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Abstract: Synthetic aperture radar (SAR) tomography (TomoSAR) can obtain 3D imaging models
of observed urban areas and can also discriminate different scatters in an azimuth–range pixel unit.
Recently, compressive sensing (CS) has been applied to TomoSAR imaging with the use of very-high-
resolution (VHR) SAR images delivered by modern SAR systems, such as TerraSAR-X and TanDEM-X.
Compared with the traditional Fourier transform and spectrum estimation methods, using sparse
information for TomoSAR imaging can obtain super-resolution power and robustness and is only
minorly impacted by the sidelobe effect. However, due to the tight control of SAR satellite orbit,
the number of acquisitions is usually too low to form a synthetic aperture in the elevation direction,
and the baseline distribution of acquisitions is also uneven. In addition, artificial outliers may easily
be generated in later TomoSAR processing, leading to a poor mapping product. Focusing on these
problems, by synthesizing the opinions of various experts and scholarly works, this paper briefly
reviews the research status of sparse TomoSAR imaging. Then, a joint sparse imaging algorithm,
based on the building points of interest (POIs) and maximum likelihood estimation, is proposed to
reduce the number of acquisitions required and reject the scatterer outliers. Moreover, we adopted
the proposed novel workflow in the TerraSAR-X datasets in staring spotlight (ST) work mode. The
experiments on simulation data and TerraSAR-X data stacks not only indicated the effectiveness of
the proposed approach, but also proved the great potential of producing a high-precision dense point
cloud from staring spotlight (ST) data.

Keywords: tomographic SAR; compressive sensing (CS); building POI; joint sparsity; TerraSAR-X
staring spotlight

1. Introduction

Synthetic aperture radar (SAR) has played an increasingly important role in earth
observation and geological disaster monitoring due to the advantages of all-weather
observations and short wavelengths (typically 3–25 cm). With the release of high-resolution
spaceborne SAR satellites, such as TerraSAR-X and TanDEM-X, the efficient use of very
high-resolution SAR images has become the focus of many scholars in urban mapping. In
particular, as the new generation of SAR satellites can be controlled and extended to the
staring spotlight (ST) observation mode, the image resolution has been improved even
more, from 1.1 to 0.25 m [1–4]; however, because of the side looking imaging model of SAR
system observations, it cannot distinguish different scatterers in the same azimuth–range
pixel unit. To solve the problem of overlap in SAR images, the 3D imaging technology
tomography SAR has been of great concern for researchers. Many scholars have also
proposed many algorithms to be applied to TomoSAR imaging, such as Fourier transform
methods and spectral estimation methods [5–8]. However, due to the limitation of the
acquisitions and the uneven baselines of the spaceborne SAR system, the 3D reflectivity
profile reconstructed by the algorithms above is usually terrible.
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Considering that the ground observation scenes usually have strong sparsity and high
anisotropy in the 3D field, the compressive sensing (CS) theory, proposed by Donoho in
2006, has been introduced into TomoSAR imaging. The CS theory holds that if a signal is
sparse, it can be reconstructed by sampling points that are far below the requirements of
the sampling theorem. This overcomes the limitation of the traditional Nyquist sampling
theorem and proves the possibility of reconstructing the sparse signal [9]. In 2007, Bara-
niuk et al. first introduced the theory for the 3D imaging of TomoSAR and experimentally
showed that the method could achieve focus in the elevation direction and that it had better
imaging results [10]. Subsequently, many scholars have conducted extensive research based
on CS theory for TomoSAR imaging and high-dimensional TomoSAR imaging [11–22]. In
2009, through simulation experiments, Budillion. et al. verified that the CS algorithm can
effectively reduce the number of repeat orbit observations required for 3D reconstruction,
and the subsequent experiments based on ERS satellite data successfully obtained the 3D
image of the building [19]; on this basis, she then proposed many algorithms based on CS,
such as ‘GLRT’ and ‘Fast-Sup-GLRT’, and carried out many experiments with TerraSAR-
X/COSMO-SkyMed/Sentinel-1, and all the experiments achieved very good results; the
details can be seen in [23,24]. Another outstanding team working on sparse TomoSAR
imaging is Zhu. et al. from the Deutsches Zentrum für Luft-und Raumfahrt (DLR), which
has made abundant achievements since 2009; for example, in [25] Zhu. X.X. et al. came
up with the ‘SL1MMER’ algorithm, and her experiments proved that the algorithm has
the advantage of super-resolution power and the elevation accuracy approximates the
Cramér–Rao lower bound (CRLB). In 2014, Wang. et al. integrated a periodogram, SVD-
Wiener, and ‘SL1MMER’ and proposed a novel workflow in sparse TomoSAR imaging;
the test in downtown Las Vegas and the whole city of Berlin obtained reliable results.
In addition to the algorithms described above, other scholars have also proposed many
excellent algorithms, such as ‘Nonlocal CS-based’ [26], ’RIAA’ [27], and ‘TWIST’ [28]. On
the whole, many experimental studies have confirmed that compared with traditional
TomoSAR imaging methods, the CS-based algorithm has the advantages of high resolution,
greatly reducing sampling data, and better reconstruction performance.

