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Abstract: Diabetic retinopathy (DR) is a diabetes disorder that disturbs human vision. It starts due
to the damage in the light-sensitive tissues of blood vessels at the retina. In the beginning, DR may
show no symptoms or only slight vision issues, but in the long run, it could be a permanent source of
impaired vision, simply known as blindness in the advanced as well as in developing nations. This
could be prevented if DR is identified early enough, but it can be challenging as we know the disease
frequently shows rare signs until it is too late to deliver an effective cure. In our work, we recommend
a framework for severity grading and early DR detection through hybrid deep learning Inception-
ResNet architecture with smart data preprocessing. Our proposed method is composed of three steps.
Firstly, the retinal images are preprocessed with the help of augmentation and intensity normalization.
Secondly, the preprocessed images are given to the hybrid Inception-ResNet architecture to extract
the vector image features for the categorization of different stages. Lastly, to identify DR and decide
its stage (e.g., mild DR, moderate DR, severe DR, or proliferative DR), a classification step is used.
The studies and trials have to reveal suitable outcomes when equated with some other previously
deployed approaches. However, there are specific constraints in our study that are also discussed
and we suggest methods to enhance further research in this field.

Keywords: deep learning; diabetic retinopathy; grading; retinal; fundus images

1. Introduction

The data given by the World Health Organization (WHO) show that over 5 to 7 million
people across the globe face vision impairment known as diabetic retinopathy (DR), which
accounts for around 5–6% of world blindness as described in Figure 1. Timely detection
can avert the danger of vision loss.
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Automated categorization of cardiovascular and ophthalmologic infections by analysis
of fundus images has become a well-known exercise in the field of telemedicine. Previous
methods were composed of manual separation; however, it was tiresome, time-consuming,
difficult, and skilled manpower is mandatory [1]. On the other hand, computer-aided
identification of fundus irregularities is economical, realistic, impartial, and does not need
professionally trained ophthalmologists to categorize the fundus images [2]. Improvement
in the screening methods is useful in early detection and real-time grading of fundus
diseases such as retinitis pigmentosa (RP), diabetic retinopathy (DR), macular bunker,
age-related macular degeneration (AMD), retinoblastoma, retinitis pigmentosa, and retinal
detachment [3]. A number of template-related, edge-based, and morphological techniques
have been used in recent years for autodetection of fundus developments and fundus
pathology [4]. Furthermore, numerous unsupervised as well as supervised neural networks
(NN)-based approaches have also been used for fundus image examination. Numerous
supervised approaches have adopted artificial neural network (ANN), SVM, decision trees
(DT), and multilayer perceptron (MLP) [5]. Moreover, filter matching and model-based
methods have also been analyzed for the resolution of unsupervised fundus abnormality
discovery [4,6–8].
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Figure 1. World map of diabetic retinopathy [9].

At present, identifying diabetic retinopathy (DR) is a time-intensive and manual
procedure that involves a qualified and skilled ophthalmologist to examine and assess
the colored fundus images of the retina. The human observer most probably can submit
his review report a day or two later; therefore, the late review report can lead to delayed
follow-up, misinterpretation, or delayed cure. An ophthalmologist can detect DR due to
the occurrence of lesions linked with the vascular anomalies initiated by the disease. As
this technique is efficient, a number of resources are required. The skill and apparatus
needed are often missing in the regions that have a high rate of diabetes in residents, where
detection of DR is highly desired. With every passing day, as the cases of diabetes increase,
the facilities required to avert vision loss due to diabetic retinopathy will become ever
more inadequate.

Due to the lack of physical infrastructure and skilled human resources, the need for
an automated and state-of-the-art technique of DR detection has long been advertised, and
earlier efforts have shown good improvement using the classification of images, recognition
of patterns, and machine learning (ML). By giving digital color fundus images as input, the
objective of our work is to establish an automatic computerized system for the detection of
DR to every possible limit—preferably making a system with realistic on-ground potential.



