.2. Case Study II: Copper Mining Crusher

The second case study presented in this paper corresponds to a subsystem of a Chilean
mining processing line dedicated to copper production: a copper mining crusher. From the
collected mineral stockpile, the material is transported through a series of conveyor belts
to different components, aiming to make the extraction process of the mineral from the
rock easier. Here, two feeders in a parallel configuration transport the raw mineral from a
stockpile to a belt conveyor, a sifter, and finally the crusher. The crusher is the principal
component in this processing line and is the focus of this analysis. A simplified diagram of
the monitored components is presented in Figure 3.

Figure 3. Simplified diagram of copper mining crusher processing line.

A condition-monitoring sensor network collects operational data from the CMC
system’s components. Sensor measurements, including the time variable, are available
from 22 sensors with a sampling time of 2 min. Data are acquired from 1 July 2017,
to 1 October 2019.

Data logs containing information on all the interruptions and stoppages the sys-
tem experienced are also provided. The system’s logs are available from 2 January 2017,
to 31 August 2019. These data document the interruptions of the system’s operation classi-
fied into two categories: interruption of normal operation (including programmed main-
tenance and inspections) and failures detected in the system. There are 2595 operational
interruptions reported during this period, where only 382 explicitly refer to failures in
the system.

Table 2 presents the internal classification of these failures. As can be seen, several
causes do not necessarily correspond to failures of the CMC system, such as sensor com-
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munication errors, inspection, programmed maintenance, and other external events. Thus,
the system detention logs are filtered only considering events related to failures. The
nomenclature used for the available sensor monitoring variables is presented in Table 3.

Table 2. List of most significant interruptions identified.

Type Cause

Internal Failure
Belt failure, Control/Instrumentation failure, Hydraulic failure,

Lubrication failure, Mechanical failure, Other Cause,
Sifter/Crusher Load Exceeded

External Failure Communication failure, Current Exceeded, Electrical failure

Operational Outage Cleaning, Inspection, Low Stock Mine, Operation restart,
Setting adjustment

Table 3. Sensor nomenclature in crusher system.

Sensor Code Sensor Name Units

I Current %
Ps Shaft Pressure kPa
Tr Return Temperature °C
Tl Socket Liner Temperature °C
Tf Feeder Temperature °C
Te External Temperature °C
Ts Shaft Temperature °C

RVi Ring Vibration (i = 1–4) %
L Vessel Level %
S Setting mm

4. Proposed Preprocessing Pipeline

Regardless of the system under study, dealing with big machinery data requires
addressing different challenges to ensure its correct processing and interpretation. In the
case of machinery data for health assessment, it is common to have dozens or hundreds
of sensors, each of which is a potential feature to train a DDM. However, it is important
to identify the irrelevant features to the system’s operation, which are commonly found
in real-world data sets. Sensor readings may also present abnormalities such as missing
values due to different sample frequencies among sensors, disconnection, malfunction, or
external causes, as well as data logs that are not representative of the normal behavior of
the system.

Sensor monitoring data come from sensor networks designed to monitor specific
measurands of an asset. Therefore, these networks are rarely thought of or optimized
to obtain information on the system’s state of health. Consequently, complex systems
will likely have sensors that provide redundant information, i.e., sensor readings with
highly correlated data. Having multiple redundant sensors can be desirable from a sensor
reliability perspective, preventing data loss in the case of a sensor malfunction, failure, or
replacement. However, when considering sensor values as features for statistical models
such as deep neural networks (DNNs), redundancy among the features can subject models
to bias. The number of features fed to a DDM will also determine the number of parameters
that need to be trained. A lesser number of parameters implies shorter training and
evaluation times. Thus, feature selection and reduction are necessary to identify how
sensors are related to each other, discarding highly correlated ones.

We present a methodology to preprocess and prepare data sets from big machinery
data to train ML and DL models. The proposed methodology is based on statistical analysis
and expert knowledge from field reliability engineers. Figure 4 summarizes the proposed
preprocessing pipeline, composed of four stages: expert knowledge-based feature selection,
statistical analysis, data set preparation, and health state label generation. The data set
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preparation stage refers to the different data manipulations required depending on the
selected DDM and the specific task (e.g., classification, regression). This section gives
insights into the first three stages for both case studies presented in Section 3. The last stage
of the framework is presented in Section 5.

Figure 4. Proposed preprocessing pipeline for sensor monitoring data.

4.1. Expert Knowledge-Based Feature and Data Selection

As part of the feature selection and reduction process, the preprocessing framework
identifies and discards irrelevant features and data logs through two different methods.
First, expert knowledge from field engineers is used to identify and remove variables
unrelated to the system’s operation from the data set. Secondly, variables presenting a high
percentage of missing or non-numerical numbers (i.e., NaN) are discarded. Identifying
sensors that are not related to the system cannot be achieved by a statistical analysis of the
variables but rather by an understanding of the system.

As an example, for the VRU system, field engineers assessed that 17 out of the
189 sensors registered in their data base do not belong to the system’s sensor monitoring
network but rather to external components that are unrelated to it. These sensors are not
expected to contain information on the system’s state of health and, thus, are immediately
discarded. There are also 17 sensors that measure quantities controlled by the operators,
such as scrubber levels, oil reservoir levels, and external valve openings. These are also
dismissed since they are not related to the system’s physics of degradation and their values
tend to have a low variability.

In the case of the CMC system, engineers reported that the system’s components
should be analyzed separately since the provided sensor readings are not linked from
one component to the other (see Figure 3). This is due to the physical distance between
components, and that sensors are placed to measure the components themselves rather
than a continuous working fluid. In addition, the main component of the CMC is the
crusher, which accounts for 14 out of the 22 available sensors. Therefore, only these sensors
are selected and considered in the analysis.