Although the TomoSAR imaging based on the CS algorithm has excellent performance
in many aspects such as super-resolution power and sidelobe suppression [11,29], for a
credible 3D reconstruction, the number of images required is usually very high (typically
40–60 scenes), and outliers are generated easily [30,31]. The huge cost undoubtedly restricts
the application of TomoSAR imaging. Recently, with the development of big SAR data
and in view of this problem, many scholars have worked towards using multi-source
data or new SAR image data, such as polarization information, 3D semantic information
in 2D images, high-precision DEM, TerraSAR-X ST data, and UAVSAR data, to assist
TomoSAR imaging in reducing the required acquisitions and to provide more stable and
reliable reconstruction results [30,32–36]. In [37], the authors investigated the application of
polarization information to urban mapping and applied the ‘Fast-Sup-GLRT’ algorithm to
dual polarization (HH + VV) data. Their experiment based on TSX data showed that dual-
polarization data can outperform the single-polarization case and maintain a lower number
of baselines. In [38], Wang et al. transformed the target signal reconstruction problem,
with structural characteristics, into a Block Compressive Sensing (BCS) problem on the
basis of the CS method, and L1/L2 norm optimization was performed for a target with
sparse blocks. The experiments, based on RADARSAT-2 data, verified the effectiveness
of this method. In the M-SL1MMER method, described in [31], 3D reconstruction of
the observation was attained using GIS 2D footprints (positioning accuracies varying
within 4 m); the drawback of this method is the high computational cost caused by the
compensation of any orientation and/or shifting inaccuracies. Even so, experiments based
on only six interferograms of TSX/TDX data demonstrated the effectiveness of the method
in reducing the number of images required. Through the above summary and analysis, it
is feasible to introduce multivariate information into TomoSAR imaging, and this has a
much broader research scope for scholars.
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In this paper, we propose an improved joint sparse TomoSAR imaging algorithm,
which is ‘object-based’, intending to reduce the number of acquisitions needed. Compared
with the conventional compressive sensing (CS) algorithm (e.g., OMP), the improved algo-
rithm performs more accurately and is reliable both in building reconstruction and scatterer
estimation. Note that ‘object-based’, here, means fully exploiting the prior information
of the individual building (e.g., building POIs) to support TomoSAR imaging [1]. To
demonstrate its effectiveness, the proposed workflow was applied to TerraSAR-X datasets
in the staring spotlight (ST) work mode and we carried out a comparative analysis for
the four aspects of elevation estimation accuracy, super-resolution power, detection rate,
as well as the great potential to produce a high-precision dense point clouds. It should
be added that the ST datasets used in this study were Very High Resolution (VHR) data
(0.25 m); more details about the test area and ST basic can be found in Section 5 as well
as in [39,40]. In Section 2, the principles of sparse TomoSAR imaging are presented, in-
cluding the TomoSAR imaging model and the compressive sensing theory. In Section 3,
we summarize the concept of joint sparsity and introduce the procedure of extracting the
building Line-of-Interest (LOI), building mask, and iso-height lines from building POIs.
In Section 4, we verify the proposed workflow in three aspects—elevation estimation
accuracy, super-resolution capability, and detection rate—through simulation data. In
Section 5, the imaging experiments are described, which were carried out using ST mode
datasets of TerraSAR-X in Shenzhen, China. We conclude in Section 6 with a discussion
and suggestions for future work.

2. TomoSAR Imaging Based on Compressive Sensing
2.1. TomoSAR System Mode

TomoSAR is developed from InSAR technology, borrowing some principles from
medical CT imaging technology. As InSAR can only obtain the elevation of the observed
area, with the assumption that there is only one dominant scatter in one azimuth–range
pixel. TomoSAR technology constructs the synthetic aperture in the elevation direction,
which is perpendicular to the plane formed by the range (r) and azimuth (x), and it can
solve the problem of several dominant scatterers located at different heights, but projected
in the same azimuth–range resolution cell. Considering the huge cost of constructing a
multi-antenna in the elevation direction, TomoSAR technology obtains the ground image
data through repeated observations at different heights and times in the same area [7,41,42],
as shown in Figure 1.
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Figure 1. The imaging mode of TomoSAR.

In Figure 1, x is the azimuth direction, r is the range direction, and s is the elevation
direction. After registration and phase correction are performed, the focused complex-
valued measurement gn of one azimuth–range pixel for the nth acquisition at aperture
position bn can be obtained. Each pixel value can be expressed as the integral of the
backscattering distribution along the elevation [7], which can be expressed as:

gn =
∫
∆s

γ(s) exp(−j2πξns)ds, n = 1, 2, 3, . . . , N . (1)



Sensors 2021, 21, 6888 4 of 15

where γ(s) is the back reflectivity function along the elevation direction of the imaging area,
the spatial sampling (elevation) frequency ξn can be calculated as ξn= −2b⊥n/(λr), b⊥n
is the vertical baseline distance, λ is the wavelength, ∆s is the elevation extent that depends
on the antenna diffraction pattern width, and r is the central range. After discretization,
Equation (1) can be approximated, simply, as:

g = R γ+ ε, (2)

where g is the measurement vector of length N, R is the dictionary matrix with the size of
N× L, Rnl= exp(−j2πξnsl), and γ is γ(s) irregular sampling of elevation at every position
(1,..., L), and ∆b is the aperture size. Similar to the azimuth resolution, the Rayleigh
resolution is inversely proportional to the aperture size, ρs= λr/2∆b. As L >> N, the
system model (2) is severely ill-posed [15].

2.2. Compressive Sensing

The core idea of compressive sensing theory is the reduction of the dimensionality of
a high-dimensional sparse matrix while, at the same time, preserving the signal quality,
in order to conduct signal sampling and compression simultaneously. The compressive
sensing theory allows us to exceed the Shannon limit by using the sparse characteristics
of the signal, which constitutes a significant step in the signal process. The mathematical
model of the reconstruction of compressive sensing is as follows:

g = Φ X, (3)

assuming that the original signal is X = Ψγ, with a length of L, where Ψ is the sparse
orthogonal basis matrix of the original signal X. If the original signal has k non-zero
values, it can be called k-sparse. In Equation (3), g is the measurement matrix, where
g ∈ Rn (n = 1,2,3 . . . N), and where Φ (with size N × L) is the sensing matrix (also called
the dictionary matrix), which corresponds to the sub-sampling process and projects a
high-dimensional signal x into a low-dimensional space.

