
 
 

 
 

 
Sensors 2021, 21, 6870. https://doi.org/10.3390/s21206870 www.mdpi.com/journal/sensors 

Article 

Super-Resolution Network with Information Distillation and 
Multi-Scale Attention for Medical CT Image 
Tianliu Zhao 1, Lei Hu 1,*, Yongmei Zhang 2 and Jianying Fang 1 

1 School of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022, China;  
tianliuzhao@jxnu.edu.cn (T.Z.); jyfang@jxnu.edu.cn (J.F.) 

2 School of Information Science and Technology, North China University of Technology,  
Beijing 100144, China; zhangym@ncut.edu.cn 

* Correspondence: hulei@jxnu.edu.cn 

Abstract: The CT image is an important reference for clinical diagnosis. However, due to the exter-
nal influence and equipment limitation in the imaging, the CT image often has problems such as 
blurring, a lack of detail and unclear edges, which affect the subsequent diagnosis. In order to obtain 
high-quality medical CT images, we propose an information distillation and multi-scale attention 
network (IDMAN) for medical CT image super-resolution reconstruction. In a deep residual net-
work, instead of only adding the convolution layer repeatedly, we introduce information distillation 
to make full use of the feature information. In addition, in order to better capture information and 
focus on more important features, we use a multi-scale attention block with multiple branches, 
which can automatically generate weights to adjust the network. Through these improvements, our 
model effectively solves the problems of insufficient feature utilization and single attention source, 
improves the learning ability and expression ability, and thus can reconstruct the higher quality 
medical CT image. We conduct a series of experiments; the results show that our method outper-
forms the previous algorithms and has a better performance of medical CT image reconstruction in 
the objective evaluation and visual effect. 

Keywords: super-resolution; medical CT image; multi-scale attention; information distillation;  
deep learning 
 

1. Introduction 
The computed tomography (CT) image is an important auxiliary means in clinical 

diagnosis. The image quality has a very significant impact on the diagnosis of lesions. 
High-quality medical images can help doctors to identify the symptoms more accurately 
and quickly formulate the corresponding treatment plan for patients. However, the limi-
tation of imaging devices makes it difficult to obtain high-resolution medical CT images, 
so these images always have some problems such as low resolution, blurring and loss of 
detail. As a classic computer vision task, super-resolution (SR) reconstruction can use low-
resolution (LR) images to reconstruct high-resolution (HR) images. Super-resolution al-
gorithms can also be used in medical CT image to improve the image quality. 

According to the different objects of SR processing, we can divide the super-resolu-
tion technique into single image super-resolution (SISR), multiple image super-resolution 
(MISR) and video super-resolution (VSR). Among them, SISR only uses one image to im-
prove the resolution of the image. The requirement of input is relatively low, so there are 
many studies regarding SISR. SISR is one of the key research directions on image super-
resolution. With the improvement performance of the super-resolution algorithm, the su-
per-resolution network is gradually applied in the field of medical image. In this paper, 
we mainly discussed the single image super-resolution reconstruction for the medical CT 
image. 
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The existing super-resolution algorithms can be divided into three types according 
to the different implementation principles: the interpolation-based method [1,2], recon-
struction-based method [3] and learning-based method [4–6]. In the early stage, the inter-
polation-based method and reconstruction-based method were the main methods. The 
method based on interpolation, such as the nearest neighbor interpolation and bicubic 
interpolation, is to calculate the new pixel value by calculating the weighted average value 
of the pixels around a certain pixel in the low-resolution image, and insert the new pixel 
value into the image to reconstruct the high-resolution image. The method, based on the 
reconstruction, uses the degradation model and prior knowledge to constrain the possible 
solution space of the image, and realize the reconstruction from the low-resolution image 
to the high-resolution image. However, these two methods have some disadvantages: 
they do not make full use of the image information and have a poor ability to restore high-
frequency details. 

In recent years, with the wide application of deep neural networks, Dong et al. pro-
posed SRCNN [6] to introduce the convolutional neural network (CNN) to the image su-
per-resolution task for the first time and achieved great success. From a low-resolution to 
a high-resolution image, the end-to-end mapping is realized by patch extraction and rep-
resentation, non-linear mapping and reconstruction. Based on CNN, subsequently, schol-
ars have proposed a series of super-resolution reconstruction algorithms and achieved 
advanced results. To accelerate the SRCNN, FSRCNN [7] was proposed in 2016, it per-
formed upsampling at the end of the network and used an hourglass-shape CNN struc-
ture to reduce the computational cost. In the SRResNet [8] proposed by Ledig et al., resid-
ual learning was introduced to solve the problem of deep network training difficultly. 
Kim et al. [9] introduced recursive learning to increase the depth of the model without 
increasing the extra parameters. EDSR [10] significantly improved network performance 
and won the NTIRE2017 championship by removing redundant modules and expanding 
the model. For SR tasks, the success of EDSR also demonstrated the effectiveness of deep-
ening the network. On this basis, Zhang et al. proposed the RCAN [11] with a residual in 
residual (RIR) structure to construct a very deep trainable network. It combined the resid-
ual structure with the attention mechanism and achieved further success. It turns out that 
the deep network with a residual structure and an attention block can achieve better re-
sults, so we attempt to apply it to reconstruct medical CT images. However, there are still 
some problems in the process when the current methods are applied to the medical image 
super-resolution task: most of the networks deepen the network by the repeated convolu-
tion operation but neglect the full use of the feature information. As a result, LR loses 
some information in the deep network transmission, and the information is not fully uti-
lized. Another concern is the attention mechanism, which involves a single branch for 
general channel attention, resulting in a relatively single source of the characteristic infor-
mation concerned by the network. 