Following this, sensors with numerous missing values need to be identified. If a sensor
is missing a high percentage of data points in time, it is considered a non-informative
feature. Figure 5a illustrates the original distribution of NaN values for the columns (above)
and rows (below) of the VRU data set. Based on the original distribution of missing values,
variables presenting 50% or more missing data entries or non-numerical values (i.e., NaN
values) are discarded. Using these criteria, 27 uninformative sensors are removed from the
VRU data set, resulting in the NaN distribution in Figure 5b. In the CMC, most NaNs values
come from sensor communication errors. These values are removed from the analysis by
excluding columns and rows with more than 50% and 20% of void entries, respectively.
This reduces the void entries to under 2% in this data set.
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Figure 5. VRU NaN distribution for rows and columns: (a) Original distributions; (b) distribution after removing unrelated
and uninformative features.

The temporal nature of sensor monitoring data is another element to be considered.
An accurate health assessment model can only be obtained if the collected data are repre-
sentative of the system. This implies that if there are periods where the system was under
operation but not in a representative state, then these values should not be considered in
the analysis. Maintenance data logs will usually have information on when and why a
system was prevented from its normal operation. Nevertheless, it would be a mistake to
assume that every time the system was under operation or when data were being recorded,
the system was under normal operation. In this context, the VRU system went through a
trial phase for the first five months from the start of the data recording. Hence, engineers
suggested that all data logs before 1 May 2019, should be removed before processing
the data.

Furthermore, Figure 6 illustrates how maintenance log labels broadly separated data
entries into three categories: normal, pause, fault. Pauses are defined as those periods of
time when the system is not operating under normal operational conditions. These could
be due to scheduled maintenance, low loading conditions, and failure of an external compo-
nent. Hence, it is likely that these states produce sensor readings that are not representative
of the healthy state of the system but do not represent failures or malfunctions either.
Although it can be counterintuitive, sensor readings are always recorded for all three
categories. Thus, data labeled as pauses should not be considered when preparing a data
set to train a diagnostic or prognostic model. This is further discussed in Section 5 when
defining the methodology to create health state labels.

Figure 6. System state distribution based on tag descriptions.
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4.2. Statistical Analysis

After the preliminary feature selection, statistical analysis is used to reduce further
the dimensionality of the data set and to eliminate redundancies.

4.2.1. Outlier Detection

A common practice before applying ML models is to visualize the data to comprehend
the behavior of the available features. Visualization also helps to find outliers, which are
data points not representative of a variable. The importance of outliers in diagnosis and
prognosis models has been studied by Marti-Puig et al. [11] in the context of PHM applica-
tion to wind turbines. Here, obtaining robust and accurate diagnostics and prognostics
models is crucial due to the competitiveness that renewable energies need to present as
an alternative to fossil fuel. In their study, the authors conclude that a systematic outlier
detection leads to discarding points which could have been representative of the normal
operation of the system. Their study shows how the presence of outlier points does not
necessarily mean that the system is presenting an anomalous behavior.

From a ML and DL perspective, detecting and removing outlier points can improve
the representativeness of the models for reasons similar to the ones presented for the
feature selection. However, over-removing data points can lead to overfitting models with
low generalization capabilities. This leads to poor performances from the models when
evaluated in new unseen data, particularly when faulty states are observed less frequently.
Sometimes, what may seem to be an outlier point during the operation of the system might
just be the presence of less frequent operational modes, as well as incipient faulty states.
It is important to consider that although a complex system will be affected by external
noise, the processes that are being measured by the sensors will still follow the laws of
physics, presenting their natural inertia.

A common practice for outlier treatment is to assume a Gaussian behavior of the
data and remove points that lie outside a determined confidence interval (normally 95th
percentile) [22]. The same assumption is made when using the Mahalanobis distance to
set a threshold for outlier removal [51]. However, these approaches completely ignore the
temporal nature of the data. Hence, a better approach should consider both the temporal
behavior of the measurements and statistical metrics to find and discard outlier points.
This approach is more time consuming since each sensor variable needs to be analyzed indi-
vidually. It also requires determining the thresholds for points to be considered as outliers,
and thus engineering knowledge can bring important insights for this decision. Comple-
menting both statistical and temporal metrics, the resulting data set is more representative
of the actual system’s operation, which will result in a more robust model.

Figure 7 showcases examples of how detecting and removing outlier points can im-
prove the quality of data from a VRU accelerometer and a crusher barometer, respectively.
In the case of the VRU, Figure 7a shows the temporal behavior of an accelerometer be-
fore (above) and after (below) the outlier detection process. Figure 8a also shows the
corresponding box plot at a 95% confidence interval. It can be observed that if only a
statistical analysis were considered for the outlier detection (i.e., dots on Figure 8a), normal
operational values would be discarded even though they do not correspond to outliers.
For instance, Figure 8a suggests that any value above 0.25 g should be considered as an
outlier. However, Figure 7a shows that these values are part of the system’s normal op-
eration. Considering both the temporal behavior of the data and its box plot, 0.3 g and
0.1 g are used as cutoff points for the upper and lower bound of the sensor, respectively.
As shown in Figure 8a (bottom), the boxplot still suggests the removal of an outlier in both
bounds. Nevertheless, the temporal behavior of the signal does not show relevant outliers
(Figure 7a).
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Figure 7. Sensor values in time before (top) and after (bottom) outlier detection: (a) VRU accelerometer; (b) Crusher
shaft pressure.

Figure 8. Boxplots before (top) and after (bottom) outlier detection: (a) VRU accelerometer; (b) crusher shaft pressure.