The problem of compressive sensing is to obtain the original signal X by solving the
underdetermined equations on the basis of a known measurement value g and sensing
matrix Φ; however, under normal circumstances, the number of equations is far less than
the number of unknowns, so the equation has no definite solution, and the signal cannot
be reconstructed. As the signal is k-sparse (k non-zero numbers), if the Φ in the above
formula satisfies the restricted isometry property (RIP) [43–45], then k can be accurately
reconstructed from N measured values. Equation (3) can be seen as satisfying the following
equation (ignoring the noise):

min
γ
‖γ‖0s.t. g = Φ X. (4)

According to CS theory, if the sensing matrix R fulfills the incoherence properties,
minimization of the convex L1/L2 norm provides the same solution as the NP-hard L0
norm minimization. Thus, Equation (4) can be approximated as:

min
γ
‖γ‖1s.t.g = Φ X. (5)

There are many solutions for Equation (5), such as convex optimization, greedy
pursuit, and the Bayes algorithm, which are not discussed here; detailed information
can be found in [14]. The application of the compressive sensing theory to TomoSAR
imaging mainly includes the following four steps: (1) sparse representation of the SAR
echo signal; (2) the construction of the mapping matrix, which is the key step to realizing
sparse TomoSAR imaging; (3) the tomographic focus reconstruction algorithm, which is
the core step of TomoSAR imaging and directly determines the performance of imaging;
and (4) parameter estimation and model evaluation [25,46–48]. Note that, in dense urban
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areas, excepting the volumetric scatterers with the character of temporarily decorrelating,
there are typically only 0–4 dominant scatterers in the elevation of one Az–Rg pixel, which
can be considered sparse in the space domain of elevation.

3. Materials and Methods

In this section, the principle of joint sparsity based on building prior knowledge
(POIs) and maximum likelihood estimation to reduce the number of acquisitions needed
and estimate scatterers is introduced First, the relevant concepts and principles of joint
sparsity are summarized, and the extraction of the building LOI, building mask, and iso-
height lines from building POIs is discussed in detail. The maximum likelihood estimation
model for scatterers estimation based on the Bayesian information criterion (BIC-MLE)
was subsequently applied to remove the outliers [49]. The overall technical route is shown
in Figure 2 below; the preprocessing of the input single-look slant-range complex (SSC)
images was performed by a persistent scatterer interferometry (PSI) process, as well as
deramp and so on [50].
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3.1. Joint Sparsity Basic

Joint sparsity has been developed on the basis of compressive sensing (CS) for sparse
reconstruction [51,52]. In the theory of joint sparsity for sparsity reconstruction, the prior
structural information in the observed scene is taken into full consideration. The joint
sparsity for sparsity reconstruction is realized by incorporating sparsity constraints and
structural constraints into the reconstruction imaging processing, which can contribute
to a new sparsity scene according to the prior structural information that is excavated.
Joint sparsity not only emphasizes the sparsity characteristics in traditional CS theory, but
also improves its disadvantages of being greatly affected by noise and having pseudo-
values [31,53]. Its principle is also derived from Equation (2):

GN×M= ψN×L YL×M +EN×M. (6)

In this study, the building LOI, building masks, and iso-height lines were used as
prior information to construct a new sparse scene; furthermore, the reconstruction of the
individual building was realized using the structural characteristics of the pixels on the
same iso-height line, which share the same spatial spectrum and elevation simultane-
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ously. Suppose that in one iso-height line there are a total of M pixels. Then, we can
infer that every pixel’s ξn is equivalent, which can be defined for each pixel’s dictionary
matrix R1 ≈ R2 . . . ≈ RM. The expressions of each element in Equation (6) can be obtained
as follows:

G =


g1×1
g2×1

...
gN×1

g1×2
g2×2

...
gN×2

· · · g1×M
· · · g2×M

...
· · · gN×M

 E =


ε1×1
ε2×1

...
εN×1

ε1×2
ε2×2

...
εN×2

· · · ε1×M
· · · ε2×M

...
· · · εN×M



where ψN×L =


exp(−j2πξ 1s1)
exp(−j2πξ 2s1)

...
exp(−j2πξNs1

)
exp(−j2πξ 1s2)
exp(−j2πξ 2s2)

...
exp(−j2πξNs2

)
· · · exp(−j2πξ 1sL)
· · · exp(−j2πξ 2sL)

...
· · · exp(−j2πξNsL

)
;

Similarly, the optimum estimate YL×M with CS in Equation (6) is found to be:

Ŷ = arg min
Y

{
1
2
‖G−ψY‖2

2+λκ‖Y‖1,2

}
. (7)

After solving (7) described in [54,55], the BIC-MLE model was utilized to estimate the
optional number for each pixel individually. According to the above principles, the build-
ing’s prior information extraction process is as follows. Algorithm 1 is the corresponding
pseudo-code of the process.

Algorithm 1: Procedure to Extract LOI, Mask, and Iso-Height Lines from Building POI.

1: #Generate the LOI;
2: Import image and identify the POI of the test building by geodetic surveying;
3: Connect the POI facing the SAR sensor side to form the LOI and transform it to SAR coordinate
system by geocoding;
4: Initialize the max-shift range of the surveyed area and find the pixels that LOI passed;
5: #Generate Mask;
6: While “range shift ≤ range limit”, one must:
7: Shift the LOI in the range direction by a distance of 1 and find the pixels passed in every shift;
8: Compute the pixel average intensity value of every shift;
9: Compute the intensity difference value between every pixel shift and the LOI;
10: Find the maximum difference value;
11: Otherwise, break;
12: #Generate iso-height lines;
13: While “range shift ≤ range limit of Mask”, one must;
14: Shift the LOI only in the range direction by the sub-pixel distance;
15: Compute the distance between a pixel and its adjacent iso-height lines and find the closest
iso-height line to the pixel;
16: The pixels belonging to the same iso-height line are associated;
17: Construct new sparse scenario;
18: Otherwise, break;
19: # BIC-MLE;
20: Initialize K == 0, while K == 0–4;
21: Calculate each model based on the BIC for every pixel;
22: Find the model that best fits each pixel, and estimate the elevation, amplitude, and phase;
23: K = K + 1;
24: Otherwise, end.

