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Abstract: This paper proposes a framework for the wireless sensor data acquisition using a team of
Unmanned Aerial Vehicles (UAVs). Scattered over a terrain, the sensors detect information about
their surroundings and can transmit this information wirelessly over a short range. With no access to
a terrestrial or satellite communication network to relay the information to, UAVs are used to visit the
sensors and collect the data. The proposed framework uses an iterative k-means algorithm to group
the sensors into clusters and to identify Download Points (DPs) where the UAVs hover to download
the data. A Single-Source–Shortest-Path algorithm (SSSP) is used to compute optimal paths between
every pair of DPs with a constraint to reduce the number of turns. A genetic algorithm supplemented
with a 2-opt local search heuristic is used to solve the multi-travelling salesperson problem and
to find optimized tours for each UAVs. Finally, a collision avoidance strategy is implemented to
guarantee collision-free trajectories. Concerned with the overall runtime of the framework, the SSSP
algorithm is implemented in parallel on a graphics processing unit. The proposed framework is
tested in simulation using three UAVs and realistic 3D maps with up to 100 sensors and runs in
just 20.7 s, a 33.3× speed-up compared to a sequential execution on CPU. The results show that the
proposed method is efficient at calculating optimized trajectories for the UAVs for data acquisition
from wireless sensors. The results also show the significant advantage of the parallel implementation
on GPU.

Keywords: data acquisition; genetic algorithm; graphics processing units; path planning; parallel
computing; unmanned aerial vehicle; wireless sensors

1. Introduction

Wireless Sensor Networks (WSNs) are composed of a large number of sensor nodes
deployed to monitor physical phenomena. Coupled with the expansion of the Internet of
Things, WSNs enable new applications such as intelligent transportation, water distribu-
tion and collection networks and the smart grid. WSN are also used in home and industry
automation, plant monitoring, scientific experiments, forest monitoring, border patrolling,
environmental observation, machine and structure health monitoring, security enhance-
ment, underwater world observation, water quality monitoring, air pollution examination,
landslide detection, and natural disaster prevention [1]. In a military context, WSNs can be
used to monitor a terrain for ground troop or vehicle movements. In these applications,
sensor nodes are low-power devices often using the IEEE 802.11af and 802.15 protocols
and capable of communicating over a short range [2]. In typical WSNs, sinks or gateways
are installed to collect the information from the wireless sensor nodes and to forward the
data to the internet. However, in the case of a remote WSNs such as in military theater or
in emergency situations where the WSNs are rapidly deployed in the environment, there is
usually no infrastructure in place to accept the gateways. In such situation, UAVs have
been proposed as an alternative to static gateways [3–5]. The UAVs act as mobile sinks and
visit each sensor node, download their data and relay it back to a base station. Compared to
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unmanned ground vehicles, UAVs can cover more terrain in a shorter period of time. They
can also be used in a rugged environment that would be difficult or impossible to reach
by land. This is especially the case for landslide and avalanche prediction. With UAVs, it
is also possible to ensure line of sight (LOS) with the wireless sensors by controlling the
position of the UAVs. To accelerate the data collection, a team of collaborating UAVs can
also be used.

The use of UAVs to assist terrestrial communication networks is quite recent, but
has seen a rapid increase of interest by researchers in recent years. In their survey paper,
Alzahrani et al. [6] provide the state-of-the-art in applications and challenges for UAV
assisted networks. They highlight the benefits of the UAV assistance paradigm, such as
providing a cost-effective alternative for ground networks’ limitations, a dependable coor-
dination with ground network infrastructure, an efficient eye in the sky of the area covered,
a robust deployable backup network for damaged terrestrial network infrastructures, and a
communication bridge between existing networks and isolated users. However, their study
also mentions the numerous challenges and technical issues related to the deployment of
UAVs for the assistance of terrestrial networks that remains to be investigated and solved.
Some of the challenges identified by the authors of [6] are UAV coordination, routing of
messages, data gathering or data collection, UAV monitoring, communication with cellular
networks, communication with Internet of Things networks, use of UAVs for disaster man-
agement, distributed computing, and secure communication. Another noteworthy survey
paper on UAV assistance to terrestrial networks was published by Oubbati et al. [7]. This
paper focuses on the networking scheme used by the UAVs and identifies Software-Defined
Network and Network Function Virtualization as two promising technologies to support
UAV assistance to terrestrial networks. They discuss several use cases and challenges
related to UAV-assisted network and identify future research directions with a focus on the
softwarization of UAV networks.

This present paper addresses the problem of UAV assistance to terrestrial commu-
nication networks by focusing on the challenge of data collection using UAVs. In the
absence of a reliable communication network to relay the data from the wireless sensors
to a monitoring station, UAVs are used to visit the wireless sensors, download their data,
and relay the data to the base station. This problem is known as the data mule problem [8].
A concrete example of the data mule problem would be in a military operation where
wireless sensors are deployed from an aircraft over a terrain to monitor the environment
and UAVs are used to collect the information from the sensors. Following a natural disaster
such as flooding, sensors could also be deployed to monitor the water level and UAVs
could be used to collect the information from the sensors. There are many other scenarios
where UAVs would be helpful to collect the data from wireless sensors. In this UAV-based
data collection, the path planning and coordination of the UAVs is a complex problem,
especially if done in a complex 3D environment with obstacles.

This present paper proposes a framework for the wireless sensor data acquisition
using a team of UAVs. The sensors are scattered over a 3D environment which also includes
some no-fly zones or obstacles that must be avoided by the UAVs. The proposed framework
uses an iterative method based on the k-means clustering algorithm to group the sensors
into clusters and identify the location of DPs, locations where the UAVs hover to download
the data from the sensors that are part of the cluster. A sensor is associated to a DP when it
is within communication range and in line of sight. After the locations of the DPs have
been calculated, the framework uses a SSSP algorithm to find the optimal path between
all possible pairs of DPs. This ensures that the final trajectory for each UAV includes the
sequence of DPs to visit, but also the path between the DPs. The SSSP algorithm uses
multiple grids of nodes superposed at the same location to impose a cost when changing
direction. After the SSSP has run, a Genetic Algorithm (GA) is used to assign the DPs to
the UAV and to find the order in which the DPs are visited. The GA is supplemented with
a 2-opt local search heuristic to accelerate convergence. The results of the SSSP and the GA
are combined to build complete trajectories for each UAV. A model of the UAV based on
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experimental flights is used to estimate the speed and the power consumption of the UAVs
along their trajectory. Finally, a collision-avoidance strategy is implemented to ensure
collision-free trajectories. Being the most time-consuming part of the framework, the SSSP
algorithm is parallelized on a Graphics Processing Unit (GPU) and executes 33.3× faster
than the sequential implementation on CPU. The framework is tested on two different 3D
maps with scenarios containing 70 and 100 sensors grouped into 15, 40, and 55 DPs.