Figure 8b presents a boxplot for the shaft pressure of the crusher. On the one hand,
it can be observed that the statistical analysis suggests that there are no outlier points on the
lower bound. However, the temporal behavior shown in Figure 7b clearly shows several
outliers at low values. On the other hand, points on the upper bound of Figure 7b are within
the nominal operational conditions, and there are no anomalous values. Nevertheless,
Figure 8b considers all values above 640 kPa to be outliers. Considering both temporal
and statistical criteria, values below 100 kPa are considered outliers, while no outliers are
removed on the upper bound of the shaft pressure. Before the outlier removal, the shaft
pressure presents a mean and standard deviation of 274.98 and 142.96 kPa, respectively.
Removing outliers results in a mean pressure of 325.09 kPa with a standard deviation of
104.52 kPa. This is an example where the outlier removal is completely the opposite of what
the statistical analysis suggests, emphasizing the importance of incorporating the temporal
visualization to the statistical analysis, and the consideration of expert knowledge in the
form of nominal operational conditions. Furthermore, reducing the standard deviation can
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have a great impact when training deep learning models, given that input features typically
need to be normalized before being fed to the model during training and evaluation.

Since a DDM diagnostic model is expected to differentiate healthy states from abnor-
mal and faulty states, the outlier detection methodology is applied only to the data labeled
as healthy. This approach will also make the model’s predictions more conservative and
risk-averse since it is less likely for the model to yield false negative values, i.e., classify a
degraded state as healthy. This outlier detection and removal process is applied to all the
remaining sensor variables in the data set after the feature selection.

4.2.2. Feature Reduction

The dimensionality of the data sets can be further reduced by discarding redundant
variables as well as features with low variability. This reduces the bias of the trained
DDM and the input noise contamination. Two criteria are used to select features based
on statistical analysis: the variables’ individual temporal variation and their correlation.
Features with low variability do not add meaningful information to the model since they
have a relatively constant value, and thus they are not useful for a diagnostic DDM. The
coefficient variation (cv) is considered for this purpose, which is defined as the ratio of the
standard deviation to the mean of a feature:

cv =
σ

µ
, (1)

where σ and µ are the standard deviation and the mean of the feature, respectively. Con-
sidering data labeled as healthy, sensor features with a cv < 0.05 are discarded. In other
words, if the standard deviation is less than 5% of the mean, the feature can be considered
as random noise pollution [52].

The second criterion considers the correlation among variables (i.e., redundancy).
Pearson’s correlation is computed among all sensors. The presented case studies have
showed that sensors with a Pearson’s correlation higher than 0.9 are in physical proximity,
and normally measure the same variable (e.g., temperature). On the other hand, correlation
values under 0.8 correspond to sensors that were either further apart in the system or
measure the unrelated variables of the system. As such, for sensors presenting a Pearson’s
correlation higher than 0.95, one sensor is discarded, and the other is kept. This selection
is made randomly since the information contained in the features is considered to be
equivalent. The selected threshold for the coefficient variation and correlation will depend
on the system under study and the available data.

For the VRU case study, the statistical analysis resulted in removing another 62 sensors,
leaving 66 informative condition monitoring variables from the original 188. For the CMC,
only 14 sensors are selected from the 22 related to the crusher. This implies that the total
number of features was reduced to 35.1% and 50% of the original size for the VRU and
CMC, respectively. Note that feature reduction through statistical analysis and outlier
detection can be an iterative process. For example, one might want to remove outliers
again after highly correlated features have been detected. Another option is to remove the
correlated variables and then remove the outliers for the first time (all over but without the
selected variables).

4.3. Further Processing

Each complex system and the data collected from its monitoring sensor network will
have different elements and challenges. So far, we have covered the common minimal
preprocessing steps that should be applied to any big machinery data set. However, the
following are additional challenges that can be encountered in the preprocessing of data
sets from real systems.
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4.3.1. Categorical and Text Variables

DL algorithms used in PHM are generally not suitable to process text data and sensor
monitoring data simultaneously. If the text variable is categorical (e.g., ‘open’, ‘closed’),
the text data can be transformed into a one-hot encoder variable or numerical values
(e.g., 0 and 1). If the text comes from a maintenance log, it likely contains descriptions
and information that can be processed through text recognition algorithms such as natural
language processing (NLP) [53]. This can later be used as a complement to the main
DDM-PHM framework. It is important to note that the statistical analysis presented in
Section 4.2 would not be suitable for categorical variables.

4.3.2. High Dimensionality and Encoding

Although we have shown how feature selection through statistical and redundancy
analysis reduces the dimensionality of the data set, further reduction may be needed. The
available volumes of data and the chosen algorithm will constrain the number of features
used to train an ML or DL model. This is also determined by the available computational
processing power to process high-dimensional data. To this end, tools such as principal
component analysis (PCA) [54] and autoencoders (AE) [55] could be used to reduce the
data into the desired dimension. This comes at the cost of information loss, but to a lesser
degree than discarding additional features. These techniques could also allow to visualize
the data for clustering and classification purposes [56].

4.3.3. Normalization

Normalizing the input features to ML and DL algorithms produces models with
better performance, faster and stable training, and prevents bias toward any particular
feature [29]. Two common approaches are the Min-Max scaler and the Standard scaler
defined by Equations (2) and (3), respectively,

Xminmax =
X− Xm

XM − Xm
, (2)

Xstand =
X− µ

σ
, (3)

where XM and Xm are the maximum and minimum values of each feature, while µ and σ
are its mean and standard deviations, respectively. Both approaches scale the data through
a linear relationship, with the main difference being that the Min-Max scaler yields values
between 0 and 1, while the Standard scaler provides values that are normally distributed.
There is no rule of thumb on which scaler should be used. The chosen approach will greatly
depend on the selected algorithms as well as the values of the data. If feature values range
in the positive domain, using a Min-Max scaler will maintain the positivity of the data.
This can ease the analysis of the variables and the model training process. On the other
hand, the standard scaler will not restrict the values to a certain range, which is desirable if
the feature presents a high variability and a wide domain. Categorical variables should
not be normalized. The normalization process should only be applied after the data are
separated into training, validation, and test sets to avoid data cross contamination, as
discussed in Section 6.1. The scaler is then fitted to the training set, and then the validation
and test sets are transformed based on the information from the training set.