3.2. Building LOI

In the backscatter mechanism of an individual building in SAR illumination, due to the
dihedral corner structure formed by the ground and the building wall, the echo energy in
most cases is superimposed and converged, which results in SAR images often presenting
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with a very bright “L”-shaped strip. Meanwhile, due to the nature of the side-looking
geometry, the SAR beam can only obtain one side of the building’s wall facade and the top
surface of the building [42]; thus, we chose the building’s bottom “L”-shaped line facing
the SAR sensor side as the LOI. In order to obtain the LOI of the individual building, we
should first obtain the precise coordinates of the Points of Interest (POIs) facing the SAR
sensor of the building, through the geodetic survey method. It is important to note that if a
POI of the building facing the SAR line of the sight direction is determined by its projection
on the range axis line (assuming that the line is range = 0), when the projection line of the
POI has no intersection with the building contour line that exists, the POI will be regarded
as facing the side of the SAR sensor. Secondly, we converted the LOI, formed by the POIs
that form the world (latitude/longitude) coordinate, to the SAR imaging coordinate system
(accuracy on the order of 1/4 pixel). The coordinates of the measured POIs and pixels of
the LOI in the SAR coordinate system (after being geocoded) are shown in Table 1 and
Figure 3 respectively:

Table 1. The precise coordinates of POI (WGS84).

POI Latitude/Deg Longitude/Deg Height/M

A 22.55513197 113.88121665 0.987

B 22.55513975 113.88109875 1.012

C 22.55564238 113.88098455 0.995
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3.3. Building Mask

After obtaining the LOI of the individual building, we subsequently obtained the
building mask. Here, we defined the building LOI as the initial mask of the individual
building, and the building mask can be acquired by shifting the initial mask. The principle
of the method to obtain the building mask is to iterate the initial mask of the building
only in the range direction, and the maximum shift distance is determined by the tallest
building in the observation area. In the local area, the tallest building was about 225 m;
hence, the maximum pixel amount in the SAR image was 225/0.588 ≈ 382 (0.588, here, is
the range resolution). The shift step size was one pixel. By calculating the average intensity
of all the pixels that the initial mask passes through in every iteration, the iteration with
the greatest change in the average intensity will be found. Furthermore, this iteration was
regarded as the last translation of the initial mask, and the contour obtained by this shift
was precisely the building mask. The following figure shows the max-shift mask and the
building mask overlaid on the intensity image.

3.4. Building ISO-Height Lines

The purpose of obtaining the building mask was to obtain the range limitation of the
iso-height lines. The method used to obtain the iso-height lines was similar to that for the
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building mask; however, the initial mask was shifted with a sub-pixel step length, and
the maximum shift range was the boundary of the building mask. After all the iso-height
lines were accepted, all the pixels were preceded by pixel association. The meaning of
pixel association is to join the pixels on the same iso-height line. As the iso-height line was
shifted by the step length of the sub-pixel, an extra calculation was needed to calculate the
distance between each pixel and the two nearest iso-height lines. It should be noted that
whether the distance belongs to the nearest distance is determined using the magnitude
of the fitting error. After the association of pixels, a new structured sparsity scene was
constructed for sparsity inversion. Figure 4c, above, provides a schematic diagram of the
iso-height lines.
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4. Verification of Simulation Data

In this section, we verified the proposed joint sparsity imaging workflow through
simulation data. The verification criterion mainly included three aspects: the scatterer
elevation estimation accuracy, super-resolution ability, and scatterer detection rate. In
order to verify the effectiveness of the imaging workflow proposed in this paper, we
conducted a comparative analysis between the proposed workflow and the traditional
TomoSAR imaging algorithm based on Orthogonal Matching Pursuit (OMP). Note that
the OMP algorithm used in this paper was Stanford University’s sparse reconstruction
toolkit, Sparselab (http://sparselab.stanford.edu/). In the process of pixel association on
the above iso-height lines, the average number of pixels in each iso-height line was 29.
According to this, we set M = 29 in the simulation data. Given that SNR = 10, the number of
images was set as N = 10/18, and the number of scatterers was set as 0–2 per pixel. As the
OMP for TomoSAR imaging proceeds pixel by pixel and does not require pixel associations,
we combined the 29 pixels for the purpose of convenient drawing.

Figure 5 shows the elevation estimation accuracy when the number of images was
different. The solid blue line represents the original signal; the solid red circle represents the
signal recovered by the joint sparsity algorithm, and the black solid dot was recovered by
OMP. Figure 5c shows the elevation estimation accuracy errors in different image numbers.
In order to make the comparison more intuitive, we squared and summed the elevation
estimation error of the scatterers in each pixel. It can be seen from the figure that as the
number of images decreased to 10, the signal elevation estimation error recovered by the
OMP algorithm increased, and there were also many noise points that appeared. The
Table 2 below shows the Root Mean Square Error (RMSE) of elevation estimation accuracy
reconstructed by different algorithms with different images. The curve of the cumulative
deviation of N = 10/joint sparsity was much smaller than that with N = 18/OMP, which
verified the effectiveness of the novel workflow.

http://sparselab.stanford.edu/
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Table 2. The RMSE of elevation estimation accuracy.