This paper makes three main contributions which highlight its novelty compared
to previous works. Firstly, it presents a complete framework for the problem of wireless
sensor data acquisition using multiple UAVs including optimized trajectories between DPs
and a collision-avoidance strategy. Secondly, it expands on previous research by solving
the problem in a 3D environment instead of 2D. Thirdly, it parallelizes the SSSP algorithm
on GPU to reduce the runtime of the overall framework by a factor of 33.3× which allows
for the fast computation of the UAV trajectories.

The rest of the paper is organized as follows. Section 2 covers some key publications
on the problem of wireless sensor data acquisition using UAVs. Section 3 formulates the
problem. Section 4 describes the architecture and the programming model of GPUs. The
modeling of the UAV speed and power consumption is described in Section 5. The details
of the proposed framework are presented in Section 6. Finally, Section 7 presents the details
and results of the numerical simulations.

2. Previous Works

This section presents some key publications that focus on the problem of wireless
data acquisition using UAVs. In [3], Na and Yoo present a particle swarm optimization
(PSO) algorithm for the optimized positioning of multiple UAVs for the data acquisition
from wireless sensors. The algorithm uses a cost function which includes the value of
the sensors, the network connectivity between the UAV and the ground station and the
communication path quality. One limitation of the proposed approach is that it does not
consider the movement of the UAVs between positions, but only the final position of the
UAVs. In [4], Pang et al. compare a one-side and a two-side matching algorithms for the
data collection and the wireless charging of remote sensors using UAVs. Their problem
description assumes that the UAVs return to the base station after visiting each sensor
cluster. The utility function used includes the distance between the UAV and the sensor
cluster, the amount of data to be collected and the residual energy of the sensors in the
sensor cluster. In [5], Chen et al. propose a Direct Future Prediction model to the path
planning of a single UAV for the data collection of wireless sensors. They define a value
of information (VoI) function which reduces with time following an event and they use
a neural network to predict this VoI. Their method also considers the energy of the UAV
and guides the UAV towards the charging station when the energy is below a set threshold.
They show that their method performs better than Q-learning and Deep Q-Learning. One
limitation of their method is the coarse granularity of the environment representation used
as they simply divided the search space in a 5 by 5 grid.

In [9], Gong and Shen use dynamic programming to compute the optimal speed for a
UAV to collect data from wireless sensors distributed over a line. Their approach can be
applied to 2D in the case where a trajectory for the UAV is available beforehand. In [10],
Wang et al. decompose the wireless sensor acquisition problem into two sub-problems.
The first is essentially the multi-Traveling Salesperson Problem (mTSP) and consists of
assigning the wireless sensors to the UAVs and finding in which order they are visited.
The second problem consists of minimizing the flight time of each UAV while ensuring
that all the data is collected. UAVs are allowed to reduce their speed or hover to ensure
sufficient connection time with the wireless sensors. In [11], Yang and Yoo propose a
hybrid GA coupled with an Ant Colony Optimization (ACO) for wireless sensor data
acquisition by a single UAV. The GA is used to find the order in which the sensors are
visited basically solving the TSP and the ACO is used at every step of the GA to calculate
paths between sensors. They demonstrated their algorithm on a 10 by 10 discretized map.
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Their work includes very good descriptions of how GA operators can be adapted to solve
the TSP problem.

In [12], Baek et al. present a Lagrange multiplier-based method to solve simultaneously
the wireless sensor data acquisition problem and the wireless power transfer problem.
One key characteristic of their approach is that they used a transmission radius around
the sensor and the UAV does not have to overfly the sensor, but merely enter the circle
defined by this radius. This minimizes the overall distance travelled by the UAV. In [13],
Kong et al. use a Shuffled Frog-Leaping Algorithm (SFLA) to solve the wireless sensor
data acquisition problem considering the maximum transmission range of the sensors.
The SFLA uses a PSO-liked optimization on every candidate solution to select the best
hovering point within the transmission range of the wireless sensor. In [14], Samir et al.
add a constraint to the problem of wireless sensor data acquisition where the data at a
wireless sensor must be collected by a UAV before it becomes outdated. They use a branch,
reduce and bound algorithm to find the optimal global solution for relatively small-scale
scenarios. For larger and more realistic problem sizes, they use convex approximation
methods and multiple equivalent transformation to generate suboptimal, but more efficient
solutions. Their approximative method relies on the sine cosine optimization algorithm.
Their work is limited to a single UAV.

In [15], Chen et al. present a planning algorithm for a UAV to visit and collect data
from buoys far off the coast. The buoys are equipped with a power source and are able
to recharge the UAV using resonant beam charging. The data collection and trajectory
planning problems are formulated as a mixed-integer non-convex optimization problem
and is solved using an inexact block coordinate descent method. The solution is also
limited to a single UAV. In [16], Ghorbel et al. present a two-step approach which consists
of finding the locations of the DPs and then solving the TSP problem. In the first step, they
linearize the problem and formulate it as the constrained Weber problem which consists of
finding the weighted median of a set of points within a limited area. They use an iterative
approach where they solve a set of linear equations until the positions of all DPs converge.
In the second step, they solve the TSP with a neighbourhood where the UAV does not have
to overfly the DPs, but come in close range. As for the previous work, their solution is
limited to a single UAV.

In [17], Baek et al. present a unique method of grouping the sensors nodes into clusters.
They use a Voronoi diagram where the edges are located equidistant from the sensors.
They then position the DPs at the intersection of the edges so that data from nearby sensors
can be downloaded from the DP. They tested their method for a single UAV and showed
that the resulting path was shorter than if the UAV had to travel over each sensor node.
Finally, in [2], Alfattani et al. present a three-step approach to the wireless sensor data
acquisition problem. In the first step, they use a k-means clustering algorithm to find
optimized location for the position of ground wireless communication devices responsible
for collecting the data from the ground wireless sensors and to relay it to the UAVs. In
the second step, they use a GA to solve the mTSP problem so the UAVs visit each one
of the ground wireless relays and return to the base station. In the third step, they use a
geometrical model to adjust the path of the UAVs to fly to the neighborhoods of the relay
points instead of directly above the relay point in an effort to minimize the overall distance
travelled by the UAVs.

There are four main limitations to previous methods that are addressed in this paper.
First, the approaches surveyed all tackle the problem of sensor data acquisition in a 2D
environment. To be used in a realistic setting, the method must allow for a 3D environment
as it is done in this paper. Secondly, environment representation is often very small, this is
obvious in [5] where the environment is represented using a 5 × 5 grid or a 10 × 10 grid
in [11]. Thirdly, very few publications actually compute the path between DPs. Most resort
to using straight lines. In this paper an SSSP algorithm is used to compute optimal paths
between the DPs. Lastly, which is also related to the size of the environment representa-
tion, very few publications comment on the runtime of their algorithm. As sensors are
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discovered, the algorithm must be able to recalculate paths in a relatively short time. In this
paper, the SSSP is parallelized on a GPU architecture to speed up the overall framework by
a factor of 33.3× and accelerate the calculation of the trajectories.