Sensors 2021, 21, 6933 3 of 17

DR grades of severity levels are categorized by several lesions identified on the retina,
such as microaneurysms, hard exudates, and hemorrhages [10]. By reading the literature,
we find various techniques, including deep learning (DL) methods and models that were
built for the identification of lesions and classification of DR, exhibiting encouraging results.
Khojasth et al. [1] developed a technique of CNN that is used to identify 3 different lesions
with the help of 12 layers associated with diabetic retinopathy (DR), i.e., microaneurysms,
hard exudates, and hemorrhages. Lam et al. [11] used a method to localize the lesions with
the help of various architectures of CNN, i.e., Residual-Net, AlexNet, VGG-16, InceptionV3,
and GoogleNet. Eftekhari et al. [4] developed a model of CNN which has 10 layers to
identify the microaneurysms lesion. Gersia et al. [6] built a model for the identification of
DR that is based on data preprocessing trailed by relating the results of various models of
CNN such as VGGNet16 or AlexNet etc. Yung et al. [5] built a model of CNN to categorize
levels of DR from normal to severe grade. Pratt et al. [2] built a model of CNN for grading
DR with the help of augmentation of data and data preprocessing. Qummar et al. [12]
used various preprocessing stages and a combination of different CNN architectures, i.e.,
ResidualNet50, Inception-V3, Xception, and DenseNet, to categorize DR into appropriate
levels. Kori et al. [13] used preprocessing trailed by a model, composed of five ResNets
and three different DenseNets, for DR levels. These models have attained high accuracy.
Though the developed DL models have shown impressive results in the grading of DR,
additional work is required to enhance the precision of grading. Figure 2 represents the
various stages of DR mild.
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Figure 2. (a) Non-proliferative DR mild; (b) non-proliferative DR moderate; (c) non-proliferative DR
severe; (d) proliferative DR [14].

2. Related Work

In this related work, we initially debate about various DR techniques for classification.
As the dataset which is used in the experimentation is extremely class-imbalanced, and thus
has a huge influence on the outcomes of the subjected models, we also discover various
techniques in order to discuss this issue. Finally, we discuss the two architectures which
directly inspire our model.

As microaneurysms and bleedings are usually the initial indications of diabetic
retinopathy, numerous studies have been conducted on these afflictions, mainly for the
initial identification of DR. Therefore, we emphasize those methods in our study. Nu-
merous works practice the traditional image processing techniques, and several of them
are shortened in Table 1. We have restricted our work in this table to the techniques that
identify microaneurysms and bleeding DR, as their occurrence is important for the early
recognition of diabetic retinopathy (DR).
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Table 1. Studies that implement deep learning techniques for the detection of DR.

Title 1 Approach Databases Results

Orlando et al.,
2018 [15]

Patch-based convolutional NN and
conventional candidate selection
trailed by random forest (RF) and

including the manually
made features

Messidor, E-Ophtha,
and DIARETDB1

DR Screening on Messidor
Areas beneath the ROC curve = 0.893

Sensitivity = 0.911
Need for referral on Messidor

Area under the receiver’s operating
characteristic curve = 0.934

Sensitivity = 0.974
Areas beneath the ROC curve = 0.893

Sensitivity = 0.954
Chudzik et al.,

2018 [16]
CNN based on Patch technique and

loss function (LF)
ROC, E-Ophtha, and

DIARETDB1
Free-response receiver operating

characteristic Curves

Quellec et al.,
2017 [17]

Pixel-based visualization with
image-based CNN, and classifier
named as spatiotemporal features

map (STFM)

Private, DIARETDB1,
and Kaggle

Required for recommendation on
Kaggle test-dataset

Areas beneath the ROC curve = 0.893
Sensitivity = 0.954

Ting et al.,
2017 [18]

Group of eight image-based
convolutional NNs which use a

variation of the VGG-Net
Personally collected dataset

Screening of diabetic retinopathy
Area under the receiver’s operating

characteristic curve = 0.936
Required for recommendation

Areas beneath the ROC curve = 0.893
Sensitivity = 0.958

Gargeya et al.,
2017 [19]

Minor image-based convolutional
NN, augmentation of data by

rotation, contrast, and intensity
enhancement, evaluated on more

than 75,000 images

EyePACS-1 dataset for
training and Messidor-2

dataset for testing

Required for a recommendation of
diabetic retinopathy on Messidor-2
Area under the receiver’s operating

characteristic curve = 0.94
Sensitivity = 0.93
Specificity = 0.87

Gulshan et al.,
2016 [20]