Inspired by the work in [11,12], we propose an information distillation and multi-
scale attention network (IDMAN) to reconstruct the medical CT image by better learning 
the feature information. To solve the problem of insufficient information utilization, ID-
MAN uses information distillation to extract features step-by-step. Compared with the 
traditional operation of repeating the convolution layer, information distillation can effec-
tively improve the learning ability of the network. Because the successes of EDSR and 
RCAN prove that the deep network has a remarkable ability to improve the performance 
of super-resolution network, IDMAN chooses the deep network and exploits the residual 
learning and the skip connection to make the network trainable. To change the single fea-
ture information source, IDMAN adopts the multi-scale attention with multiple branches 
to strengthen the attention to important features, and to improve the network expression 
ability of important features. 
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In summary, the main contributions of this paper are as follows: 
 We propose an information distillation and multi-scale attention network for medical 

CT image super-resolution reconstruction, which can reconstruct sharper edges and 
more realistic textures, and restore more details of the CT image; 

 In order to make full use of the feature information of the image, our proposed 
method combines information distillation with a deep residual network, so that the 
model can learn the image feature in a deep network, and distill the feature infor-
mation instead of simply repeating the convolution operation; 

 We use a multi-scale attention module with multiple branches to adaptively focus on 
the interdependence of feature channels from different branches and pay more atten-
tion to the important information of the CT image by assigning weights to the differ-
ent features. 
The rest of this paper is organized as follows. The related works are represented in 

Section 2. The proposed method of information distillation and multi-scale attention net-
work is introduced in Section 3. We show the experimental results, model analysis and 
ablation studies in Section 4. The conclusions of this paper are stated in Section 5. 

2. Related Works 
In recent years, with the development of neural networks, super-resolution algo-

rithms based on deep learning have become the main research focus of image processing. 
In order to achieve better results, the network was continuously widened and deepened. 
However, simply widening and deepening the network did not achieve the expected sig-
nificant improvement. Therefore, scholars designed some exquisite network structures 
and learning strategies such as residual structures, dense connections, attention mecha-
nisms, information distillation, transfer learning and so on. In this paper, our super-reso-
lution reconstruction network for medical CT image references the residual network, at-
tention mechanism and information distillation. The following section mainly describes 
the four aspects involved in this model for the current work: single image super-resolu-
tion, residual network, attention mechanism and information distillation. 

2.1. Single Image Super-Resolution 
Single image super-resolution is the basis of multiple image super-resolution and 

video super-resolution. Since SRCNN first applied the convolutional neural network to 
the SR task, a number of methods based on deep CNN have been proposed. Based on 
SRCNN, VDSR [13] used a deeper convolutional network and achieved better results. In 
order to reduce the complexity of the model, DRCN [9] proposed a deep recursive convo-
lution network for SR task, which did not introduce new parameters but improved the 
performance of network. On the basis of DRCN, DRRN [14] proposed deep recursive re-
sidual network by combining residual learning and recursive learning. The sub-pixel con-
volution in ESPCN [15] was proposed by Shi et al. to extract features directly from low-
resolution images and to upscale the image in the sub-pixel convolution layer. MemNet 
[16] proposed long-term memory networks to help build long-term dependence. LapSRN 
[17] made use of the Laplacian pyramid structure and achieved good results with the large 
upscaling factor through progressive reconstruction. SRDenseNet [18] introduced dense 
connections [19] in the deep networks, combining the low-level features and high-level 
features to improve reconstruction performance. EDSR [10] was optimized by removing 
unnecessary modules in the residual network and expanded the model size to further im-
prove the performance and obtain good results. With the deepening of the network, the 
features of each convolutional layer would have different receptive fields. In order to 
make greater use of the information of each convolutional layer, Zhang et al. put forward 
the RDN [20] to make better use of the hierarchical information from the LR image. RCAN 
[11] combined the attention mechanism and the residual module to improve the network 
expression ability, achieving excellent results. 
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2.2. Residual Network 
With the development of neural networks, their depth increased, and deep networks 

achieve better effects than shallow networks. However, with the deepening of the net-
works, gradient vanishing, gradient explosion and network degradation may occur. 
Therefore, He et al. [21] proposed a residual network (ResNet) for image classification, 
which effectively solves the problem of deep network training. The main characteristic of 
the residual structure is adding a skip connection on the basis of the convolutional neural 
network so that the original input information can be directly connected to the back layer, 
which protects the integrity of the original input information to a greater extent. The re-
sidual structure was introduced into the super-resolution reconstruction network in [8]. 
The subsequent studies of [10,11] deepened the network based on the residual block and 
achieved better results. By adding the residual structure, the deep network can effectively 
alleviate the problems of gradient vanishing and network degradation, speed up the train-
ing process, and further improve the network performance. 

2.3. Attention Mechanism 
The attention mechanism can help the network focus on local information, by con-

stantly adjusting the weight, with a higher weight being more attentive to important in-
formation. Google DeepMind [22] combined the RNN model with the attention mecha-
nism to classify images. The attention mechanism can be divided into spatial attention, 
channel attention and mixed attention. The spatial transformer network (STN) [23] pro-
posed by Jaderberg et al. used the spatial attention which completed the processing oper-
ation suitable for the task by learning the deformation of the input. In 2017, the SENet [24] 
proposed by Hu et al. used the channel attention mechanism to assign different attention 
values to different channels through squeeze and excitation operations, which were used 
to increase the weight of the important channels and achieve the goal of paying more 
attention to the important feature channels. Then, the convolutional block attention mod-
ule (CBAM) [25] proposed by Woo et al. combined spatial attention and channel attention, 
realized the fusion of different attention mechanisms and achieved good results. In addi-
tion, with the efforts of researchers, the attention mechanism also developed into self-at-
tention, multi-scale attention, residual attention and recurrent attention, etc. 