4.3.4. Missing Values and Resampling

As discussed in Section 4.1, sensor monitoring data tend to present missing values
due to sensor malfunction, human error, and differences in sampling frequency, among
other causes. Once the feature selection is performed, it is still possible to find non-
numerical values remaining in the data set, even though uninformative features have been
removed. If the missing values account for a small percentage of the data in the time
domain (i.e., rows) then these rows can be discarded. In machinery data, unlike other
problems where ML and DL models are implemented, the temporal nature of the data
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collection method results in great volumes of data to be registered, and these missing
values might not represent an important percentage of the remaining data. This is the case
for the VRU and CMC, where less than 2% of the remaining rows present missing values.
Discarding rows of data with missing values will not affect most ML and DL models’
training processes. However, some models require continuous sequences of data, such as
RNNs [57]. In this case, a more in-depth analysis must be performed since time windows
with missing values will hinder the performance of the trained model.

The most simplistic approach to deal with missing values is to perform interpolation.
Linear interpolation can be useful only if few data points are missing for each sensor feature
and are not continuously missing for an extended period. More sophisticated interpolations
can be implemented using polynomial functions or Bayesian interpolation [58], as well as
fitting parametric functions [59]. DL models have also been used to complete the missing
values with predictions from an RNN regression of the time-series [60]. Another approach
is to fill the missing values with a value of zero instead of using an average or resam-
pling method, thus creating a “natural” dropout of the input layer in a DL model [61].
This adds uncertainty to the model, but in turn makes it more robust to noise and, evidently,
missing values.

If missing values cause the loss of valuable data, data augmentation is an alternative
to generate new synthetic data with labels based on the original samples. Traditionally,
data augmentation techniques have been used for computer vision (i.e., image processing)
in classification and NLP tasks. These techniques cannot be directly applied to multivariate
time series due to the possible complex interactions between the features and their dy-
namic behavior [58]. Thus, blindly applying data augmentation techniques would result
in synthetic data that are not representative of the system under study. Time series data
augmentation deals with the limited data available for certain classes, taking into consider-
ation the temporal dependency of the data. Data sets for classification, anomaly detection,
or regression require different data augmentation treatments.

Although it would be impractical to list all the possibilities of missing value treatment,
they all have one thing in common: none consider the physics laws for multivariate
series. This can become a problem when studying the physics of degradation based on the
data. Resampling, interpolating, and augmenting data for multiple features at the same
timestamp will likely result in feature combinations that might defy the laws of physics,
and therefore they will not represent the system under study.

For both our case studies, we chose not to use resampling or other techniques to fill
missing values with synthetic ones since the latter may not follow the system’s physics of
degradation and might impact the performance of the models.

5. Generating Health State Labels

Depending on the required analysis, different DDMs can be trained on sensor moni-
toring data that have been preprocessed using the proposed methodology. In the context of
PHM frameworks, the two most common tasks are diagnostics and prognostics. Regardless
of the chosen approach, most ML and DL applications to PHM have some degree of su-
pervised learning, thus requiring accurate labels for the models’ training process. Many
benchmark data sets provide labels from the offset, while in others, their creation is straight-
forward. This is not the case for big machinery data sets, where multiple components have
multiple failure modes and infrequent failure events. This section presents a methodology
to create labels for diagnostics (i.e., classification) tasks.

5.1. Failure Mode Selection

Generating a classification data set with healthy state and failure mode labels can be
challenging when there is no knowledge of the system’s physics of degradation. Multi-
ple failure modes can also hinder the label generation when accurate information on what
caused the system’s failures is not available. It is here where including expert knowledge
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on the system can be crucial to analyze machinery data from real systems. If maintenance
logs are available, an analysis of the possible failure modes of the components can be made.

In the case of the VRU, only the failed component’s name is reported in the logs, but
not their failure modes, whereas in the CMC system failure logs describe several failure
modes for each component. Figure 9 illustrates the failure frequency for each component
of the VRU system. There are 19 failures in the elapsed time-period, and most failures are
related to instrumental and scrubber failures. Given that instruments are not considered
part of the mechanical system, the scrubber is the component that presents the highest
failure frequency.

Figure 9. VRU failure frequencies.

Regarding the CMC system, Figure 10 shows that the crusher not only is the main
component of the system, but also the one that presents the greatest number of failures.
Figure 11 shows a breakdown of the possible failure modes of the Crusher. Here, the
mechanical and hydraulic failure modes are the most relevant to the system.

Figure 10. Sequence of system failures by component, Crusher system.
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Figure 11. Failure mode frequencies for the Crusher component.

5.2. Degraded Labels

A common practice to generate health state labels for diagnostic tasks is to use Health
Indexes (HIs) or Key Performance Indexes (KPIs) to define thresholds and separate the
system’s states of health [17]. If there are no HIs or KPIs associated with the system, having
accurate diagnostics labels associated with the sensor monitoring variables becomes a
challenge. In complex systems it is rare to have these indexes for each of the components
or the system. In turn, failure and maintenance logs are likely to be registered regardless of
the system, providing quality information on what the healthy state of the assets might
look like.