RMSE Joint Sparsity OMP

N = 18 0.554 0.919
N = 10 1.097 1.679

Figure 6 shows a comparison of the super-resolution capability when the number
of images dropped; the elevation distance (D) was set to 20, 10, and 5. Table 3 is the
corresponding reflectivity mean value of the outliers (only scatterers whose elevation
accuracy exceed ±5 can be considered as outliers). As can be seen in the picture, when
N = 18, with the reduction in elevation distance, the super-resolution capability of OMP
was gradually decreased, and the number of miscellaneous points generated also increased.
In Figure 6c, the signal recovered by OMP had an obvious false value, and part of the
scatterers could not be separated effectively. When N = 10, only a few scatterers could be
recovered accurately by OMP, but with many false values generated as illustrated in Table 3.
However, the joint sparsity imaging algorithm still had powerful separation adaptability
to the scatterers with a small distance, even at N = 10, while, at the same time, maintaining
a high elevation estimation accuracy.
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Table 3. The reflectivity mean value of the outliers. The two algorithms correspond to the two
columns of numbers; the left column is N = 18 and the right column is N = 10.

Mean Value Joint Sparsity OMP

D = 20 0.012 0.017 0.018 0.024
D = 10 0.013 0.019 0.028 0.129
D = 05 0.022 0.025 0.139 0.279

Figure 7 is the scatterer detection rate under the influence of the acquisition number
and elevation distance. Note that the scatterer detected is only included in the calculation
when its elevation estimation accuracy reaches half of the set elevation distance. It can be
seen from the figure that as the elevation distance of scatterers decreased, the detection
rate of OMP decreased dramatically and only had a small increase between D = 0.2–0.5 m,
regardless of whether N = 18 or N = 10. On the other hand, the joint sparsity imaging
algorithm had greater adaptability to the number of images and could achieve a higher
scatterer detection rate. When the distance exceeded about 0.3 m, the detection rate of joint
sparsity was almost impervious to the number of acquisitions.
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The above simulation experiments demonstrate that the proposed workflow had
strong robustness in the face of a decrease in the number of images and a decrease in the
scatterer interval. It showed a good reconstruction effect, regardless of the accuracy of the
point location estimation, the super-resolution ability, or the scatterer detection rate, which
fully verifies the effectiveness of the novel workflow. In the next section, we applied the
workflow to real satellite data in order to present a more convincing verification.

5. Practical Test Results

This section presents a case where an individual building was retrieved using a stack
of TerraSAR-X acquisitions in ST mode. The test area was a building of 400 × 450 pixels
in size in Baoan, Shenzhen, with a time span of 792 days (from November 2015–January
2018). Its temporal and spatial baseline digraph can be seen in Figure 8. According to the
geographic survey data, the test building had a total of 48 floors and was about 162 m tall.
Furthermore, the Rayleigh resolution of the test area in elevation direction was about 21 m.
The parameters of a ST mode image in the test area are shown in the Table 4 below:
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red edges represent the baseline data in the experiment N = 10.

Table 4. Some parameters of a TSX ST acquisition of Shenzhen.

Some Parameters of a TerraSAR-X Staring Spotlight Acquisition of Shenzhen

Incident Angle 35.380◦

Polarization Mode HH
Number of Azimuth Beams 113

Azimuth Steering Angle ±2.210◦

Azimuth Resolution 0.230 m
Slant Range Resolution 0.588 m
Scene Azimuth Extent 3052.988 m

Scene Range Extent 6262.264 m
Common PRF 42,400 Hz

Azimuth Look Bandwidth 38,292.780 Hz
Range Look Bandwidth 300 MHz

Scene Duration Time 0.43 s
RAW Duration Time 6.73 s

Figures 9 and 10 show the experimental results of the test area. The experimental
results are the reconstruction results of the two algorithms and the point cloud of the
separated single and double scatterers when N = 18/10, respectively. It can be seen from
Figure 10 that when the number of images was reduced to 10, the reconstruction results
of different algorithms had a large order of magnitude reduction in the density of point
clouds, and there was also a large order of magnitude difference in the scatter miscellany
points. When N = 18, a total of 2113 scatterers were detected by the joint sparsity algorithm,
while 1352 scatterers were detected by OMP, and the common scatters (containing double
scatterers with an average error less than 0.1 m) approached 970. Although there was a
small difference in the number of scatterers detected by the two algorithms, it can be clearly
seen from Figure 9b that there were few false scatterers in them. In addition, when N = 18,
the maximum height recovered by the joint sparsity was 161.4 m, and that reconstructed
by the OMP was 161.1 m, both of which were consistent with the actual height of the
test building.

It can be seen from Figure 9a–d that when the number of images decreased, the
number of scatterers detected by the two algorithms decreased by a large order of mag-
nitude (N = 10/joint sparsity: 1015; N = 10/OMP: 1891; common scatter: 461). However,
compared with the OMP, the reconstruction results recovered by joint sparsity were rel-
atively robust, which strongly verifies the effectiveness of the method proposed in this
paper. Moreover, when the number of acquisitions was reduced to 10, the number of
scatterers detected by the joint sparsity method was not significantly different from that
detected by the OMP method when N = 18, which fully demonstrates that the introduction
of building prior information could effectively assist TomoSAR imaging in achieving a
reasonable result.
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Figure 10 shows the influence of the number of images and different algorithms on
the ability to distinguish scatterers. As can be seen from Figure 10, when the number
of images decreased, the number of double scatterers decreased to a great extent. For
example, in Figure 10c, the number of double scatterers detected decreased by at least half,
compared with that in Figure 10a (452 in total). In addition, the number of false scatterers
increased greatly. One strong piece of evidence is that the number of double scatterers
detected in Figure 10d was 2.6 times that in Figure 10b (502 in total). Significantly, however,
the joint sparsity still had a strong ability to distinguish scatterers when the number of
images decreased.