2.4. Information Distillation 
Information distillation can enable the network to make greater use of the feature 

information of images by gradually extracting the input features. Hui et al. [26] proposed 
an information distillation network (IDN) to effectively extract the local long and short-
path features by combing the enhancement unit with compression unit. Inspired by IDN, 
Hui et al. proposed the information multi-distillation network (IMDN) [27] to extract the 
features step-by-step. In the dimension of the channel, the feature was divided into two 
parts; one part was retained, the other part conducted a further distillation operation, then 
the two features were fused to obtain more information. Jie et al. put forward the residual 
feature distillation network (RFDN) [12] by combining the information distillation with 
residual learning. 

3. Methods 
3.1. Network Architecture 

The proposed IDMAN combines information distillation and multi-scale attention to 
extract deep features and uses the local feedback for the fusion of the features to recon-
struct the CT image. If the network expectations improve the learning ability only by re-
peatedly adding many convolution layers, a significant performance improvement may 
not be achieved. In order to make full use of the feature information, information distilla-
tion is introduced into the deep network, and the feature can be better distilled and re-
fined. In addition, the information distribution of the CT image is not uniform. With the 
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purpose of paying more attention to important information, we also utilized the multi-
scale attention block (MAB). On the basis of progressively extracting the refined features, 
multi-scale attention is used to concern the important feature information under different 
branches, so that the network can capture more details and reconstruct higher quality im-
ages. 

As shown in Figure 1, the IDMAN consists of four parts: the shallow feature extrac-
tion, deep feature extraction structure (DFES), upsampling module and reconstruction. 
Firstly, one convolution layer is used to extract the shallow features. Then, the deep fea-
tures are extracted through DFES, which contains G information distillation and multi-
scale attention groups (the details are discussed in Section 3.2.), one convolution layer and 
a global skip connection. Next, the upsampling module is used to enlarge the image. Fi-
nally, the output of the upsampling module is used to reconstruct the image by a local 
feedback and one convolution layer, and the reconstructed super-resolution image is ob-
tained. 

 
Figure 1. The architecture of information distillation and multi-scale attention network (IDMAN) 
comprises four parts: shallow feature extraction, deep feature extraction structure (DFES), upsam-
pling module and reconstruction. 

Define ܫோ and ܫௌோ as the input and output of IDMAN. We extract the shallow fea-
ture ܨ from ܫோ by using one convolution layer from the LR input: 

ܨ = (1) (ோܫ)ௌிாܪ

where ܪௌிா(·) represents the 3 × 3 convolution operation. After obtaining the shallow 
feature ܨ, we feed it into the DFES, which is used to extract the deep feature. We can 
obtain the deep feature ܨி: 

ிܨ = (2) (ܨ)ிாௌܪ

where ܪிாௌ(·) is the deep feature extraction structure (DFES) to extract the deep feature. 
The deep feature ܨி is input into the upsampling module: 

ܨ = (3) (ிܨ)ܪ

where ܪ(·) denotes the upsampling module. We use the sub-pixel convolution [15] for 
upsampling. The upscaled feature ܨ is reconstructed as follows: 

ௌோܫ = (4) (ܨ)ோாܪ

where ܪோா(·) denotes the reconstruction operation. Through local feedback operation 
on the convolution, ܨ is better reconstructed without increasing the extra parameters. 
Finally, we can obtain the reconstructed image ܫௌோ. 
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The whole network can be described as: 

ௌோܫ = (5) (ோܫ)ூெேܪ

where ܪூெே(·) denotes the IDMAN. 
Using ܮଵ loss function [28] to optimize the network, as in previous works, for the 

training set {ܫோ
 , ுோܫ

 }ୀଵ
ே , which contains N LR inputs and their HR counterparts, the goal 

of training IDMAN is to minimize ܮଵ loss function: 

(ߠ)ܮ =
1
ܰ

 ∥ ோܫ)ூெேܪ
 ) − ுோܫ

 ∥ଵ

ே

ୀଵ

 (6)

where ߠ denotes the parameter set of the network. The loss function is optimized by the 
stochastic gradient descent method. 

3.2. Information Distillation and Multi-Scale Attention Group 
The network extracts the deep features through the DFES. DFES is mainly composed 

of G information distillation and multi-scale attention groups (IDMAG). For the input fea-
ture ܨ, the g-th IDMAG in DFES can be expressed as: 

ܨ = (ିଵܨ)ܪ = ⋯)ିଵܪ)ܪ (ܨ)ଵܪ ⋯ )) (7)

where ܪ(·) denotes the function of g-th IDMAG, ܨିଵ and ܨ are the input and output 
of the g-th IDMAG. After G IDMAG, one convolution layer is used to fuse features and a 
global skip connection is used to ensure the shallow feature is not lost: 

ܨீ _௨௧ = ܨ + ܨீ)௩ܪ ) (8)

where ܪ௩(·) denotes the 3 × 3 convolution operation, ீܨ  denotes the output of G-th 
IDMAG and ீܨ _௨௧ denotes the output of the DFES, which includes G IDMAG. 

The structure of IDMAG is shown in Figure 2. Similar to DFES, the IDMAG consists 
of B information distillation and multi-scale attention blocks (IDMAB) (more details about 
IDMAB would be discussed in Section 3.3.), one 3 × 3 convolution layer and a local skip 
connection. 

 
Figure 2. Information distillation and multi-scale attention group (IDMAG). 

In the g-th IDMAG, the output through the b IDMAB blocks can be expressed as: 
,ܨ = (,ିଵܨ),ܪ = ⋯),ିଵܪ),ܪ (ିଵܨ),ଵܪ ⋯ )) 

௨௧_(,ீ)ܨ = ܨீ ିଵ + ܨீ)௩ܪ ,) (9)

where ܪ,(·) denotes the operation to extract the features of the b-th IDMAB in the g-th 
IDMAG, ܨିଵ denotes the output of the (g − 1)-th IDMAG, ܨ, denotes the output of the 
b-th IDMAB in the g-th IDMAG, ܪ௩(·)  denotes the 3 × 3  convolution operation, 
ܨீ ௨௧ denotes the output of the G-th IDMAG which contains B IDMAB. Feature_(,ீ)ܨ , 



Sensors 2021, 21, 6870 7 of 21 
 

 

was obtained by using B IDMAB, then using a 3 × 3 convolution layer to fuse local fea-
tures and add the local skip connection to solve the possible gradient vanishing problem. 