3. Problem Formulation

The problem formulation assumes a wireless network composed of a set S of sensors
positioned on the ground and a set U of UAVs positioned in the air. The sensors are
low-power and the UAVs must come into close range and in line of sight to download
the data from them. All communications are assumed to be orthogonal. The terrain is
modelled using a 3D surface and the airspace includes no-fly zones that the UAVs must
avoid. After being polled by UAV u, sensor s transmits its data. Following the model
presented in [2], the received Signal-to-Noise Ratio (SNR) γs,u by UAV u, can be computed
as follows.

γs,u =
ps d−α

s,u

σ2 (1)

where Ps is the power of the signal emitted by sensor s, ds,u is the distance between sensor s
and UAV u, α > 0 is the path-loss exponent and σ2 is the noise power. The communication
link is successful if γs,u ≥ γth, where γth is the SNR threshold. Accordingly, a maximum
communication range can be defined as follows:

ds,u ≤ dth =

(
ps

σ2γth

) 1
α

(2)

The following notation shall be used:

• T to represent the region of space under the surface of the terrain;
• NF to represent the region of space that corresponds to the no-fly zones;
• U = {ui : i = 1 . . . Nu} to represent the set of UAVs;
• Wu = {Wu,i | i = 1 . . . Nu,W} as the set of waypoints that defines the trajectory of

UAV u;
• vu,i = the average speed of UAV u between its waypoints Wu,i and Wu,i+1;
• S = {si : i = 1 . . . Ns} as the set of sensors, positioned on the ground at the coordi-

nates {si};
• Ds = the amount of data to be transferred by sensor s;
• rs = the rate of transfer of the data by sensor s;
• DP = {pi | i = 1 . . . NDP} as the set of download points, with the coordinates {pi};
• DPu =

{
pu,i

∣∣∣ i = 1 . . . Nu,DP

}
as the set of download points from which UAV u will

gather data; and
• Sp =

{
s ∈ S

∣∣ ds,p ≤ dth
}

the set of sensors that can be polled from download
point p.

In this work, it is assumed that all sensors transmit the same amount of data, at the
same rate, have the same transmission range and that at any given download point pu,
UAV u successively gathers data from every sensor that is in range. Thus, the time required
by UAV u to download all of its data depends on the number of sensors associated with
the download point and the transfer rate. The download time and the travel time for UAV
u in this mission, is therefore

Tu,download = ∑p ∈ DPu

{
∑s ∈ sp

Ds

rs

}
(3)

and

Tu,travel = ∑i=1...Nu,w

‖Wu,i+1 −Wu,i ‖
vu,i

(4)
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The problem of wireless sensor data acquisition using a team of UAVs can now be
expressed as that of minimizing the maximum time taken by any UAV to perform its
mission, i.e., finding

min
Sp with p ∈ DP

DPu and Wu with u ∈ U

{
max

u ∈ U
[Tu,travel + Tu,download]

}
(5)

subject to the following constraints:

• (s, p) ∩ T = ∅ ∀s ∈ Sp and p ∈ DP because the reading of the sensor must be made
in line of sight,

• DPu ∩ DPv = ∅ ∀u 6= v ∈ U, so that two different UAVs will not read sensors at the
same download points,

• Uu ∈ U DPu = DP so that all the download points are read by some UAV,
• Sp ∩ Sq = ∅ ∀p 6= q ∈ DP, so that the sensors read at two different download points

are all different,
• Up ∈ DPSp = S so that all the sensors are read at some download point,
• DPu ⊆ Wu ∀u ∈ U, so that all the download points for UAV u are some of its

waypoints, and
• (Wu,i, Wu,i+1) ∩ T = ∅ and (Wu,i, Wu,i+1) ∩ NF = ∅ ∀i = 1 . . . (Nu,w−1) and ∀u ∈ U,

so that no trajectory leg traverses the terrain nor a no-fly zone.

As defined in Equation (5), the problem consists of finding the location of the down-
load points pi, assigning the sensors to the pi, assigning the download points to the UAVs
and calculating the trajectory for each UAV in order to minimize the total mission time
that is the flying time of all UAVs together with their data transfer time. One can note that
minimizing the overall mission time results from minimizing the maximum mission time
of all UAVs. Although here, Equation (5) is designed to minimize the overall time of the
mission, the proposed framework is configurable and can be used to minimize the distance
or energy consumption depending on the mission parameters chosen by the user.

4. GPU Architecture

The architecture of GPUs has evolved over the last two decades from fixed pipelines
to programmable processors which has extended their use to scientific applications or in
fact any application that exhibits a high level of data parallelism. In this paper, the GPU is
used to speed up the SSSP algorithm and find optimal paths between the DPs much faster.
The GPU used is an NVIDIA RTX 2080 Ti [18]. A simplified diagram of the architecture
of NVIDIA GPUs is shown in Figure 1. The GPU is composed of a large number of cores
grouped into multiprocessors (MP). Each core has its own registers, but share the control
logic and the shared memory with the other cores in the same MP. The GPU also has
a global memory which is shared by all the cores across all the MPs. The RTX 2080 Ti
has 4352 cores, 68 MPs, 64 K registers, and 64 KB of shared memory per MP. The global
memory is 11 GB in size and has a bandwidth of 616 GB/s which is much faster than that
of a typical CPU. The cores of the RTX 2080 Ti operates at a base frequency of 1350 MHz
and a boost frequency of 1545 MHz producing 13.45 TFlops of computing power.

NVIDIA GPUs can be programmed using the CUDA language which is an extension
to the C and C++ languages. It allows the programming of kernel functions which are
parallel functions executed on the GPU. When launching a kernel, the threads are divided
into thread blocks. Each block is mapped to a SM. Threads in the same thread block can
share data using the shared memory, but threads from different thread blocks cannot com-
municate between themselves. The only way to synchronize or share data across the thread
block is to launch a new kernel. Although there are a large number of cores per SM, there
is only a limited number of control logic units. This means that maximum performance is
achieved when all the threads within a same SM execute the same instruction at the same
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time. If thread takes different branches of an if statement, referred to as thread divergence,
branches are executed sequentially.
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5. UAV Model
5.1. Speed and Power at Steady State

The proposed framework can be configured to minimize distance travelled, mission
time, or energy consumption. For the last two objectives, a model must be used to estimate
the speed of the UAV and its energy consumption on each segment forming the path.
Several papers define energy models for quadcopters based on the aerodynamic and
electric properties of the vehicles such as [19–22]. The disadvantage of using such model is
that it does not consider the autopilot and the UAV as a single system. If the autopilot is not
able to fly the trajectory exactly as described, the energy predicted is not correct. A method
that is favored by the author of this present paper is to rely on experimental flights to model
the UAV and autopilot as a single black box. The model used here is for the IRIS quadcopter
equipped with the PX4 autopilot and was developed by Di Franco and G. Buttazzo in [23].
To find the optimal speed at steady state during horizontal movement, the authors measure
the power consumed at multiple speeds and calculate the energy per distance travelled in
J/m. The lowest value is achieved at optimal speed. For horizontal movement, they find
an optimal speed and power consumption of 12.5 m/s and 244.2 Watts. For vertical ascent
and vertical descent, the authors find that the UAV/autopilot system travels at a speed
of 2.08 m/s with a power consumption of 249.1 Watts when ascending and 1.28 m/s and
212.5 Watts when descending. In this work, optimal speed and power at steady state are
used to set the edge weights when building the graph for the SSSP algorithm.