By assuming that a component must be at a degraded state before a failure event,
the system’s degraded states can be defined as the period immediately before each failure
event. Then, the operational times that are not close to any failure event or stoppage can be
considered as a healthy state. A formal definition for this label generation is as follows. Let
us consider a system S composed of N components. Each component is denoted as Ci with
i = {1, . . . , N}. Ci has mi sensors associated with it, where each sensor is denoted as xi

k
with k = {1, . . . , mi}. For each component Ci there is also a pool of possible failure modes
FMi

j with j = {1, . . . , ni}, where ni is the number of possible failure modes for Ci. For
simplicity, it is assumed that all failure modes are independent. The nature of the systems
under study allows us to assume that components do not present common cause failures.
Now, let us denote tj

i as the time the system was stopped due to the failure mode j from
component Ci, and tp

S as the time when the system is stopped or paused for any reason that
is not one of the known failure modes (e.g., external causes or pauses).

When a component Ci fails at tj
i due to a failure mode FMi

j, it is safe to assume
that there is a period preceding the failure event where the component is at a degraded
state associated with failure mode j. It can also be assumed that the progression of this
degradation led to the failure event. As such, we define a time window ∆ tw before tj

i
where the system is at a degraded health state. That is, the degradation of the component
starts at td

i = tj
i − ∆ tw and it ends at tj

i , corresponding to the failure event registered in the
maintenance log. All data points that fall into a time window ∆ tw are labeled as ‘degraded
FMi

j’, where FMi
j is the failure mode associated with the degradation.

Since degradation processes are dynamic, the transition from a healthy to a degraded
state does not happen from one sensor timestamp to the next. Instead, given the inertia
of the process, there should be a transition time ∆ ttr between the end of the healthy state
and the beginning of the degraded state. This serves a double purpose, where the system
is allowed to fully progress into a degraded state, while ensuring that there is no cross-
contamination between the data labeled as degraded and as healthy, respectively. The start
of the transition state is then defined as tt

i = td
i − ∆ ttr. Figure 12 illustrates an example
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of this health state labeling methodology, where suction pressure and temperature points
in time are shown for the VRU and CMC systems, respectively. The three defined states
(i.e., healthy, transition, and degraded) are color-coded in blue, yellow, and red, respectively.

Figure 12. Example of different designated health states on sensor measurements: (a) Suction Pressure (VRU); (b) Return
Temperature (Crusher).

It is important to note that the chosen time window depends on the component and the
failure mode that caused the system’s detention. A practical degradation window should
be long enough that it will allow engineers to detect the failure and act on it before it occurs.
Normally, the earlier a degraded state is diagnosed, the better. This would mean setting
the start of degradation days (or even weeks) before the failure event. However, the longer
the time before a failure is considered as the degradation initiation point, the more likely it
is to mislabel healthy states. Mislabeling healthy states can have a negative impact on the
model’s performance and is likely to increase false negative and false positive predictions.
Transition states should also be considered for warm-up and cool-down periods, i.e., the
periods when a machine is started or turned off after or before being completely shut
down, respectively.

For simplicity and demonstration purposes, we have considered the same time win-
dow for the degradation and transition states for both the scrubber and the crusher from
the VRU and the CMC systems, respectively. A time window ∆ tw = 2 h was used for the
degradation, and a time window ∆ ttr = 3 h was used for the transition period. A 30 min
warm-up and cool-down period was considered for the components and the system. The
selected degradation time window is enough for engineers to react preventively to the
failure events and to ensure that all the points contained correspond to the degraded state,
while the transition window is long enough to ensure there is no overlapping between
healthy and degraded states.

6. Results from Machine Learning and Deep Learning Models

The preprocessing and health state label generation methodologies presented in this
paper are designed to yield representative and reliable data sets in the context of PHM
frameworks. Diagnostic models can be directly trained using the created data sets and
labels, both for ML and DL algorithms. This section presents and discusses different results
when training ML and DL models using the generated data sets for both case studies.
SVM, RF, NN, and Bayesian neural network (BNNs) models are trained to showcase the
effectiveness of the proposed methodologies.

6.1. Data Set Preprocessing

Before training the diagnostic DDMs, both data sets are separately prepared using the
preprocessing methodology presented in Figure 4 and described in Sections 4 and 5. First,
unrelated and uninformative sensor features are removed. Then, outlier points are individ-
ually detected and removed for each of the remaining features based on both statistical and
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temporal analysis. The processing follows by identifying and removing features with low
variability. Similarly, when two or more sensors are found to be highly correlated, only one
sensor is randomly kept. Once these features are removed (i.e., unrelated, uninformative,
invariant, and correlated sensors) the feature reduction process is finished. Following this,
the original raw data from the remaining features are reloaded. This step is important,
since the outlier detection process might have eliminated sensor logs based on features that
were discarded during the feature selection process.

Maintenance logs are analyzed to create health state labels. Operational time intervals
are defined, starting from the end of a stoppage event up until the beginning of the next
stoppage, pause, or failure event. In the case of the VRU system, the compressor module
has a sensor measuring the motor’s phase current usage, where a positive value indicates
that the system is under usage. This threshold is used as additional information to ensure
the system is operational. For both case studies, all data points that are not labeled as
“in operation” are then discarded. This results in operational time-windows, whose end is
related to a specific cause (e.g., pause or failure). The time-windows are thus tagged based
on the stoppage cause. These tags are later used to define the degradation and healthy
labels, as described in Section 5.

Data labeled as healthy are grouped and saved for the training of the classification
models. Data labeled as degraded are saved separately based on common failure modes.
This allows us to use the data to train models per failure modes or for the system as a
whole, as needed. Finally, the outlier detection and removal processes are performed
on the healthy data set, in order to remove possible anomalous behavior and noisy data.
Removing outliers only from the healthy state allows us to train diagnostics models that
are more conservative, since they are likely to yield less false healthy states. It also allows
the trained model to perform as both a fault and an anomaly detection model.