Finally, on the other hand, it is worth mentioning the different computational burdens
of the two algorithms. Under the same conditions, the calculation time for the joint sparsity
was about 40 times that of the OMP algorithm (joint sparsity: 22.6 h, OMP: 0.52 h). Of
course, in addition to the difference in convergence speed between joint sparsity and OMP,
the addition of an extra calculation and the penalty function term to select the number of
scatterers is also an inactive factor.

6. Conclusions

In summary, in this paper, an ‘object-based’ compressive sensing imaging workflow
was proposed in TomoSAR imaging to solve two problems: the large number of acquisitions
needed and the outliers in scatterer estimation. On the basis of conventional compressive
sensing and considering the sparsity in the observed area, this novel workflow makes full
use of prior information about an individual building, such as building POIs, to construct
new structural sparse scenes. Furthermore, a maximum likelihood function model based
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on the Bayesian information criterion for scatterer estimation was applied to reject outliers.
The simulation results showed that the algorithm exhibited good performance in elevation
estimation accuracy, super-resolution ability, and detection rate. In terms of the RMSE
of elevation estimation accuracy, the joint sparsity was 1.097 (N = 10) compared with
0.919 (N = 18) of OMP. Regarding the reflectivity mean value (D = 05) of the outliers,
the joint sparsity was 0.025 (N = 10) compared with 0.139 (N = 18) of OMP. In addition,
experiments based on TerraSAR-X staring spotlight (ST) datasets in the Shenzhen area not
only demonstrated the superiority of the workflow in SAR tomography, but also indicated
the great potential of high-precision dense point cloud generation from ST stacks.

If we consider the limitation of the proposed algorithm, the huge time cost and prior
information preparation is still somewhat of a problem. In terms of processing time of
one pixel, the OMP was only 0.012 s, and the joint sparsity was 0.41 s; even without
optimization, the joint sparsity still reached 0.29 s. In particular, the preparation of prior
information required us to conduct field investigations and measurements, which also
limits the application of the joint sparsity in emergency reconstructions and large-scale
scene reconstructions to some extent. In order to promote the development of the algorithm
in engineering applications, we intend to conduct in-depth research on the problem of the
high computational cost of the algorithm as well as the optimization of prior information
extraction. We will also extend the workflow to higher-dimensional imaging, such as
differential TomoSAR imaging (D-TomoSAR) and 5D-SAR imaging in the future. Last but
not least, the high-precision dense point clouds in which we have a great interest will also
be conducted for further experimental analyses.

Author Contributions: L.P. conceived the idea and improved the manuscript; Y.G. performed the
experiments and drafted the manuscript; T.Z. contributed to the discussion of the results and revision
of the article. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the General project of Science and Technology Program
of Beijing Municipal Education Commission under Grant Nos. KM201610016008.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Deutsches Zentrum für Luft-und Raumfahrt
(DLR) for providing the SAR tomographic experiment datasets (TerraSAR-X proposal RES3668).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, X.; Wang, Y.; Montazeri, S.; Ge, N. A Review of Ten-Year Advances of Multi-Baseline SAR Interferometry Using TerraSAR-X

Data. Remote Sens. 2018, 10, 1374. [CrossRef]
2. Chibiao, D.; Xiaolan, Q.; Feng, X. Synthetic aperture radar three-dimensional imaging—From TomoSAR and array InSAR to

microwave vision. J. Radars 2019, 8, 693–709.
3. Zhen, L.; Ping, Z.; Haiwei, Q. Advances in information extraction of surface parameters using Tomographic SAR. J. Radars 2020,

9, 20–35.
4. Ge, N.; Bamler, R.; Hong, D.; Zhu, X.X. Single-Look Multi-Master SAR Tomography: An Introduction. IEEE Trans. Geosci. Remote

Sens. 2021, 59, 2132–2154. [CrossRef]
5. Reigber, A.; Moreira, A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. Geosci.

Remote Sens. 2000, 38, 2142–2152. [CrossRef]
6. Lombardini, F.; Viviani, F. Multidimensional SAR Tomography: Advances for Urban and Prospects for Forest/Ice Applications.

In Proceedings of the 11th European Radar Conference, Rome, Italy, 8–10 October 2014; pp. 225–228.
7. Fornaro, G.; Serafino, F.; Soldovieri, F. Three-dimensional focusing with multipass SAR data. IEEE Trans. Geosci. Remote Sens.

2003, 41, 507–517. [CrossRef]
8. Gini, F.; Lombardini, F.; Montanari, M. Layover solution in multibaseline SAR interferometry. IEEE Trans. Aerosp. Electron. Syst.

2002, 38, 1344–1356. [CrossRef]
9. Donoho, D.L. Compressed Sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
10. Baraniuk, R. Compressive Radar Imaging. IEEE Radar Conf. 2007, 128–133.

http://doi.org/10.3390/rs10091374
http://doi.org/10.1109/TGRS.2020.3002945
http://doi.org/10.1109/36.868873
http://doi.org/10.1109/TGRS.2003.809934
http://doi.org/10.1109/TAES.2002.1145755
http://doi.org/10.1109/TIT.2006.871582


Sensors 2021, 21, 6888 14 of 15

11. Zhu, X.X.; Bamler, R. Tomographic SAR Inversion by L1-Norm Regularization—The Compressive Sensing Approach. IEEE Trans.
Geosci. Remote Sens. 2010, 48, 3839–3846. [CrossRef]

12. Zhu, X.X.; Bamler, R. Very High Resolution Spaceborne SAR Tomography in Urban Environment. IEEE Trans. Geosci. Remote Sens.
2010, 48, 4296–4308. [CrossRef]

13. Zhu, X.X.; Bamler, R. Demonstration of Super-Resolution for Tomographic SAR Imaging in Urban Environment. IEEE Trans.
Geosci. Remote Sens. 2012, 50, 3150–3157. [CrossRef]