A collection of Inception-V3
architecture that is trained on more

than 100,000 images, including
many grades for each image and

two images for each subject

Messidor-2, Private and
(EyePACS)-1

Required for a recommendation of
diabetic retinopathy on Messidor-2

Area under the
receiver’s operating

characteristic curve = 0.999

2.1. Earlier DR Classification Techniques

Studies on automated DR grading have been a vigorous domain in image process-
ing in the medical field in recent decades [21]. Many scholars have suggested various
techniques to categorize diabetic retinopathy (DR). These techniques can be largely cat-
egorized into three classes permitting various grading measures: the initial one is the
binary, i.e., along with or without diabetic retinopathy; the second one is a 3-stage class
of standard, proliferative, or non-proliferative diabetic retinopathy; the recent and most
broadly used measure is the 5-class arrangement described and discussed in the previous
section. Figure 3 represents the color fundus image with DR.
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For binary class, Gardnar et al. [7] used the strength of pixels as feedback features
of the model and achieved specificity (Sp) and sensitivity (Se) results of 83.5% and
88.4% correspondingly on a comparatively small dataset of a few hundred photographs.
Roychowdhury et al. [22] suggested a 2-step tiered classification method which combines
the four machine learning (ML) techniques of SVM, Gaussian mixture models (GMMs), Ad-
aBoost, and k-nearest neighbors (kNNs), and obtained 100% sensitivity results, 0.904 AUC
and 53.16% specificity. Prieya et al. classified retinal photographs with diabetic retinopathy
into NP-DR or PDR, in which they initially took out blood vessel features and features of
hemorrhages as well as exudates. After that, these features were fed into the three grading
techniques of SVM, probabilistic neural net (PNN), and lastly the Bayesian classifiers (BC),
achieving accuracy of 97.6, 89.6, and 94.4%, correspondingly.

For 3-stage classification, Nayek et al. [23] used the properties, i.e., the area of blood
vessels and exudates with textures, and fed these features into the neural network (NN).
On a very small dataset of 140 photographs, they obtained precision of 93% specificity (Sp)
and sensitivity (Se) of 100% and 90% correspondingly. Most of the modern techniques
focus on 5-class classification. Achariya et al. [24] used top-order spectrum techniques to
obtain features and classified photographs with the help of SVM. This technique achieved
accuracy, specificity, and sensitivity of 82%, 88%, and 82%, respectively. Adarish et al. [25]
used texture features and area of the infected part of the retina and trained the multiclass
support vector machines (SVMs) for classification purposes. With the emergence of deep
learning (DL) in previous years, Prat et al. [2] anticipated a model to categorize DR with
the help of a 13-layer convolutional net and assessed the results of this network on a large
dataset from Kaggle.

2.2. Class-Imbalance Feature Learning

In the real-world domain, imbalanced datasets exist, i.e., identifying unreliable
telecommunication clients, classification of textual data and retrieval of information from
medical imaging, and so on [3]. The majority of algorithms for classification purposes
use an objective function that depends upon constant 0–1 and regularized loss function.
Without solving the disparity issue, most of the techniques are inclined to be biased for
many classes, having poor precision for the smaller classes [8].

Many solutions for the class imbalance problem have been suggested at the data
level [3]. However, our proposed solution tries to solve the problem of class imbalance not
even on the data level but at the algorithm level as well. For the data level, the proposed
solution contains various types of resampling such as undersampling, oversampling, and
their combination. At the level of algorithm, a cost-sensitive technique is being used, where
every class receives a different weight during the calculation of loss function. In [26], the
researcher trained a CNN model with the help of a cost-sensitive loss function to perform
saliency identification.

2.3. ResNet and Deeply Supervised Nets

In recent years, deep learning (DL) has gradually become widespread in both indus-
trial and academic domains. Different areas such as computer vision recognition of patterns
and NLP have observed the considerable power of DNN.

In [27], the researcher presented companion functions in every hidden layer to ad-
dress the following three problems present in the old-style CNN model: initially, the
transparency in intermediate layers for an overall classification; secondly, the robustness
and discrimination of learned characteristics, particularly in initial layers; and lastly, the
effectiveness of training for vanishing gradient. The idea of a deep space network has
been effectively applied to many computer vision problems, i.e., saliency, scene text, and
edge identification. In [28], the researchers have shown a ResNet architecture that makes
the training easy for very deep neural networks. This model clearly readjusts the layers
of architecture as the residual learning function’s place to input, as an alternative to the
unreferenced learning function.
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3. Methodology

As illustrated in Figure 4, the proposed method comprises three stages: a preprocess-
ing level in which intensity normalization is applied, then augmentation of data, and lastly
balancing of data and extraction of features through hybrid Inception-ResNet architecture
Classification through Neural Network (NN) classifier.
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3.1. Dataset Collection

Data collection is a significant stage that is often undervalued. The standard of the
data given as an input to the system has a robust effect on the resultant performance
of the proposed ML model. Thus, it is essential to thoroughly examine the available
dataset and consider all potential problems that should be sorted out before going into the
modeling phase.