3.3. Information Distillation and Multi-Scale Attention Block 
As shown in Figure 3, the information distillation and multi-scale attention block 

(IDMAB) consists of information distillation, multi-scale attention block (MAB) and a skip 
connection. 

 
Figure 3. Information distillation and multi-scale attention block (IDMAB). 

3.3.1. Information Distillation 
For the input feature ݂ of IDMAB, the information distillation first goes through 

three refining distillation steps. For each step, the preceding feature is divided into two 
parts through a channel splitting operation. One part is preserved by a 1 × 1 convolution 
layer. The other part further extracts the feature by the 3 × 3 convolution layer and re-
sidual learning, then the feature is activated by the ReLU operation and transported to the 
next distillation step. Three features ( ௗ݂௦௧ௗ_ଵ, ௗ݂௦௧ௗ_ଶ, ௗ݂௦௧ௗ_ଷ) retained in the dis-
tillation process, and one feature ( ௗ݂௦௧ௗ_ସ) further extracted by the 3 × 3 convolution 
layer is obtained after distillation steps. All features obtained after distillation are concat-
enated together to obtain the feature ௗ݂௦௧ௗ , then a 1 × 1 convolution layer is adopted 
to further fuse the feature. This structure can be described as: 

ௗ݂௦௧ௗ_ଵ, ݂௦_ଵ  = )ௗ௦௧ௗ_ଵܪ  ݂), )௦_ଵܪ ݂) 
ௗ݂௦௧ௗ_ଶ, ݂௦_ଶ  = )ௗ௦௧ௗ_ଶܪ  ݂௦_ଵ), )௦_ଶܪ ݂௦_ଵ) 
ௗ݂௦௧ௗ_ଷ, ݂௦_ଷ  = )ௗ௦௧ௗ_ଷܪ  ݂௦_ଶ), )௦_ଷܪ ݂௦_ଶ) 

ௗ݂௦௧ௗ_ସ  = )௩ܪ  ݂௦_ଷ) 

(10)

where ܪௗ௦௧ௗ_(·) is a 1 × 1 convolution operation which can produce the retained fea-
ture in i-th step of distillation. The ܪ௦_(·) denotes the further refinement of the coarse 
features in i-th step of distillation, which consists of a 3 × 3 convolution layer, identity 
connection, and the activation unit (ReLU). ܪ௩(·) denotes the 3 × 3 convolution oper-
ation. ௗ݂௦௧ௗ_ denotes the i-th distilled feature (preserved), and the ݂௦_ denotes the 
i-th coarse feature that requires further processing. Then, all the distilled features are 
fused: 

ௗ݂௦௧ௗ  = )ݐܽܿ݊ܥ)௨௦ܪ  ௗ݂௦௧ௗభ , ௗ݂௦௧ௗమ , ௗ݂௦௧ௗయ , ௗ݂௦௧ௗ_ସ)) (11)
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where ݐܽܿ݊ܥ(·) denotes concatenation operation among the channel dimension, ܪ௨௦(·
) denotes the fusion operation, which uses the 1 × 1 convolution layer to fuse the fea-
tures obtained by distillation. Then, the aggregated feature ௗ݂௦௧ௗ is fed into the MAB, 
and the output of IDMAB is obtained: 

݂௨௧ = ݂ + )ெܪ ௗ݂௦௧ௗ) (12)

where ܪெ(·) means the feature extraction using a multi-scale attention block (MAB), 
݂௨௧ denotes the output of IDMAB. 

3.3.2. Multi-Scale Attention Block 
In order to pay more attention to the important features and make the network adap-

tively allocate the weight according to the importance of different information, we also 
replace the channel attention with the multi-scale attention block (MAB). The multiple 
branches of MAB can make the network focus on more abundant feature information and 
the interdependencies among feature channels, and make the model pay different degrees 
of attention according to the different channel importance. 

Compared to the traditional channel attention module (Figure 4a), the multiple-
branch structure of the MAB (Figure 4b), with 3 × 3 and 5 × 5 branches, can better cap-
ture the information because of the feature fusion of the two branches. In the 3 × 3 
branch, we first use the average pooling to compress spatial information, and next adopt 
a 3 × 3 convolution layer to extract the feature information. Then, we use a 1 × 1 convo-
lution layer to compress the channel and adopt ReLU to activate the result. Subsequently, 
we reuse the 1 × 1 convolution layer to increase the low-dimension information and ex-
tract the feature again by a 3 × 3 convolution layer. Refer to the branch 3 × 3, the branch 
5 × 5 has similar operations. At the end of MAB, the features from the two branches are 
fused, and the result has multi-scale feature information. 

 
Figure 4. Different types of attention module: (a) Channel attention; (b) Multi-scale Attention 
block (MAB). 

In each branch of MAB, the channel-wise spatial information is taken into the channel 
descriptors through average pooling. Let ܺ be the input, then the channel-wise statistic 
 :can be obtained after average pooling ݖ

ݖ = (ܺ) (13)ܪ

where ܪ(·) is the pooling function. 
For the MAB with n branches, the convolution kernel size of each branch is different. 

Each convolution operation with a different kernel size can be described as: 

,ݖ = ℎ,(ݖ) (14)
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where ℎ,(·)  is the convolution operation with the kernel size ݇ × ݇  in the n-th 
branch. In this paper, we set ݊ = 1, 2 and ݇ଵ = 3, ݇ଶ = 5. 