6.2. Training, Validation, and Test Sets

Training ML and DL models requires separating the data into three different sets:
training, validation, and test sets. First, data are split between a train and a test set, the
latter typically accounting for 10% to 25% of the whole data set. Next, the train set is further
divided into training and validation sets, with the latter usually representing up to 15% of
the train set. Finally, the model’s hyperparameter and trainable parameters are adjusted by
training the model on the training set and assessing its performance on the validation set.
The test set is only used to evaluate the final trained version of the model.

When separating the data set, one must ensure that there is no cross-contamination
between the resulting subsets. If the train set contains information (e.g., same data points)
from the test set, then it is likely that the model will present overfitting. Furthermore,
to accurately train and test classification models, it is ideal that all classes have similar
sizes, especially during the testing stages [62]. Having balanced classes allows us to easily
compare classification metrics such as the confusion matrix, precision, recall, and f1-score.

Data sets are separated as follows:

• Data labeled as degraded are split into train and test sets by randomly sampling the
degraded-labeled data without replacement. The test and train sizes are 15% and
85%, respectively;

• Since there are more healthy-labeled data points than degraded data points, the healthy
data set is sampled without replacement with a sample size equal to the size of the
degraded-labeled data sets. This results in train and test sets with balanced classes;

• 10% of the train set is then randomly sampled to obtain the validation set, while the
remaining 90% is used for the model’s training.

6.3. Data-Driven Models and Results

Four different ML and DL models are presented. SVM and RF models are trained
using the scikit-learn Python library [63], while NN and BNN are trained with Tensorflow
2.4 Python package [64]. A 5-fold cross validation is used to find the best hyperparameters
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in the ML models. In the case of the DL models, stochastic grid search [65] is used to find
the best hyperparameters. This is done for both case studies separately.

Classification metrics for all the trained models on both case studies are presented
in Table 4. In general, both case studies present encouraging results for at least two of
the trained models. RF and NN seem to be the most robust models, while SVM and
BNN struggle with the CMC system. Furthermore, Table 4 shows that models perform
differently for both case studies, which is a sign of no cross-contamination of the data
sets and a good degradation label definition approach. The physical differences between
both case studies justify the models’ performance differences from one system to the other.
Since the VRU’s degraded labels are defined based on components’ failure times, it is
reasonable to expect better results in its models when compared to the CMC’s. This idea
is further reinforced with the results obtained for the SVM and BNN models, where false
healthy predictions are negligible compared to the false degraded labels. Hence, the trained
models are conservative. Figure 13 illustrates the evolution of the training and validation
loss (loglikelihood) and accuracy during the BNNs’ training process on the VRU. No
significant overfitting or underfitting is observed. However, by accounting for uncertainty,
the model loses precision on its prediction. This hinders the classification performance and
the training process, which can be observed in Figure 13. Hence, the BNN struggles to
differentiate one specific failure mode from the healthy data and has difficulties converging
to an optimal solution.

Table 4. Classification metrics per case study and model with proposed methodology.

Training Validation Test

Case Study Model Accuracy Accuracy False Healthy False Degraded Recall F1-Score

VRU Scrubber

SVM 0.97 0.97 0.00 0.03 0.97 0.97
RF 0.99 0.99 0.00 0.01 0.99 0.99
NN 0.99 0.99 0.00 0.01 0.99 0.99

BNN 0.97 0.97 0.02 0.01 0.96 0.96

CMC Crusher

SVM 0.72 0.73 0.03 0.21 0.97 0.97
RF 0.99 0.96 0.01 0.02 0.95 0.95
NN 0.93 0.93 0.00 0.05 0.91 0.91

BNN 0.70 0.72 0.03 0.26 0.72 0.70

Figure 13. BNN training curves for the VRU Scrubber.
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Moreover, given how healthy states are defined, a diagnostics classification model is
expected to register as degradation both degraded states as well as anomalies. Thus, one
would expect the model to be accurate when classifying healthy states, which is desirable
from a reliability point of view. This idea is reinforced further when considering the outlier
detection and removal process described in Section 4.2.1 (reducing unnecessary anomalies
which could have been detected otherwise). Evidence of this is in the results obtained for
the SVM and BNN models on the CMC system, shown in the difference between false
positives and negatives in Table 4. The high number of false degraded states can be due
to the presence of anomalies in the system. It can also be related to how the transition
window was defined between the healthy and degraded labels. Indeed, since the same
time window is considered for both case studies, and labels are defined on a time base, it
is plausible that some degraded and healthy labels have overlapped. In this regard, it is
expected that the SVM and BNN should have the greater performance drop. SVMs are
known for struggling to separate overlapping classes, while BNN rapidly loses precision
with contaminated data given the uncertainty in the layer’s weights.

6.4. Comparison to Other Preprocessing Methodologies

The proposed framework considers the basics steps that are required to prepare big
machinery data for the training of DDMs in the context of PHM frameworks. This considers
multiple steps from handling raw sensor data to state of health label generation. One of the
most important aspects of the proposed approach is the integration of expert knowledge
through the use of maintenance logs and feature selection.

To evaluate the proposed framework’s effectiveness, the obtained results are com-
pared to those of diagnostics models trained considering only minimum preprocessing
steps. These are: eliminate those variables with constant values in time, replace NaN with
zero values, and normalize the feature values. A non-supervised approach is then used to
create an anomaly detection model through AE [66], which is evaluated through the recon-
struction error of the input values. This AE model is expected to yield high reconstruction
errors for anomalous data that are statistically different from the training data. A more
elaborate comparison can consider the label generation process based on maintenance
records, proposed in Section 5, without a transition state between the healthy and degraded
labels (i.e., tt

i = 0). These labels are then used to train supervised models using the data
with minimal preprocessing. A third approach would consider dimensionality reduction
techniques, as the ones mentioned in Section 4.3.2, which can be achieved through AE
or PCA [67]. When applying AE or PCA there is loss of information and interpretability
on the original features. Nevertheless, the variables in the encoded space (or principal
components) are expected to have a denoised representation of the original input data
while retaining essential information from the original space. A reduced dimensionality is
also commonly used as a latent space representation that allows visualization, clustering,
and metric definition for diagnostic purposes [68]. Hence, the preprocessing methodol-
ogy proposed in this paper can be used as an alternative to these methodologies, or as a
complement in the case the feature reduction process described in Section 4 is not enough.