5.2. Acceleration and Deceleration

To account for acceleration and deceleration, Di Franco and G. Buttazzo [23] measure
the speed and power of the UAV/autopilot versus time during maximum horizontal
acceleration and deceleration. They then use a 6th degree polynomial interpolation to
model the data. In this paper, the same approach is used. The data from the figures
published in [23] was digitized using the GetData [24] software and used to calculate the
6th degree polynomial interpolation using MATLAB. The inverse of the data was also used
to calculate the 6th degree polynomial interpolation for the time versus speed. This inverse
function comes very handy later on to find the time at which a given speed is achieved. The
polynomial interpolation obtained from the data published in [23] are shown in Figure 2.
Although not shown here, similar graphs exist for the speed and power consumption
during deceleration from maximum speed to zero. As for the acceleration, the interpolation
for the time versus speed during deceleration was calculated. In this work, the acceleration
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and deceleration models are used to precisely calculate the speed and energy consumption
of the UAV on the final path.
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Figure 2. Sixth degree interpolation of the speed and power consumption versus time at maximum
acceleration for the IRIS quadcopter with the PX4 autopilot. Calculated using the data published
in [23].

5.3. Speed Reduction When Turning

In their paper [23], Di Franco and G. Buttazzo assume that the UAV/autopilot system
comes to a full stop before changing direction which is an overly conservative estimate
of the speed and power consumption. In a subsequent publication [25], they note that in
reality the UAV/autopilot system reduces its speed before engaging into a turn, but does
not come to a full stop unless the turn is a 180-degree turn. Based on this observation,
they refine their model and find during experimental trials that the speed reduction in
percent for the UAV/autopilot is about the same for a given angle no matter what the
incoming speed is. In this paper, the data measured in [25] is used as part of the UAV
model. Again here, the data is taken from the graph published in [25] and digitized using
the GetData [24] software. The speed reduction in percent for the IRIS quadcopter for
various turning angle is shown in Figure 3. This data is stored in a lookup table and used
by the proposed framework when assigning the penalties for changing direction in the
SSSP graph and also when calculating the speed of the UAV on the final path. The details
of this calculation are given in Section 6.6.
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6. Material and Method
6.1. Calculating the Location of the Download Points

The first step of the proposed algorithm is to calculate the x, y, z position of the DPs
where the UAVs will position themselves to download the data from the wireless sensors.
This is done by using an iterative approach that relies on the k-means clustering algorithm.
The pseudocode of the procedure is given in Algorithm 1. It starts by running the k-means
with a single cluster. Although the sensors have a 3D position (they are located on the
ground), the k-means is run in 2D, this is to avoid finding a centroid below the elevation
of the ground. Once the centroid of the cluster has been found, its elevation is set based
on the elevation of the terrain and the default flying altitude of the UAVs. Then, for the
cluster found, the distance between the centroid and each sensor is verified. If this distance
is longer than the range of the wireless sensors, a new centroid is positioned at the location
of the sensor and the algorithm goes immediately back to running the k-means without
checking the other sensors. Similarly, it checks to see if the centroid and the sensor are in
line of sight and if they are not, a centroid is added at the sensor and the k-means is called
again. This process is repeated until all the wireless sensors are in range and in the line of
sight of their centroid.

Algorithm 1. Calculation of the positions of the download points

1: Initialize the k-means to use one centroid at the center of the map
2: Run k-means in 2D
3: Add elevation to the centroid(s) based on the terrain elevation
4: for each cluster do
5: for each sensor in cluster do
6: if distance between centroid and sensor is longer than wireless
7.: range or centroid and sensor are not in line of sight
8: Add a new centroid at (x, y) location of the sensor
9: goto line 2
10: Return the location (x, y, z) of the centroids

The iterative k-means approach used is efficient, but may add more clusters than
necessary. To account for this, a function was added which is described at Algorithm 2 to
remove unnecessary clusters. This function checks each cluster and each sensor within
each cluster. If all the sensors in a given cluster are within the range and in the line of
sight of another cluster, the cluster can be removed. To demonstrate the functioning of
the calculation of the DPs, 70 sensors that have been strategically positioned on a 1700
by 1000-m map are shown in Figure 4. This artificial map represents a canyon with a
river, an island and some mountains. The altitude varies from 0 to 250 m. The map also
contains three no-fly zones represented using red polygons. The sensors have a wireless
transmission range of 170 m. When running Algorithm 1 to calculate the location of the
DPs, 22 DPs are calculated. Following the reduction function at Algorithm 2, 15 DPs are
remaining clearly showing the need for the removal of extra DPs.

6.2. Building the Graph

In this stage of the framework, the environment is discretized as a vertical superposi-
tion of horizontal grids of nodes above the 3D terrain. The nodes represent the position
that can be occupied by the UAVs whereas the edges between the nodes represent the
line segments that can be travelled by the UAVs. The number of superposed grids Ng
is configurable and set by the user, and all grids are vertically equally spaced. In all
cases, the highest grid is positioned at Zmax, the highest elevation of the terrain plus the
minimum flying altitude of the UAV. The lowest grid is positioned at Zmin, the lowest
elevation of the terrain plus the minimum flying altitude of the UAV. If there are to be
Ng grids stacked between the two limiting altitudes, the spacing between them has to be
∆H = (Zmax − Zmin)/Ng. An example for five grids is illustrated in Figure 5.