In order to fully use of the interdependence of features and establish the correlation 
between the channels, the sigmoid function is used as a gating mechanism to learn the 
interactions between the channels and control the aggregated information generated by 
the pooling operation. Before that, we need to process each branch as follows: 

߱, = ℎ,( ܹ ∙ )ߜ ܹ ∙ ,)) (15)ݖ

where ߜ(·) denotes the ReLU function and ℎ,(·) denotes the convolution operation 
with the kernel size ݇ × ݇ in the n-th branch. ܹ and ܹ are the weight sets from 1 ×
1 convolution layer, respectively. ܹ is the weight set of the 1 × 1 channel-downsam-
pling convolution layer by a reduction ratio ݎ. The low-dimension information is acti-
vated with ReLU and then increased again with the ratio ݎ. ܹ is the weight set of the 
1 × 1 channel-upsampling convolution layer. ߱, denotes the channel statistics in the 
n-th branch with a kernel size of ݇ × ݇. The statistics of the branches are added to the 
total channel statistics ω: 

߱ = ݂(߱ଵ,భ + ⋯ + ߱,) (16)

where ݂(·) denotes the sigmoid gating. MAB in this paper consists of two branches; the 
kernel size of convolution is 3 × 3 and 5 × 5, respectively, so ߱ = ݂(߱ଵ,భୀଷ + ߱ଶ,మୀହ). 
Additionally, the obtained channel statistics ߱ are used to rescale the input ܺ: 

ܺ = ߱ ∙ ܺ (17)

where ߱ and ܺ are the scaling factors and feature maps, respectively. 

4. Results 
In this section, we describe the dataset and the implementation details of the model. 

Two common image quality evaluation indexes PSNR and SSIM are adopted to evaluate 
the model objectively. We also compare our model with other advanced super-resolution 
methods and analyze the results. 

4.1. Dataset 
The experiment was conducted using DeepLesion [29], at present the largest dataset 

of CT medical images in the world. We randomly selected 11,500 high-quality CT images, 
of which 10,000 were used for training, 500 for validating and 1000 for testing. The dataset 
needed to be preprocessed, which was achieved through downsampling by bicubic inter-
polation through MATLAB R2017b. In this way, the HR images were degraded into the 
LR images to form the image pair for training. Then, we augmented the training set, which 
was randomly rotated by 90°, 180°, 270° and flipped horizontally to improve the general-
ization ability. For the testing sets, we also used two public medical image datasets, 
NSCLC Radiogenomics and Lung-PET-CT-Dx from TCIA [30], and randomly selected 500 
medical images from each of these two datasets for testing. 

4.2. Implementation Details 
In our method, the number of IDMAG is set to 10 and the number of IDMAB is set to 

20. Because of the GPU limitations, the batch size is set to 10. We take the LR image and 
corresponding HR image as the input and crop the patch with the size of 48 × 48, and the 
reduction ratio ݎ of MAB is set to 16. We choose the L1 loss function and use the ADAM 
Optimizer [31], with βଵ = 0.9, βଶ = 0.999, ϵ = 10ି଼. The initial learning rate is set to 10ିସ, 
and the learning rate is decreased by half every 2 × 10ହ iterations. Most of our parame-
ters refer to RCAN [11]. We set the training parameters of the contrast algorithms (such 
as batch size and learning rate) as consistent with our method, to compare the perfor-
mance of different network architectures. 
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Our method is implemented using pytorch 0.4 and Python 3.6 in the Ubuntu 18.04 
operating system, with an Inter E5-2620 CPU and an Nvidia GTX 1080TI GPU. 

4.3. Evaluation Indexes 
In order to verify the performance of the super-resolution reconstruction network, it 

is necessary to evaluate the reconstructed image. There are two methods to evaluate image 
quality: objective evaluation and subjective evaluation. Subjective evaluation is affected 
by many aspects, it mainly evaluates the reconstructed SR image from the visual effect. 
The objective evaluation is to quantitatively analyze the image and evaluate it through 
specific evaluation indicators. In this paper, the performance of super-resolution networks 
is evaluated by using two recognized image quality indicators, the Peak Signal-to-Noise 
Ratio (PSNR) [32] and Structure Similarity Index (SSIM) [33]. The PSNR and SSIM of the 
reconstructed SR results are calculated by the MATLAB to compare our method and other 
methods. 

PSNR. PSNR (dB) is based on the error between the corresponding pixels of the im-
age pair. It is an objective standard for evaluating the image. The unit of PSNR is dB. In 
general, the higher PSNR represents a higher resolution image. It is defined by MSE: 

ܧܵܯ =
1

݉݊
  ,݅)ܫ|| ݆) − ,݅)ܭ ݆)||ଶ

ିଵ

 ୀ 

ିଵ

 ୀ 

 (18)

Then, PSNR can be expressed as: 

ܴܲܵܰ = 10 ଵ݈݃
ଶ݁ݑ݈ܸܽݔܽܯ

ܧܵܯ
= ଵ݃10݈

2௧௦ − 1
ܧܵܯ

 (19)

where ܫ and ܭ are represented as images with a size of ݉ × ݊. The larger the PSNR, the 
smaller the image distortion and the better the image quality. 

SSIM. SSIM is an index used to measure the structural similarity between two im-
ages, which measures the image similarity from the luminance, contrast and structure. 
The SSIM expression is: 

ܯܫܵܵ =
௬ߤ௫ߤ2) + ௫௬ߪଵ)(2ܥ + (ଶܥ

௫ߤ)
ଶ + ௬ߤ

ଶ + ௫ߪ)(ଵܥ
ଶ + ௬ߪ

ଶ + (ଶܥ
 (20)

where ߤ௫ represents the average value of image ߤ ,ݔ௬ represents the average of image 
௫ߪ ,ݕ  represents the variance of image ߪ ,ݔ௬  represents the variance of image ߪ ,ݕ௫௬ 
represents the covariance of ݔ and ݕ, and ܥଵ and ܥଶ are constants. The higher the SSIM 
value, the more similar the reconstructed image is to the original image, and the better the 
image quality. 