The following preprocessing scenarios are used to compare the proposed preprocess-
ing methodology:

1. An anomaly detection model through AE is trained on the raw data. The training
process considers balanced classes for the test set, but not for the training set. Labels
are only considered to evaluate the performance of the model, but not for its training
processes. NaN values are replaced with zeros, and input values are normalized
using the standard scaler (Equation (3)).

2. A PCA is performed on the same raw data as the first scenario for feature dimen-
sionality reduction. A supervised diagnostic model is then trained using principal
components as input features, and time-based health state labels defined in Section 5.
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3. An AE for dimensionality reduction is performed on the same raw data as the first
scenario. A supervised diagnostic model is then trained using the AE’s latent space
as input features, and time-based health state labels defined in Section 5.

4. Scenarios 2 and 3 are repeated considering balanced classes for both the training and
test sets.

The comparison is performed on the VRU system since it is the most complex of
the two case studies presented in this paper. Before training the AE and PCA models,
the latent space dimensionality needs to be determined for both the anomaly detection
model and the dimensionality reduction process. For deep AEs, one can perform a grid
search to find the best latent space dimensionality. However, this is time consuming and
escapes the scope of this section. Alternatively, an explained variability analysis can be
performed through the PCA, where a threshold is defined for the explainable variance one
is willing to give up in exchange for a dimensionality reduction. Hence, for simplicity, we
perform an analysis on the cumulative variance from the PCA, setting a threshold of 90%
of explicability to select the principal components. Given the similarities between AEs and
PCA, the same dimensionality is used for the AE’s latent space. Figure 14 illustrates the
cumulative explained variance based on the number of principal components. The first
26 components result in a 90.4% of cumulative explained variance, and thus this is the
chosen dimensionality for the AE and PCA.

Figure 14. Cumulative Explained Variance per principal component in PCA analysis.

Table 5 presents the results for the four preprocessing scenarios described above.
Notice that results are presented only for the RF and NN. This is due to two reasons. Firstly,
when considering imbalanced training classes and over a million training samples, neither
the SVM nor BNN models converged in a reasonable time (after three days running the
training process was stopped). This means that for scenarios 1–3 the training becomes
intractable for these models. Secondly, RF and NN are the models with the highest
performance in Table 4, and thus it is natural to focus the comparison on these models.

Table 5. Classification metrics comparison for other preprocessing methodologies applied to the VRU system.

Training Test

Methodology Accuracy False
Healthy

False
Degraded

F1
Score Accuracy False

Healthy
False

Degraded
F1

Score

AE (unsupervised) 0.99 0.01 0.01 0.62 0.50 0.50 0.00 0.33
AE-RF 0.99 0.00 0.00 1.00 0.53 0.47 0.00 0.40
AE-NN 0.99 0.01 0.00 0.99 0.50 0.50 0.00 0.33
PCA-RF 1.00 0.00 0.00 1.00 0.57 0.43 0.00 0.57
PCA-NN 0.99 0.01 0.00 0.99 0.50 0.50 0.00 0.50

AE-RF (Balanced) 1.00 0.00 0.00 1.00 0.94 0.06 0.00 0.94
AE-NN (Balanced) 1.00 0.00 0.00 1.00 0.79 0.20 0.01 0.79
PCA-RF (Balanced) 1.00 0.00 0.00 1.00 0.98 0.02 0.00 0.98
PCA-NN (Balanced) 0.98 0.00 0.02 0.98 0.98 0.00 0.02 0.98
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The unsupervised AE used for scenario 1 consists of two layers, one for the encoder
(latent space) and a second for the decoder (reconstruction). A rectified linear unit (ReLU)
is used for the activation function. Figure 15 shows the reconstruction error on the training
set. The reconstruction error threshold to separate healthy from degraded states is defined
based on the classification metrics for the training set. The model thus yields a high accuracy
for the training set; however, it presents a low F1-score, meaning that most degraded states
are mislabeled as healthy. Results for the test set show that the model mislabels all the
degraded states as healthy, and thus this model is not beneficial for diagnostics purposes.
Furthermore, implementing AE comes at a cost of training a NN, which is time consuming
and adds uncertainty to the results. Time is spent trying to find the hyperparameters that
best represent the data, and once this process is finished there is no guarantee that the
latent variable will be able to separate degraded from healthy states.

Figure 15. Autoencoder training set reconstruction error and threshold for class separation.

Classification models are trained for scenarios 2 and 3. As it is shown in Table 5,
these models overfit on the training set, probably caused by the class imbalance, yielding
classification metrics similar to the AE from scenario 1. A fairer comparison to the proposed
methodology is presented in scenario 4, where the training classes are balanced and thus the
classification models learn to represent both classes equally. As it has been mentioned, not
balancing the classes before training the diagnostics classifiers can also lead to intractable
training times. This is particularly true for the RF and SVM. The RF models training time
averaged at 657 s for the unbalanced classes, while the SVM did not converge after three
days training. For scenario 4, the training process was completed in under 5 s for the RF
models. According to Table 5, in general, the PCA processing yields better results than
the AE.