The data will be collected from multiple online resources such as the IDRiD or Kaggle
dataset. IDRiD is the Indian Diabetic Retinopathy (DR) Image Dataset. The dataset
comprises 3662 labeled and 1928 test set unknown labeled fundus images of clinical
patients, with five different severity level labels, i.e., normal DR, mild DR, moderate DR,
severe DR, and proliferative DR (PDR). Figure 5 shows that the data are not balanced:
49% of data are related to the patient with no fundus disease. The other 51% of data
represent the various stages of diabetic retinopathy. Class 3 is the least common class
(severe), having only five percent of the entire image data.

The dataset is composed of several sources (clinics) with the help of several models
of digital cameras, which generate divergences in the resolution of images, width-height
aspect ratio, and other constraints which are illustrated in Figure 6, showing the aspect
ratio of width and height of images.

3.2. Image Preprocessing

To streamline the classification process for the suggested model, it is essential to make
sure that all the fundus images look alike.
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Initially, due to the usage of various cameras having dissimilar aspect ratios of output
images, as a consequence, in some fundus images, there are big black spaces around the
fundus. These black regions do not hold any data related to predicting something; hence,
they need to be cropped. However, the proportions of black regions differ in every image
due to different camera sources. To sort out this problem, we design a special function that
transforms the image to grayscale and spots the black regions depending upon the intensity
level of pixels. Then, we identify the mask by selecting the rows as well as columns where
the pixels surpass the threshold of the intensity level. By doing this, we remove horizontal
and vertical boxes that are filled with black color just like the ones detected in the top right
of the image. Lastly, after eliminating the black strips, all the images need to be resized to
the same width and height.

The second problem is the shape of the eye. On the basis of structure of image, some
people have an eye of circular shape, while some people’s eyes seem like an oval shape. As
the shape and size of output images after preprocessing positioned in the retina decide the
severity level of disease, it is essential to normalize the shape of the eye as well. For this
purpose, we design an additional function that helps us to crop an image from the center
in a circular shape.

Lastly, with the help of a Gaussian filter, we correct the divergences of brightness and
lightening of images by smoothing them.

Besides the above mentioned steps, the image preprocessing is executed by three
steps; normalization (discussed above in detail), augmentation of images, and lastly the
balancing of data (see Figure 7). Initially, the intensities of images are normalized between
0 and 1, by this formula:

lm (x, y)norm =
lm (x, y)−min(lm)

max (lm)−min(lm)
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After the normalization step is completed, the process of augmentation is used to
increase the data for training of the model, in order to enhance the standard of the training.
This can be achieved by spinning every image around the y-axis. The illustration of the
suggested preprocessing phases (normalization and augmentation of data) is displayed in
Figure 7.

Lastly, with the aim of proficiently training the proposed model, balancing of given
data is essential, and this balanced data are provided to the proposed CNN model during
the training of the model. In this step, the data are equally split per every stage of DR. This
can help in eliminating any unfairness during the process of training the model. Hence,
the suggested model trains the network with an equivalent size of fundus photographs,
carefully chosen for every grade of DR randomly.

3.3. Deep Learning Inception-ResNet Model

The proposed model comprises three phases, which makes this system efficient as
compared to other state-of-the-art techniques discussed in this study:

• Pretraining: As in medical imaging, the dataset is limited in numbers (N = 3662). That
is why by using the transfer learning technique, we train our model twice, firstly on
a larger dataset of ImageNet. Although the data of ImageNet are slightly different
from the images of retina, the ImageNet dataset might help our network to learn and
understand the edges and shapes in the first phase. However, to train the model
about target domain of retinopathy in the second phase, we further train the proposed
model on a larger dataset featuring around 35,000 retina images.