4.4. Ablation Studies 
This section mainly verifies the influence of some modules and strategies on our CT 

image reconstruction network. Among them, in order to prove the effect of information 
distillation and MAB on the model, we retain or remove the corresponding module to 
conduct the following ablation experiments. 

The effectiveness of information distillation. IDMAN extracts the feature through in-
formation distillation (info-distill) to effectively utilize and learn feature information. In 
Table 1, Conv means extract the feature by using traditional convolution (Conv-ReLU-
Conv), and Info-distill means to extract the feature by using information distillation. In 
order to avoid the influence of MAB, the attention mechanism adopts the traditional chan-
nel attention. As shown in Table 1, it can be seen that, compared with the traditional con-
volution operation, using information distillation to extract features can effectively im-
prove PSNR, which means that our method, which uses info-distill, can make more use of 
feature information. 
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Table 1. The effectiveness of information distillation of the model. We compared the traditional 
convolution and information distillation after 2 × 105 iterations on the validation set for × 2 scale SR. 

Scale Conv Info-distill PSNR 

× 2 √  33.966 
 √ 34.012 

To show the reconstructed results more vividly and intuitively, we select two sets of 
images. We test the performance of IDMAN (with info-distill) and the model without info-
distill. The reconstruction results are shown in Figure 5. 

(a) (b) 

Figure 5. The reconstructed results of IDMAN with/without information distillation. (a) A recon-
structed image of clear edges; (b) A reconstructed image of accurate details. 

From Figure 5a, it easy to see that the edge of the reconstructed image is broken with-
out info-distill, while the image can restore clearer edges when the information distillation 
is introduced. In Figure 5b, it is obvious that more accurate details can be reconstructed 
when using information distillation. 

It can be seen that more details can be obtained in the reconstruction results with 
information distillation, which also proves that our method can make better use of feature 
information to improve learning ability when using information distillation to extract the 
feature. The improvements in both the subjective visual reconstruction results and objec-
tive evaluation index show that using information distillation to make more use of feature 
information is effective. 

The effectiveness of MAB. In order to explore the influence of MAB with multiple 
branches, we designed several sets of contrasting experiments to verify whether single or 
multiple branches with different convolution kernel sizes could improve the network 
learning ability and expression ability by capturing information under different branches. 
The result on the validation set is shown in Table 2. The convolution kernel size 3 × 3, 
5 × 5 and 7 × 7 corresponded to the branches of 3 × 3, 5 × 5 and 7 × 7. When none of 
them occurred, it meant the traditional channel attention was used (1 × 1-ReLU-1 × 1). In 
addition, to avoid the influence of information distillation, the traditional convolution op-
eration (Conv-ReLU-Conv) was used for feature extraction. 
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Table 2. The effectiveness of MAB with different branches on the model. We compared the results 
of our MAB with different branches after 2 × 10ହ iterations on the validation set for × 2 scale SR. 

MAB with Different Branches 
Number of Branches  ×   ×  ૠ × ૠ PSNR 

1 

   33.966 
√   34.008 
 √  34.013 
  √ 34.006 

2 
√ √  34.014 
√  √ 34.013 
 √ √ 34.016 

3 √ √ √ 34.018 

We can draw some conclusions by analyzing the data from Table 2. First, under the 
single branch (Number of branches = 1), the performance could be improved by adding 
two convolution layers. For instance, the PSNR increased from 33.966 dB to 34.008 dB 
when we added two 3 × 3 convolution layers based on traditional channel attention. This 
demonstrated that the feature information could be better extracted by adding convolu-
tion layers. Second, it was obvious that, compared with the single branch MAB, the MAB 
with multiple branches (Number of branches is 2 or 3) could achieve a higher PSNR value. 
In other words, the performance of multiple branches was better than that of a single 
branch. The feature information could be better captured by our MAB with multiple 
branches structure. 

The MAB with 3 × 3, 5 × 5, and 7 × 7 branches works better than the MAB with one or 
two branches. However, these comparison experiments are conducted without infor-
mation distillation; if information distillation is introduced, the MAB can only have at 
most two branches, 3 × 3 and 5 × 5, due to the limitation of GPU. Therefore, our method 
selects MAB with 3 × 3 and 5 × 5 branches to better capture feature information as much 
as possible. 

Table 3 shows the quantitative evaluation results of each module on the validation 
set. The experimental results show that PSNR are improved when adding the information 
distillation or MAB. When two modules are added at the same time, based on information 
distillation to the extract feature and the combination with MAB, the experimental results 
are the best (PSNR = 34.022 dB). 

Table 3. The quantitative results of each module. The best PSNR (dB) results on the validation set 
after 2 × 10ହ iterations. 

Different Combinations of Info-Distill, MAB (Scaling Factor × ) 
Info-distill  √  √ 

MAB   √ √ 
PSNR 33.966 34.012 34.014 34.022 

The effectiveness of weight normalization. EDSR improves the performance of the 
network by removing the batch normalization (BN). Inspired by this, we also adjust the 
normalization in the network. The weight normalization (WN) can accelerate the conver-
gence of the deep learning network parameters by reparameterizing the weights of the 
network which decoupling the norm of the weight vector from the direction of the weight 
vector. Therefore, we normalize the convolution layer through WN in IDMAN. 

Assume the output is ݕ: 

ݕ = ݔݓ + ܾ (21)



Sensors 2021, 21, 6870 13 of 21 
 

 

where ݔ denotes the k-dimensional vector of the input features, ݓ denotes the k-dimen-
sional vector of weight, ܾ denotes the scalar bias term. WN uses Formula (22) to re-pa-
rameterize the weight vector ݓ: 

ݓ =
݃

‖ݒ‖ (22) ݒ

where ݃ denotes the scalar, ݒ denotes the k-dimensional vector, ‖ݒ‖ denotes the Eu-
clidean norm of ݒ. Further, we can obtain ‖ݓ‖ = ݃, which is independent of the param-
eters ݒ. 