14. Zhang, B.; Hong, W.; Wu, Y. Sparse microwave imaging: Principles and applications. Sci. China Inf. Sci. 2012, 55,
1722–1754. [CrossRef]

15. Wu, J.; Liu, F.; Jiao, L.C.; Wang, X. Compressive Sensing SAR Image Reconstruction Based on Bayesian Framework and
Evolutionary Computation. IEEE Trans. Image Process. 2011, 20, 1904–1911. [CrossRef]

16. Chen, F.; Zhou, W.; Chen, C.; Ma, P. Extended D-TomoSAR Displacement Monitoring for Nanjing (China) City Built Structure
Using High-Resolution TerraSAR/TanDEM-X and Cosmo SkyMed SAR Data. Remote Sens. 2019, 11, 2326. [CrossRef]

17. Ma, P.; Lin, H.; Lan, H.; Chen, F. On the Performance of Reweighted L1 Minimization for Tomographic SAR Imaging. IEEE Geosci.
Remote Sens. Lett. 2015, 12, 895–899. [CrossRef]

18. Ender, J.H.G. On compressive sensing applied to radar. Signal Process. 2010, 90, 1402–1414. [CrossRef]
19. Budillon, A.; Evangelista, A.; Schirinzi, G. Three-Dimensional SAR Focusing from Multipass Signals Using Compressive Sampling.

IEEE Trans. Geosci. Remote Sens. 2009, 49, 488–499. [CrossRef]
20. Sun, X.; Yu, A.; Dong, Z.; Liang, D. Three-Dimensional SAR Focusing via Compressive Sensing: The Case Study of Angel Stadium.

IEEE Geosci. Remote Sens. Lett. 2012, 9, 759–763.
21. Zeng, J.; Fang, J.; Xu, Z. Sparse SAR imaging based on L1/2 regularization. Sci. China Inf. Sci. 2012, 55, 1755–1775. [CrossRef]
22. Budillon, A.; Johnsy, A.C.; Schirinzi, G. Extension of a Fast GLRT Algorithm to 5D SAR Tomography of Urban Areas. Remote Sens.

2017, 9, 844. [CrossRef]
23. Rambour, C.; Budillon, A.; Johnsy, A.C.; Denis, L.; Tupin, F.; Schirinzi, G. From Interferometric to Tomographic SAR: A Review of

Synthetic Aperture Radar Tomography-Processing Techniques for Scatterer Unmixing in Urban Areas. IEEE Geosci. Remote Sens.
Mag. 2020, 8, 6–29. [CrossRef]

24. Budillon, A.; Ferraioli, G.; Schirinzi, G. Localization Performance of Multiple Scatterers in Compressive Sampling SAR Tomogra-
phy: Results on COSMO-SkyMed Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2902–2910. [CrossRef]

25. Zhu, X.X.; Bamler, R. Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application
to Spaceborne Tomographic SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 247–258. [CrossRef]

26. Shi, Y.; Zhu, X.; Bamler, R. Nonlocal Compressive Sensing-Based SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2019, 57,
3015–3024. [CrossRef]

27. Chai, H.; Lv, X. SAR tomography for point-like and volumetric scatterers using a regularised iterative adaptive approach. Remote
Sens. Lett. 2018, 9, 1060–1069. [CrossRef]

28. Wei, L.; Balz, T.; Zhang, L.; Liao, M. A Novel Fast Approach for SAR Tomography: Two-Step Iterative Shrinkage/Thresholding.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 1377–1381.

29. Hui, L.; Peifeng, M.; Min, C. Basic Principles, Key Techniques and Applications of Tomographic SAR Imaging. J. Geomat. 2015,
40, 1–5.

30. Budillon, A.; Johnsy, A.C.; Schirinzi, G. Contextual Information Based SAR Tomography of Urban Areas. In Proceedings of the
Joint Urban Remote Sensing Event (JURSE), Vannes, France, 22–24 May 2019; pp. 1–4.

31. Zhu, X.X.; Ge, N.; Shahzad, M. Joint Sparsity in SAR Tomography for Urban Mapping. IEEE J. Sel. Top. Signal Process. 2015, 9,
1498–1509. [CrossRef]

32. Delbridge, B.G.; Bürgmann, R.; Fielding, E.; Hensley, S.; Schulz, W.H. Three-dimensional surface deformation derived
from airborne interferometric UAVSAR: Application to the Slumgullion Landslide. J. Geophys. Res. Solid Earth 2016, 121,
3951–3977. [CrossRef]

33. Schaefer, L.N.; Lu, Z.; Oommen, T. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya
Volcano, Guatemala. Remote Sens. 2016, 8, 73. [CrossRef]

34. Wang, Y.; Zhu, X.X.; Zeisl, B.; Pollefeys, M. Fusing Meter-Resolution 4-D InSAR Point Clouds and Optical Images for Semantic
Urban Infrastructure Monitoring. IEEE Trans. Geosci. Remote Sens. 2017, 55, 14–26. [CrossRef]

35. Chai, H.; Lv, X.; Xiao, P. Deformation Monitoring Using Ground-Based Differential SAR Tomography. IEEE Geosci. Remote Sens.
Lett. 2020, 17, 993–997. [CrossRef]

36. Wen, H.; Yanping, W.; Yun, L.; Weixian, T.; Yirong, W. Research Progress on Three-dimensional SAR Imaging Techniques. J.
Radars 2018, 7, 633–654.

37. Budillon, A.; Johnsy, A.; Schirinzi, G. Urban Tomographic Imaging Using Polarimetric SAR Data. Remote Sens. 2019,
11, 132. [CrossRef]

38. Aichun, W.; Maosheng, X. SAR tomography based on block compressive sensing. J. Radars 2016, 5, 57–64.
39. Duque, S.; Breit, H.; Balss, U.; Parizzi, A. Absolute Height Estimation Using a Single TerraSAR-X Staring Spotlight Acquisition.