Sensors 2021, 21, 6851 10 of 24

Algorithm 2. Removal of extra download points

1: for each cluster i do
2: Nb_sensors_covered_by_centroid_i = 0;
3: Nb_sensors_covered_by_other_centroids = 0;
4: for each sensor in cluster i do
5: Nb_sensors_covered_by_centroid_i ++;
6: for each cluster j do
7: if i not equals j do
8: if distance between centroid j and sensor is smaller than
9: wireless range and centroid j and sensor are in line of sight do
10: Nb_sensors_covered_by_other_centroids ++;
11: if Nb_sensors_covered_by_centroid_i equals Nb_sensors_covered_by_other_centroids do
12: Remove centroid;
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Each node in the proposed algorithm is connected to its 18 neighbors, 16 on the same
plane, the one directly above and the one directly below, as shown in blue in Figure 6a.
The 16-neighbor topology within the horizontal plan was chosen because it allows for
more directions of travel compared to a 4-neighbor or an 8-neighbor topology which only
connects a node to its immediate neighbors. Having more directions of travel allows for
better paths between DPs. The weights of the edges connecting the nodes are set based
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on the optimization objective used and can be the distance between the nodes, the time
needed to travel the edges at optimal speed or the energy required to travel the edges, also
at optimal speed. The result is a connectivity graph that is used at the next step by the SSSP
algorithm to compute optimal paths connecting every pair of DPs.
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One drawback of using a graph built as explained so far is that there is no way for
the SSSP algorithm to minimize the number of turns. It is common for such algorithm
to generate a zig-zag type of path which is much less efficient to fly than a straight path.
In order to minimize the number of turns in the path, the technique described in [26] is
implemented. The technique consists of overlaying multiple grids at the same altitude.
On each grid, the UAV is allowed to travel in a single direction. At any points on a grid,
the UAV is allowed to change grid by incurring a penalty. This is illustrated in Figure 6b
for only four directions. In this work, there are 18 grids overlaid at every altitude where
there used to be a single grid. On a grid, a node is connected to a single neighbor located
physically at the different location. However, at a same location, a node is connected to
the 17 other nodes belonging to the 17 other grids that are overlaid. To calculate the cost
associated with changing grid, i.e., changing direction, the time, or energy needed to reduce
the speed before taking the turn is calculated.

For the case of going from a horizontal segment to another horizontal segment, the
values plotted in Figure 3 are used to determine the speed reduction in percent. The
incoming speed is assumed to be the optimal speed of the UAV. Based on the percent value,
the actual reduced speed can be calculated. Assuming the deceleration before the turn
starts at t1 = 0, the polynomial interpolation for the inverse time vs speed function is used
to get t2, the time at which the UAV reaches the reduced speed. The same approach is used
to find t3, the time during acceleration where the UAV is at the reduced speed, and t4, the
time when the UAV reaches back optimal speed. The time used for the deceleration and
acceleration are then calculated as follows:

ta = (t2 − t1) + (t4 − t3) (6)

By evaluating the integral, which is quite easy due to the speed being modeled as
a polynomial function, the distance traveled by the UAV during the deceleration and
acceleration can be calculated using Equation (7). The same can be done for the energy
consumption using Equation (8).

Da =
∫ t2

t1=0

Sdec(t) +
∫ t4

t3

Sacc(t) (7)

Ea =
∫ t2

t1=0

Pdec(t) +
∫ t4

t3

Pacc(t) (8)
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To calculate a penalty cost associated with the turn, the time, and energy needed to
travel this same distance, but at optimal speed are calculated as follows as a reference.

tb = Da/voptimal (9)

Eb = tb Poptimal (10)

The penalty costs are then calculated by subtracting this second value from the
first one:

tcost = ta − tb (11)

Ecost = Ea − Eb (12)

The values tcost and Ecost are the weights used in the connectivity graph to change
direction between two horizontal segments. For the case of going from a horizontal segment
to a vertical segment, the same logic is followed, but the reduced speed is set to zero and
only the deceleration terms are used in Equations (7) and (8). This means that the model
used here assumes that the UAV comes to a full stop before ascending or descending and
that the time used for vertical acceleration is negligible. For the case of going from a vertical
segment to a horizontal segment, the reduced speed is set to 0 and only the acceleration
terms in (7) and (8) are used.

The building of the graph is done using nested for loops and an iterator in a way to
directly produce a graph in the Compressed Sparse Column (CSC) format without further
processing. The CSC sparse format is used at the next step by the Dijsktra algorithm
implemented in the C++ Boost library. However, for the CUDA implementation, it is the
Compressed Sparse Row (CSR) format that is used. For this reason, we generate the CSR
graph from the CSC representation.

6.3. Single Source Shortest Path Algorithm

The SSSP algorithm calculates the shortest path between a starting node and every
other node in the graph. This means that to calculate the shortest path between a DP and
every other DP, the SSSP only needs to be run once. It also means that to calculate the
shortest paths linking any two DPs in a set of N DPs, N instances of the SSSP algorithm
need to be run. Depending on the weights assigned to the edges of the graph, the final path
may minimize distance, time, or energy. In the proposed framework, two implementations
of the SSSP algorithm are used. The first one is the Dijkstra algorithm provided by the C++
Boost library [27]. This implementation is regarded as highly efficient and is used here
as the reference for the sequential program. The second implementation is an improved
version developed by the author of this paper of the parallel SSSP algorithm proposed by
Harish et al. [28] for the GPU architecture. As it was shown in a previous publication [29],
this adaptation is more performant than other implementations on GPU recently published
in the literature [30,31]. This second implementation is preferred due to its shorter execution
time which allows for recalculation of the paths in case new obstacles or new sensors are
discovered. The details of Harish et al.’s algorithm are presented at Algorithms 3–5.
Algorithms 3 and 5 are from the original algorithm developed by Harish et al. while
Algorithm 4 is the improved version proposed in this paper.

The SSSP algorithm keeps an array of frontier flags F, of cost C and of updated cost
U of size n where n is the number of nodes in the graph. The array F identifies the nodes
whose weights have been updated in an iteration and that must be visited in the next
iteration. These nodes are said to be at the frontier. The array C keeps the cost of the
node, i.e., the cost needed to travel from the start node to the node. The array U is used
to update the nodes cost synchronously at each iteration. Initially, the F array is set to
false, the C array and the U array are set to infinity. At line 2 of Algorithm 3, the flag for
the start node is set to true and its cost and updated cost are set to 0. A sum value which
represents the number of nodes at the frontier is set to 1. The algorithm then goes into
a while loop for as long as there are nodes in the frontier. The loop is composed of two
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kernels (parallel functions in CUDA). In the first kernel, all the nodes are visited in parallel
using one thread per node. Nodes that are at the frontier have the weight of their neighbors
updated as needed. This update operation creates a race condition as multiple threads
could be updating the same node. In the original algorithm, an atomic operation was used
by Harish et al. [28], but this operation slowed down the execution of the algorithm. In the
proposed implementation, the atomic operation is avoided by forcing the source node tid
to remain in the frontier node so that it is revisited at the next iteration. This means that if
the value it wrote to U[i] was overwritten by another thread, it would rewrite the value to
U[i] at the next iteration. This necessarily generates more iterations, but avoids the atomic
operation. Overall, a faster execution was observed by avoiding the atomic operation. In
the second kernel, all nodes are visited and any nodes whose cost was updated have their
flag set to true. These nodes are now part of the frontier and will be visited at the next
iteration. After kernel 2 finishes, a parallel reduction is used to calculate the number of
nodes in the frontier and the algorithm proceeds to the next iteration of the while loop.
After the SSSP algorithm terminates, the cost array is transferred from the GPU to the CPU.
The cost arrays for all instances of the SSSP are kept in memory for the path reconstruction
phase explained in Section 6.6.