We have two experiments about WN. From Table 4, it can be seen that IDMAN with 
WN can get the higher PSNR value. This also can prove that WN has a positive effect on 
our reconstruction network. 

Table 4. The effectiveness of WN on the model. We compared the result of network without WN 
after 2 × 10ହ iterations on the validation set for × 2 scale SR. 

Scale IDMAN without WN IDMAN PSNR 

× 2 √  34.019 
 √ 34.022 

In Figure 6, we can see that the curve of IDMAN without WN is steeper before 100 
epochs, while the training of network with WN is more stable and the convergence speed 
is faster. Therefore, WN can accelerate the convergence of IDMAN and help the network 
to better learn the feature information. 

 
Figure 6. Convergence analysis of WN with scaling factor × 2. 

4.5. Analysis of Experimental Results 
Quantitative Analysis: In order to evaluate the performance of the model, we select 

some representative methods as the contrast. These methods are Bicubic [1], SRCNN [6], 
FSRCNN [7], VDSR [13], DRRN [14], EDSR [10], MDSR [10], RDN [20], and RCAN [11]. 
PSNR and SSIM are adopted to evaluate the quality of each SR result. 

Tables 5 and 6 summarize the PSNR and SSIM results of the quantitative evaluation 
of the scaling factors on × 2, × 3 and × 4. As shown from Tables 5 and 6, compared with 
Bicubic, PSNR and SSIM improved by 8.601 dB~11.683 dB and 17.98%~20.63%, respec-
tively. Compared with the methods based on deep learning, PSNR and SSIM improved 
by 0.063 dB~1.92 dB and 0.06%~0.98% when the scaling factor was × 2. Under scaling 
factor × 3, PSNR and SSIM increased by 0.026 dB~2.081 dB and 0.01%~1.44%. Under × 4, 
they increased by 0.013 dB~2.562 dB and 0~2.46%, respectively. It is clear that the Bicubic 
reconstruction based on the traditional interpolation method is the worst, PSNR and SSIM 
are the lowest, while the SR algorithm based on deep learning is clearly better than that 
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based on the interpolation method. In either case, the reconstruction effect of the low scal-
ing factor is better than the high scaling factor. The PSNR and SSIM values show that the 
performance of the IDMAN is better than that of the comparative methods, which proves 
the superiority of our proposed method. 

In order to compare more comprehensively and to further show the universality ad-
vantage of IDMAN on other datasets. We also tested our method under different scaling 
factors on the medical datasets NSCLC Radiogenomics and Lung-PET-CT-Dx. 

Table 5. The average PSNR (dB) results of different algorithms on the DeepLesion testing set with 
different scaling factors. 

Model ×  ×  ×  
Bicubic 22.373 21.418 20.755 
SRCNN 32.136 28.871 26.794 

FSRCNN 32.162 28.880 26.900 
VDSR 33.656 30.367 28.514 
DRRN 33.709 30.485 28.670 
EDSR 33.857 30.649 28.924 
MDSR 33.858 30.666 28.937 
RDN 33.973 30.869 29.255 

RCAN 33.993 30.926 29.343 
IDMAN (ours) 34.056 30.952 29.356 

Table 6. The average SSIM results of different algorithms on the DeepLesion testing set with differ-
ent scaling factors. 

Model ×  ×  ×  
Bicubic 0.7649 0.7169 0.6832 
SRCNN 0.9349 0.8940 0.8649 

FSRCNN 0.9360 0.8955 0.8680 
VDSR 0.9419 0.9051 0.8843 
DRRN 0.9429 0.9056 0.8847 
EDSR 0.9432 0.9067 0.8864 
MDSR 0.9434 0.9067 0.8864 
RDN 0.9441 0.9079 0.8889 

RCAN 0.9441 0.9083 0.8895 
IDMAN (ours) 0.9447 0.9084 0.8895 

Table 7 shows the testing results on the NSCLC Radiogenomics dataset. Under × 2 
scale, compared with other methods, the improvements of IDMAN in PSNR and SSIM are 
0.076 dB~14.016 dB and 0.02%~16.23%. Under the × 3 scale, the improvements are 0.05 
dB~11.598 dB and 0.02%~17.36%. Additionally, under the × 4 scale, the improvements 
are 0.062 dB~10.456 dB and 0.01%~18.36%. Table 8 shows the results for the Lung-PET-
CT-Dx dataset. The improvements of PSNR are 0.097 dB~16.329 dB, 0.094 dB~12.939 dB 
and 0.055 dB~11.09 dB for × 2, × 3 and × 4 scaling factors. The improvements of SSIM 
are 0.01%~14.46%, 0.03%~16.5% and 0.02%~18.45%, respectively. It can be seen that, for 
both testing sets, our IDMAN almost achieves the best performance with all scaling factors 
and improved to different degrees. 
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Table 7. The average PSNR and SSIM results of different algorithms in NSCLC Radiogenomics 
dataset with different scaling factors. 

Model 
×  ×  ×  

PSNR SSIM PSNR SSIM PSNR SSIM 
Bicubic 24.795 0.8132 24.060 0.7848 23.477 0.7643 
SRCNN 36.924 0.9723 33.518 0.9517 31.599 0.9377 

FSRCNN 37.152 0.9727 33.742 0.9525 31.746 0.9387 
VDSR 38.232 0.9742 35.062 0.9567 32.728 0.9446 
DRRN 38.362 0.9745 35.234 0.9571 33.285 0.9458 
EDSR 38.587 0.9748 35.399 0.9574 33.586 0.9465 
MDSR 38.590 0.9750 35.385 0.9573 33.481 0.9463 
RDN 38.735 0.9753 35.504 0.9580 33.700 0.9473 

RCAN 38.722 0.9753 35.608 0.9582 33.871 0.9478 
IDMAN (ours) 38.811 0.9755 35.658 0.9584 33.933 0.9479 

Table 8. The average PSNR and SSIM results of different algorithms in Lung-PET-CT-Dx dataset 
with different scaling factors. 