IEEE Geosci. Remote Sens. Lett. 2015, 12, 1735–1739. [CrossRef]
40. Ge, N.; Gonzalez, F.R.; Wang, Y.; Shi, Y.; Zhu, X.X. Spaceborne Staring Spotlight SAR Tomography—A First Demonstration with

TerraSAR-X. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3743–3756. [CrossRef]

http://doi.org/10.1109/TGRS.2010.2048117
http://doi.org/10.1109/TGRS.2010.2050487
http://doi.org/10.1109/TGRS.2011.2177843
http://doi.org/10.1007/s11432-012-4633-4
http://doi.org/10.1109/TIP.2010.2104159
http://doi.org/10.3390/rs11222623
http://doi.org/10.1109/LGRS.2014.2365613
http://doi.org/10.1016/j.sigpro.2009.11.009
http://doi.org/10.1109/TGRS.2010.2054099
http://doi.org/10.1007/s11432-012-4632-5
http://doi.org/10.3390/rs9080844
http://doi.org/10.1109/MGRS.2019.2957215
http://doi.org/10.1109/JSTARS.2014.2344916
http://doi.org/10.1109/TGRS.2011.2160183
http://doi.org/10.1109/TGRS.2018.2879382
http://doi.org/10.1080/2150704X.2018.1508911
http://doi.org/10.1109/JSTSP.2015.2469646
http://doi.org/10.1002/2015JB012559
http://doi.org/10.3390/rs8010073
http://doi.org/10.1109/TGRS.2016.2554563
http://doi.org/10.1109/LGRS.2019.2938233
http://doi.org/10.3390/rs11020132
http://doi.org/10.1109/LGRS.2015.2422893
http://doi.org/10.1109/JSTARS.2018.2851752


Sensors 2021, 21, 6888 15 of 15

41. Fornaro, G.; Lombardini, F.; Serafino, F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne
data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 702–714. [CrossRef]

42. Fornaro, G.; Serafino, F. Imaging of Single and Double Scatterers in Urban Areas via SAR Tomography. IEEE Trans. Geosci. Remote
Sens. 2006, 44, 3497–3505. [CrossRef]

43. Candes, E.J.; Tao, T. Decoding by linear programming. IEEE Trans. Inf. Theory 2005, 51, 4203–4215. [CrossRef]
44. Candes, E.J.; Tao, T. Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies. IEEE Trans. Inf.

Theory 2006, 52, 5406–5425. [CrossRef]
45. Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [CrossRef]
46. Zhu, X.X.; Shahzad, M. Facade Reconstruction Using Multiview Spaceborne TomoSAR Point Clouds. IEEE Trans. Geosci. Remote

Sens. 2014, 52, 3541–3552. [CrossRef]
47. Yi-rong, W.; Wen, H.; Bing-chen, Z. Current Developments of Sparse Microwave Imaging. J. Radars 2014, 3, 383–395.
48. Ming-sheng, L.; Lian-huan, W.; Zi-yun, W.; Balz, T.; Lu, Z. Compressive Sensing in High-resolution 3D SAR Tomography of

Urban Scenarios. J. Radars 2015, 4, 123–129.
49. Stoica, P.; Selen, Y. Model-order selection: A review of information criterion rules. IEEE Signal Process. Mag. 2004, 21,

36–47. [CrossRef]
50. Chibiao, D.; Xiaolan, Q.; Yirong, W. Concept, system, and method of holographic synthetic aperture radar. J. Radars 2020,

9, 399–408.
51. Baron, D.; Duarte, M.F.; Sarvotham, S.; Wakin, M.B.; Baraniuk, R.G. An information-theoretic approach to distributed compressed

sensing. In Proceedings of the 45th Conference on Communication, Control, and Computing, Houston, TX, USA, 25–28
September 2005.

52. Wimalajeewa, T.; Varshney, P.K. OMP based joint sparsity pattern recovery under communication constraints. IEEE Trans. Signal
Process. 2014, 62, 5059–5072. [CrossRef]

53. Fang, Y.; Wang, B.; Sun, C.; Wang, S.; Hu, J.; Song, Z. Joint Sparsity Constraint Interferometric ISAR Imaging for 3-D Geometry of
Near-Field Targets with Sub-Apertures. Sensors 2018, 18, 3750. [CrossRef] [PubMed]

54. Eldar, Y.C.; Rauhut, H. Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation. IEEE Trans. Inf. Theory
2010, 56, 505–519. [CrossRef]

55. Seeger, M.W.; Wipf, D.P. Variational Bayesian Inference Techniques. IEEE Signal Process. Mag. 2010, 27, 81–91. [CrossRef]

http://doi.org/10.1109/TGRS.2005.843567
http://doi.org/10.1109/TGRS.2006.881748
http://doi.org/10.1109/TIT.2005.858979
http://doi.org/10.1109/TIT.2006.885507
http://doi.org/10.1109/TIT.2005.862083
http://doi.org/10.1109/TGRS.2013.2273619
http://doi.org/10.1109/MSP.2004.1311138
http://doi.org/10.1109/TSP.2014.2343947
http://doi.org/10.3390/s18113750
http://www.ncbi.nlm.nih.gov/pubmed/30400251
http://doi.org/10.1109/TIT.2009.2034789
http://doi.org/10.1109/MSP.2010.938082

	Introduction 
	TomoSAR Imaging Based on Compressive Sensing 
	TomoSAR System Mode 
	Compressive Sensing 

	Materials and Methods 
	Joint Sparsity Basic 
	Building LOI 
	Building Mask 
	Building ISO-Height Lines 

	Verification of Simulation Data 
	Practical Test Results 
	Conclusions 
	References