Algorithm 3. Harish SSSP (G, s, e) [28]

1: Initialize all F to false, all C to ∞ and all U to ∞
2: Set F[s] = true, C[s] = 0, U[s] = 0, sum = 1
3: while sum > 0 do
4: kernel 1 (G,F,C,U) with 1 thread per node
5: kernel 2 (F,C,U) with 1 thread per node
6: sum = reduce_sum (F)
7: Build path backward starting at vertex e using G and C

Algorithm 4. kernel 1 (G, F, C, U) [proposed implementation]

1: for all node tid in parallel do
2: if F[tid] then
3: F[tid] = false
4: for all to-neighbors i of tid do
5: if U[i] > C[tid] + W[i, tid] then
6: U[i] = C[tid] + W[i, tid]
7: F[tid] = true

Algorithm 5. kernel 2 (G, F, C, U) [28]

1: for all node tid in parallel do
2: if C[tid] > U[tid] then
3: C[tid] = U[tid]
4: F[tid] = true
5: U[tid] = C[tid]

Two optimizations were done in the proposed CUDA implementation to further
improve its performance. First, as an SSSP instance is solved for each pair of DPs, the SSSP
instances are solved in batch. This improves the level of parallelism exploited, but also
increases the amount of memory needed on the GPU so care must be taken not to use a
batch size that is too large. It was found through experimentation that solving 10 SSSPs
simultaneously was a good compromise. To keep track of which batches are active and have
not converged yet, an array of indices that is compacted at every iteration of the while loop
is kept. This compaction is done on the GPU using the CUDA Cub library [32]. Because
multiple batches are processed concurrently, the sum reduction operation in Algorithm 3
must be converted to a segmented sum, also provided by the CUDA Cub library.
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Although performed in parallel, the compaction operation and the segmented sum
operation are quite costly. A second optimization is to do multiple iterations of the while
loop in Algorithm 3 before doing the compaction and the segmented sum. The while loop
executes extra few iterations at the very end, but the benefit of skipping the compaction and
the segment sum is far superior. The performance improvement of those two optimizations
is measured in Section 7.2.

6.4. Building the Cost Matrix

Once the optimal path connecting each pair of DPs have been computed, the next step
is to build the cost matrix that is used by the GA at the next step. An example of a cost
matrix for 10 DPs is shown at Table 1. It contains the cost of going from every DP to every
other DPs. When optimizing for distance, filling the cost matrix is quite simple. The weight
of the final node for each instance of the SSSP algorithm is simply taken. The resulting
matrix is symmetrical. When optimizing for time or power consumption, the process is
more complicated and requires that each path be rebuilt to accurately compute the time
and energy required to travel the path. Although this operation is done at this step for
every pair of DPs, the description of the path reconstruction is left to Section 6.6. The time
and energy used to hover at the DP are also added to the cost of the path.

Table 1. Example of a Cost Matrix.

From
To

1 2 3 . . . N

1 C1, 2 C1, 3 C1, N
2 C2, 1 C2, 3 C2, N
3 C3, 1 C3, 2 C3, N

. . .
N CN, 1 CN, 2 CN, 3

6.5. Genetic Algorithm

Once the cost matrix is built, the GA is used to assign the DPs to the UAVs and to find
the order in which they will be visited forming complete tours. The GA is a metaheuristic
that was first proposed by John Holland in 1975 [33]. As of today, it is still one of the most
broadly used metaheuristics in engineering. The pseudocode is given at Algorithm 6. It
works by creating a population of candidate solutions referred to as the parent solutions.
It then starts an iterative process where parent solutions are selected, child solutions are
created from good parents using crossover, child solutions are modified using mutation
and parent solutions are replaced by the child solutions before the next iteration. Once the
termination criterion has been met, the best solution is returned by the algorithm.

Algorithm 6. Genetic Algorithm

1: Initialize the parent solutions
2: while iteration < max iteration do
3: compute fitness of parent solutions
4: select parent solutions through selection
5: create child solutions through crossover
6: modify child solutions through mutation
7: replace parent solutions
8: Return best solution

In our implementation, the candidate solutions are encoded as illustrated in Figure 7.
The solution is represented using two strings where the first one includes the DPs visited
by the UAVs and the second one includes which UAV visits each one of the DPs. When
decoding the solution strings, the start point (i.e., point 0) is added at the beginning and
at the end of each route resulting in a tour. The GA is configured to use 100 candidate
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solutions with 200 iterations. These settings were tested experimentally and generated
good results. The selection is made by tournament where two parents are randomly picked
and the best one is retained. The process is repeated to select the second parent. The
crossover is done using a single-point crossover as shown in Figure 8a. The crossover
point is selected randomly, the elements before the point come from the first parent while
the elements after the points come from the second parent. When selecting the elements
from the second parent, one must be careful not to select elements that have already been
selected from the first parent. Once the end of the second parent has been reached, the
selection starts back from the beginning of the second parent. The inverse is done to create
child 2. The mutation operation is implemented as illustrated in Figure 8b where two
elements from the solution strings are selected and swapped. Not shown in Figure 8, but
applied to every child solution is the 2-opt local search heuristic which removes loops from
the solution. The readers are referred to [34,35] for more details on the 2-opt local search.
Finally, the replacement is implemented with elitism where the two best parents survive to
the next iteration and replace the two worse children. Being a non-deterministic algorithm,
the GA may produce different results every time it is run, to maximize the quality of the
final path found, the proposed framework runs the GA three times and selects the best
solution from the three runs.
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6.6. Building the Final Path

Using the route for each UAV (i.e., the series of DPs) and the nodes weight C from
the SSSP instances, the final path can be built by constructing the trajectories connecting
the DPs together. To build the trajectory from the SSSP instances, one must start from the
final node and find the previous node, using the CSC graph representation, whose weight
plus the edge weight is the smallest. The process is repeated until the start node is found.
During this process, the direction of the edge leading to the previous node is calculated
and the node is added to the path only when there is a change in direction. This allows for
the creation of a path with the minimum number of nodes.

Once the path is built, the speed, power consumption, and position of the UAV as a
function of time are calculated precisely. For this, the UAV model discussed in Section 5
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is used. For vertical segment, the acceleration and deceleration are ignored and the UAV
speed and power are set to their optimal values. For horizontal segments, the segment can
be decomposed into three sections: the acceleration, the steady state, and the deceleration.
Starting with the first segment of the path, the initial speed is necessarily zero. Based on
the angle with the next segment the speed reduction as a percent of the maximum speed
reached on the segment is determined by looking in the lookup table discussed in Section 5.
A binary search is then used to find the value of vmax, the maximum speed reachable on
the segment. The binary search is bound by 0 and voptimal , the optimal speed of the UAV. A
speed is reachable when there is enough distance to accelerate to the speed and enough
distance to decelerate to the reduced speed. If vmax is equal to voptimal , the segment is
necessarily composed of the three sections (i.e., acceleration, steady state, and deceleration).
If vmax is smaller than voptimal , there is no section at steady state. When calculating vmax,
the start and end time for the acceleration, the steady state and the deceleration are also
computed. The polynomial interpolation functions for the acceleration and deceleration
are used to set the instantaneous speed and power of the UAV. The position of the UAV is
calculated based on the previous position and the instantaneous speed. The speed at the end
of the segment is used as the initial speed for the next segment and the process is repeated.