Model 
×  ×  ×  

PSNR SSIM PSNR SSIM PSNR SSIM 
Bicubic 24.990 0.8404 24.042 0.7994 23.163 0.7620 
SRCNN 38.503 0.9814 33.622 0.9530 30.844 0.9262 

FSRCNN 38.688 0.9818 34.025 0.9544 31.157 0.9280 
VDSR 40.656 0.9841 35.773 0.9612 31.966 0.9375 
DRRN 40.352 0.9839 35.858 0.9615 32.858 0.9408 
EDSR 40.975 0.9845 36.455 0.9628 33.569 0.9436 
MDSR 41.030 0.9846 36.456 0.9627 33.472 0.9430 
RDN 41.159 0.9848 36.792 0.9638 33.882 0.9453 

RCAN 41.222 0.9849 36.887 0.9641 34.198 0.9463 
IDMAN (ours) 41.319 0.9850 36.981 0.9644 34.253 0.9465 

Furthermore, we compared the convergence curves of our proposed IDMAN and 
suboptimal RCAN. As shown in Figure 7, we visualized the results of PSNR and L1 loss. 

Figure 7a shows the curves of PSNR during training. It can be seen that the value of 
PSNR gradually stabilizes and no longer increases significantly during the training up to 
200 to 300 epochs. Before approximately 200 epochs, the convergence speed of the IDMAN 
was slightly faster than RCAN, and the PSNR value of IDMAN mostly outperformed the 
other. As can be seen in Figure 7b, the loss shows an overall decreasing trend as the train-
ing epoch increases. Before about 100 epochs, the loss of RCAN decreases more rapidly, 
but after about 200 epochs, the loss of RCAN and IDMAN tend to become stable. 
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(a) (b) 

Figure 7. Convergence analysis with scaling factor × 2: (a) The PSNR curve during training; (b) 
The L1 loss curve during training. 

Visual Results: In order to analyze the reconstructed CT image from the subjective 
visual effect, we select several groups of CT image for a contrast display in Figures 8–10. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 8. Images (a–d) show the visual results of different algorithms on DeepLesion testing set for scaling factor × 2. 

 
(a) 

 
(b) 

Figure 9. Images (a,b) show the visual results of different algorithms on DeepLesion testing set for scaling factor × 3. 
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(a) 

 
(b) 

Figure 10. Images (a,b) show the visual results of different algorithms on DeepLesion testing set for scaling factor × 4. 

On the whole, The IDMAN proposed in this paper can reconstruct clearer edges and 
more realistic textures. Under the × 2 scale SR, as shown in Figure 8a, it is clear that the 
image reconstructed by IDMAN has a more realistic texture and a better visual effect. In 
Figure 8b, the reconstructed SR image can restore more truthful details than other meth-
ods. In Figure 8c, the image reconstructed by the contrast method is blurred, while the 
reconstructed result by our method has sharpener edges and more detail. In Figure 8d, 
the reconstructed image has a clearer and smoother edge. Under ×3 scale SR, from Figure 
9a, it can be seen that the structure of the reconstructed image by other algorithms is more 
unclear, while the reconstructed result of IDMAN is more realistic. In Figure 9b, our re-
constructed image has a more restored effect with clearer and more accurate contour lines, 
compared to other methods. Under the × 4 scale SR, we can observe, from Figure 10a, 
that the result of our method can better restore the original information and is more sim-
ilar to the original image. In Figure 10b, it is clear that IDMAN can reconstruct a clearer 
edge but the images of other methods appear more blurred. Our proposed model 
achieved better results in the CT image dataset. The reconstructed CT image of our 
method has more details, and PSNR and SSIM also achieved higher scores. 

It can be clearly observed that the reconstruction effect of SRCNN with only three 
layers is the worst among these methods based on deep learning, with problems such as 
blurring, artifacts, a lack of detail, unclear edges and so on. The later improved models 
are becoming more and more complex by deepening the network or using different learn-
ing strategies, and the reconstructed results have a clearer structure which is better than 
SRCNN. Additionally, our IDMAN has a superior learning ability, and the reconstructed 
results become to have more details and sharper edges. The better visual reconstruction 
results also prove that we can use information distillation and multi-scale attention to help 
the network make full use of the feature information more effectively, and capture more 
information to restore more details. 
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5. Conclusions 
In this paper, we proposed an improved information distillation and multi-scale at-

tention network for the medical CT image super-resolution, which combined the infor-
mation distillation and multi-scale attention block. It effectively solved the problem of 
losing details, the insufficient use of feature information and the single branch of the at-
tention block. We also conducted a series of experiments to prove the effectiveness of the 
IDMAN, and used ablation studies to show that information distillation and MAB had a 
positive effect on improving the network performance. We adopted PSNR and SSIM for 
the quantitative analysis, which were clear improvements compared with other methods. 
The reconstructed results had a clearer and more realistic edge and texture. In a word, the 
obtained results of the proposed IDMAN were better than those previous methods 
whether in objective evaluation indexes or in the subjective visual effect. 

However, there are improvements that may benefit our work. Because the network 
is very deep, the parameter is very large and limited by the hardware, and the training 
time is relatively long. Additionally, the medical imaging is affected by the hardware 
equipment and the external environment which may produce the image noise. The next 
step is to balance the performance and training time, improve the training speed while 
maintaining the network performance, and effectively denoise the medical CT image 
while reconstructing it. 
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