Although their performance is significantly improved when trained on balanced
training sets, the proposed preprocessing methodology still yields better results than
preprocessing the input data through PCA. This performance difference can be linked to
the outlier detection process, since outlier points do not correspond to random ambient
noise. Rather, as it is discussed in this Section 4.2.1, outliers are likely to come from
anomalous behaviors, warm-up and cool-down periods, and external factors. As such, the
AE and PCA methods are unlikely to identify these behaviors. Furthermore, eliminating
the transition state between health states is likely to cause an overlap between the classes,
which could explain the higher number of falsely classified healthy states.

Considering the competitive results obtained with the preprocessing methodologies
from scenario 4, it is important to highlight that these still present several disadvantages
when compared to the preprocessing methodology proposed in this paper. For instance,
discarding principal components with low variance can lead to information loss on the
system’s faulty states [69]. Therefore, blindly applying PCA for dimensionality reduction
can lead to lower performance in the diagnostic models. Furthermore, when using the
latent space from the AE or the principal components from the PCA, there is an important
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loss of feature interpretability. There is also information loss, which is a direct consequence
from the feature reduction (Figure 14). Lastly, note that to evaluate scenarios 2–4, the label
generation process proposed in Section 5 needs to be used, which makes it an essential tool
for the diagnostics model training process.

6.5. Analysis and Discussion

Overall, the results for all four models presented in Table 4 are encouraging and show
the potential and usefulness of the proposed preprocessing methodology when training
DDMs for PHM in real systems. In this regard, the following are the advantages and
disadvantages of the proposed preprocessing framework.

One of the main disadvantages comes from the degraded-state assumption when
defining a time-window before a failure. As it has already been discussed, the length of
the time-window will be highly dependent on the system under study. There is also no
guarantee that the degradation state will be present, while preventing an overlap between
the healthy and degraded states is a challenging task. Nevertheless, results presented in
Table 4 show that most of these drawbacks can be overcome by choosing an appropriate
DDM. The overlap between healthy and degraded states can also be avoided if a larger
transition state window is chosen. The proposed methodology is thought for complex
mechanical systems equipped with sensor networks acquiring data in the form of time
series. The preprocessing framework has not been tested for manually crafted features
obtained from signal processing techniques (i.e., frequency and time-frequency domain
features). It is then suggested that if signal measurements are available, these should be
adapted into a time-series domain. Then, these can be treated in the same manner as any
other physical sensors as recommended by the proposed approach. The proposed approach
is developed with mechanical physical assets in mind and the failure mechanisms related
to them. Furthermore, this framework has not been tested or applied to electrical systems,
which usually present failure mechanisms that develop much faster in comparison to
mechanical degradation processes.

An advantage of the proposed methodology is that it can be automatized once the
data set is processed once. From Figure 4 there are multiple steps that can be completely
automatized, such as the label degradation generation described in Section 5, the NaN
feature evaluation, and the statistical analysis for feature reduction. There are two steps
where manual input is required: the outlier detection and the identification of features
unrelated to the system. In the case of the outlier detection, upper and lower boundaries
cutoff thresholds need to be set for each sensor feature. This manual process only needs to
be done manually once, and it can then be automatized to process newly arrived data.

The methodology is flexible in the sense that it allows the incorporation of expert
knowledge and additional information where it is available. For instance, nominal sensor
values can be used as a preliminary outlier detection method and for a more accurate
healthy-labeled data points definition. Moreover, depending on the available maintenance
records, labels can be generated either for component-specific or failure mechanisms, as
it was showcased through both case studies. Additional steps can be added to any of the
stages of the proposed methodology. For example, the health state label generation can
easily be transformed into RUL labels in cases where enough failure events are registered in
the maintenance logs. Different normalization approaches could be used before training the
DDMs as well as any of the other processing needs that might be encountered, such as the
one mentioned in Section 4.3. A key point to emphasize is that the only stage where expert
knowledge is truly needed is in the label generation described in Section 5. Failure and
operational times are essential to define the stoppage and, thus, to provide accurate labels.

The comparison with other preprocessing methodologies shows that two of the most
important steps in the proposed framework are the health state label generation and the
class balance for the training and sets. The feature reduction is proven to be equivalent,
and slightly better than a PCA, without the disadvantage of losing interpretability on the
input features to the diagnostics models. Furthermore, the PCA does not perform outlier
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detection, and the results presented in Table 5 suggest that the proposed preprocessing
methodology can be complemented with a PCA, as was discussed in Section 4.3.2.

7. Conclusions

This paper has presented a comprehensive step-by-step preprocessing methodology
for sensor monitoring data of mechanical physical assets aimed towards Data-Driven
models. A methodology for the generation of health state labels is also proposed for
diagnostics models. The challenges faced when preparing a data set to train and test DDMs
for PHM frameworks are discussed. Throughout the two case studies from real systems,
it is shown that data from sensor networks present common characteristics and challenges
that can be addressed with the proposed preprocessing framework. A discussion was
presented on how expert knowledge can have a major influence on most data preprocessing
steps. As such, expert knowledge should not be neglected when processing the data.

Four different DDMs are presented to validate the proposed preprocessing method-
ology, showing that it is an effective and conservative approach for diagnostics models.
The methodology was also compared to other preprocessing techniques such as AE and
PCA for unsupervised and supervised models, where the proposed framework was shown
to be competitive and to have several advantages over those approaches. As such, this pa-
per takes a step towards closing the gap between the PHM models developed in academia
towards their application in real systems. The presented results should encourage re-
searchers to explore further preprocessing tools and to report their preprocessing steps in
detail whenever ML or DL frameworks are proposed in the context of PHM. Even though
applications will tend to converge to system-specific solutions, following a transparent
and explainable data processing methodology can serve to better implement and replicate
data-driven diagnostics in real complex systems.
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