In the event that the initial speed at the beginning of a segment is too high to ac-
commodate for a deceleration to the reduced speed found in the lookup table for a given
turning angle, the initial speed that would allow the deceleration is calculated and used
as the final speed for the previous segment. The final speed for the previous segment be-
comes a constraint and the previous segment is reprocessed. This can be repeated multiple
times allowing the algorithm to revisit multiple previous segments. This can happen in a
situation where there is a long segment followed by a series of short segments followed by
a sharp turn. The UAV would achieve a high speed on the long segment, would not reduce
its speed before entering the short segments and would not have enough distance to reduce
its speed before arriving to the sharp turn. With the proposed approach, the UAV will
reduce its speed on the long segment and will arrive at the correct speed at the sharp turn.

6.7. Collision Avoidance

After the final path for each UAV has been constructed, the array position which
contains the x, y, and z position of the UAV at each time increment, the array speed which
contains the speed of the UAV at each time increment and the array is_stationary_point which
identifies if the position is a DP or the starting point are available. The time increments for
each UAV are the same which means that position[i] for UAV #1 and position[i] for UAV #2
represent the position for both UAVs at the exact same time. The collision avoidance
function checks each pair of UAVs for a possible collision. It iterates through the position
array of the two UAVs and calculates the distance between them. If the distance is below
a set threshold and none of the UAVs is currently at the starting point, a collision has
been detected. The condition for a UAV at the starting point is there as multiple UAVs are
allowed to be at the starting point at the same time which is also the charging station. Once
a collision has been detected at position[i]. The function uses the is_stationary_point array
and decrement i until the previous DP or the starting point is reached. The function then
inserts values in the position, speed and is_stationary_point arrays to force the UAV to wait
longer at the DP. Once this is done, the function restarts the check for collision for every
pair of UAVs. This process is repeated until no collisions are detected.

7. Numerical Simulation and Results
7.1. Test 1: Calculating Trajectories

The first test consists of using the proposed framework to compute trajectories for
UAVs that visit the DPs whose location was calculated as per Section 6.1. The first trial
uses the same map and DPs shown in Figure 4. The calculated trajectories that minimize
distance are shown in 2D in Figure 9 and in 3D in Figure 10. When minimizing distance, the
distance of the longest path is minimized. It can be observed that all DPs are successfully
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visited and that the no-fly zones are avoided. The flight profile for the green UAV is plotted
in Figure 11. The UAV flies the path counter-clockwise starting at the yellow dot. The UAV
takes off and climbs to the minimum flying altitude to reach the starting point. This takeoff
is not shown in the flight profile. The UAV then flies at constant altitude and visits the first
two DPs. On the speed diagram, one can see that the UAV hovers at the DPs to download
the data from the sensors. The UAV then immediately climbs to the altitude of the next two
DPs and flies to the third DP reaching steady speed. This may be easier to see on the 3D
diagram. After hovering at the third DP, the UAV accelerates, but does not have a sufficient
distance to reach steady speed and must decelerate to stop at DP 4. After DP 4, the UAV
flies and stops at a high altitude above DP 5. It then descends until it reaches the proper
altitude to download the sensor data. After downloading the data, the UAV returns to
the starting point at constant altitude. The recovery of the UAV is not shown on the flight
profile. The statistics for the three paths are listed in Table 2.
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Table 2. Statistics for the Paths Shown in Figure 10.

UAV Distance (m) Time (s) Avg Speed (m/s) Energy (kJ)

Blue 2548.2 652.9 3.9 64.232
Red 4406.4 899.5 4.9 126.806

Green 2811.3 729.3 3.9 95.674

The second trial uses the same scenario, but consists of minimizing time instead of
distance. Figure 12 shows the paths calculated by the proposed framework. Here, the blue
and green UAVs fly a much longer trajectory than the red UAV, but they fly their trajectory
at constant altitude whereas the red UAV climbs considerably to visit the two DPs located
in the middle of the island. As mentioned in Section 5.1, the vertical speed of the UAV is
much slower than its horizontal speed. So overall, the three UAVs have similar flying times.
The overall duration of the mission is 788.8 s as listed in Table 3 which is much shorter than
that of the previous test. In a third test, paths that minimize energy are calculated. This
resulted in paths very similar to those minimizing the flying time.

In the third trial, a more complex scenario is shown. The same map is used but
100 sensors are randomly placed with a wireless range of 170 m. The locations of the DPs
are then calculated. Initially, the proposed framework calculates 66 DPs, but following
the removal of extra DPs at Algorithm 2, 55 DPs remain. The paths for three UAVs that
minimize distance are then calculated and plotted in Figure 13. A similar test is run on
a different map with again 100 sensors randomly positioned, but this time, the objective
function minimized is the flying time of the UAVs. The calculated paths are shown in
Figure 14. On that figure, one may see loops such as for the green trajectory, however, the
path is in three dimensions and these loops result in shorter flying times.

Table 3. Statistics for the Paths Shown in Figure 12.

UAV Distance (m) Time (s) Avg Speed (m/s) Energy (kJ)

Blue 4449.0 788.8 5.6 101.651
Red 2252.4 686.2 3.3 84.833

Green 4096.6 774.5 5.3 94.521
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7.2. Test 2: Measuring the Speed-Up of the Parallel Implementation

The second test consists of measuring the speed-up produced by the parallel imple-
mentation of the proposed algorithm. First, the focus is on the SSSP algorithm which is the
most time-consuming part of the overall framework. For the SSSP algorithm, three imple-
mentations to solve the problem shown in Figure 13 are tested. The SSSP is run for every
DP and calculates the shortest path to every other DPs. The first implementation tested is
the Dijkstra algorithm from the Boost C++ library [36]. This implementation is considered
to be highly efficient and is used here as the reference for the sequential implementation.
The second implementation is the CUDA implementation as proposed by Harish et al.
in [28]. The third implementation is the proposed CUDA SSSP implementation based on
Harish et al., but which avoids the atomic operation, which runs the SSSP instances in
batch mode to increase the level of parallelism and which run multiple iteration of the
while loop at Algorithm 3 before checking the number of nodes in the frontier array.

The three SSSP implementations are tested on a Dell 5820 workstation equipped
with a Xeon W-2195 CPU and an RTX-2080 Ti GPU. The CPU has 18 cores and a peak
frequency of 3.6 GHz. The specifications for the GPU were given in Section 4. The runtime
and speed-up for the SSSP implementations solving 55 instances of the SSSP problem
for various map resolutions are shown in Figures 15 and 16. There are 55 instances of
the SSSP problem to be solved because the map processed (the one shown in Figure 13)
contains 55 DPs. The runtime for the sequential implementation on CPU is 18.0 s for the
smallest resolution and 684.9 s for the largest resolution compared to 0.6 s and 45.4 s for
Harish’s implementation and 0.15 s and 17.4 s for the proposed CUDA implementation.
This translates into speed-ups of 29.9× and 15.1× for Harish’s implementation and 117.6×
and 39.4× for the proposed implementation. These speed-ups clearly demonstrate the
advantage of the parallel implementation on GPU. However, the reduction of speed-
up as the map resolution increases is normal and is caused by the higher complexity
of the parallel algorithm compared to the Dijkstra algorithm. By design, the parallel
algorithm performs more calculation than the Dijkstra algorithm. This means that if the
map resolution would continue to increase, there would be a point where the parallel
algorithm and the Dijkstra algorithm would exhibit the same execution time and there
would be no advantage for the parallelization. However, for practical map resolutions,
there is a significant advantage to the parallel implementation on GPU. From the results
obtained, it can also be concluded that the proposed CUDA implementation is much faster
than the original parallel implementation by Harish et al. [28]. This is because it avoids
the atomic operation, it processes the SSSP instances in batches of 10 and it runs multiple
iterations of the while loop in Algorithm 3 before calculating the number of nodes in the
frontier array which is an expensive operation.
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To assess the contribution of the parallel SSSP algorithm to the overall framework,
Table 4 lists the runtime for each function composing the overall framework. It is important
to note that the runtime for the parallel SSSP includes the data transfer to and from the GPU.
When minimizing for time or energy, filling the cost matrix requires that the path between
each pair of DPs be built so that the exact speed and power required can be calculated
along the path. This step is parallelized in OpenMP on multi-core CPU using one thread
per pairs. For the GA, OpenMP is also used to parallelize each step of the algorithm using
one thread per candidate solution. For the other functions, they are intrinsically sequential
and are therefore not parallelized. As listed in Table 4, the overall algorithm executes in
20.7 s which represents a 33.3× speed-up compared to the sequential implementation. This
is a real advantage when new paths need to be computed in a short time such as when new
sensors or obstacles are discovered.

Table 4. Runtime and Speed-up for the Proposed Wireless Sensor Data Acquisition Algorithm
(3 UAVs, 55POIs, and resolution of 500 × 294 × 5).

Operation
Runtime (s)

Speed-Up
Sequential Parallel

Positioning the DPs 0.097 - 1.0×
Build CSC graph 0.447 - 1.0×
Reduce graph 0.223 - 1.0×
Build CSR graph 1.847 - 1.0×
SSSP 684.898 17.612 38.9×
Fill cost matrix 0.314 0.050 6.3×
Genetic algorithm 2.424 0.375 6.5×
Build final path 0.049 - 1.0×
Collision avoidance 0.029 - 1.0×
Total 690.328 20.729 33.3×

8. Discussion

This paper makes three main contributions which also highlight its novelty compared
to previous works. The first contribution is to propose a complete framework for the
data acquisition from wireless sensors using a team of UAVs. In Section 2 of this paper,
a literature survey of recent research works that focused on this problem was provided.
Several of the papers focused on one aspect of the problem. Here, the proposed framework
covers all the steps from the sensor clustering to the collision avoidance strategy. This last
part is critical to any multi-UAV application, but is often omitted in papers related to data
acquisition using UAVs.

Several of the papers surveyed in Section 2 defined the problem of wireless sensor
data acquisition using UAVs in a 2D environment or used a simplistic representation of
the environment. A second contribution made in this paper is that it proposes a solution
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using a 3D representation with a high resolution of the terrain. The scenarios included
a large number of sensors, hilly terrains, and no-fly zones in order to show that the
proposed algorithm based on the SSSP and the GA is truly capable of calculating optimized
trajectories in difficult and complex 3D environments.

Finally, a third contribution is the parallel implementation of the algorithm on GPU.
Given the computational complexity of the proposed framework, its runtime is too long
to allow for a quick recalculation when a new sensors or obstacles are detected. To
speed up the calculation, a parallel implementation of the SSSP algorithm proposed by
Harish et al. [28] was used and adapted to this specific application where multiple SSSP
instances needed to be solved simultaneously. This parallel implementation on GPU
resulted in a 33.3× acceleration compared to a sequential implementation, a significant
advantage when it comes to recalculating the UAV trajectories during the mission.

In their future works, the authors of this paper intend to extend their proposed
framework to include a communication network between the UAVs to relay the data
collected from the sensors to the ground stations as the data is collected instead of waiting
for the UAV to return to the ground station. This will increase the problem complexity as
the UAVs will have to remain in communication range between themselves to maintain
the network integrity, but the service provided would be far superior. Another research
avenue they intend to explore is the implementation of the proposed framework in a field
experiment using real UAVs and real wireless sensors. This would raise new challenges
such as the imprecision of GPS localization, the limited computation capability of the UAVs,
the limited bandwidth of the UAV-to-UAV communication, the management of hardware
faults and the scheduling of UAV battery recharging. Moreover, in this present paper, the
position of the sensors was assumed to be initially known. In a real scenario, the sensors
would have to be discovered by the UAVs who would initially fly a search pattern over
the terrain. All these considerations add complexity to the problem of data acquisition
from wireless sensors using a team of UAVs when it comes to a practical implementation.
However, the proposed framework is a step forward towards a possible solution.

9. Conclusions

This paper presented a framework for the path planning of a team of UAVs tasked to
download data from wireless sensors scattered over a 3D environment. The framework
uses a multi-step approach which relies on an iterative k-means algorithm to group the
sensors into clusters whose centroids represent the DPs, locations where the UAVs will
position themselves to download the data from the sensors. The framework then builds a
sparse graph and uses an SSSP algorithm to find the optimal path connecting each pair of
DPs. Following that, a GA is used to assign the DPs to the UAVs and to order the DPs to
form a tour for each UAV. A collision avoidance strategy which relies on adding delays at
the DPs is implemented. The final result is a collision-free path for each UAV that visits all
the DPs in an optimized manner. Some of the steps of the proposed framework including
the SSSP algorithm are parallelized on GPU using CUDA and on CPU using OpenMP and
allows for the calculation of the paths in 20.7 s, a 33.3× speed-up compared to a sequential
execution on CPU. To summarize, this paper makes three main contributions. Firstly,
it proposes a complete framework for the data acquisition from wireless sensors using
multiple UAVs. Secondly, compared to previous works, it expands the solution from 2D to
3D environments. Thirdly, it proposes a parallelization strategy to parallelize the algorithm
on GPU using CUDA and on multicore CPU using OpenMP.
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Nomenclature

tid thread identifier
n number of nodes
m number of edges
s index of start node
e index of end node
sum sum of the values in F
G graph in sparse CSR format
W edge weight
F flag array of size n
C node cost array of size n
U node updating cost array of size n
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