• Fine-tuning: After training the model on ImageNet and the larger retinal dataset, we
fine-tune the proposed model on our limited target image set. We make the decisions
of modelling depending upon the results of out-of-the-fold estimations.

• Interpretation: We sum up the predictions of the proposed model trained on various
arrangements of training folds and also use the augmentation of test-time in order to
further enhance the performance of the model.

Therefore, the above steps enable us to conclude that firstly we initialize our model
with the weights of ImageNet, then train this model on target domain of larger data and
lastly fine-tune it on smaller datasets. Results show that our proposed model outperforms
the other latest models on smaller datasets.

The suggested model uses the latest transfer learning (TL) approach with the help
of the pretrained Inception-ResNet model, having 50 weighted layers. This pretrained
Inception-ResNet model has four phases, every phase is made up of three layers of convo-
lutions, and n times repeated (shown in Figure 6). Inception-ResNet is a CNN structure
that is made up of the architecture of the Inception family but includes residual connection
(switching the filter concatenation stages of the architecture of the Inception family). This
property of the said architecture can help the Inception-ResNet technique to understand
the global features specific to data. The comprehensive design of the proposed model is
presented in Figure 8.
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In order to implement the transfer learning (TL) method, the convolutional layer’s
parameters are shifted without any modifications, and the layers that are fully connected are
changed with a specially designed classifier that contains four class labels, demonstrating
the four diabetic retinopathy (DR) stages. This specially designed classifier is trained with
the help of labels obtained from the dataset of IDRiD.

3.4. Classification in First Phase

In the first phase, we examined two kinds of specially designed classifiers in order
to classify images of DR. The initial classifier is built on the basis of feedforward (NN)
pixel-wise classifier, made up of a fully connected (FC) weighted layer among the fea-
tures vector of Inception-ResNet architecture and the resultant layer that is made up of
multiple nodes equivalent to the DR’s stages. The second phase implements a twofold
kernel SVMs classification, depending upon the particular feature. In order to train the
classifiers of first phase, four labels are commonly used: normal DR, mild DR, moderate
DR, and severe/proliferative DR. Severe and proliferative DR have been categorized into
the same label, “severe/proliferative DR (PDR)” throughout experimentation, because of
the similarity of their fundus images with each other. In order to choose the best classifier,
the suggested model has been evaluated with the help of standard metrics for evaluation,
i.e., the precision of classification.

3.5. Classification in Second Phase

Because of the similarities of the last two stages (severe/proliferative DR (PDR)), the
original Inception-ResNet is not capable of differentiating between these two classes. In
order to achieve the best accuracy, after the first phase classification, another second phase
Inception-ResNet classification is included for this purpose. This phase is trained offline in
order to differentiate between these two (severe and PDR) classes, whereas the modified
severe and PDR fundus images of the first phase are fed into it. The resultant of this phase
is either “severe or proliferative DR”.

3.6. Performance Evaluation Metrics

In order to estimate the different metrics of performance for the suggested model,
different performance evaluation metrics for the classification’s accuracy (CA) are used.
CAg denotes the portion of the properly categorized fundus photographs for the particular
grade “g”, described as:

CAg =
correctly classi f ied grade g images

total number o f grade g images
(1)

where g represents the grades of the diabetic retinopathy (DR), i.e., g ∈ (“normal to severe
DR”). For example, if 80 from a total 100 normal photographs are categorized properly,
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then CAnormal = 80%. The accuracy of CA of the whole system classification could be
obtained as the individual’s average of CAs for every stage.

4. Experimental Work

The comprehensive setup of the suggested model, associated outcomes, and results
are discussed below.

4.1. Dataset and Experimental Setup

For the training of CNN’s architecture of Inception-ResNet, the data are divided in a
random manner into 30% testing and 70% training dataset. The process of training reduces
the losses of cross-entropy with the help of a learning rate (LR) of 4–10 and 20 epochs
at maximum.

4.2. First Phase Results

In order to examine the usefulness of every preprocessing step, i.e., normalization of
data in the first place then augmentation of data and lastly the balancing of data in the
suggested network, results of the network are matched for the initial classification phase,
among the six categories:

• Category A: There is no preprocessing step. Only uses the unprocessed images.
• Category B: Simply the process of normalization is being used.
• Category C: Normalization as well as augmentation.
• Category D: Normalization as well as balancing of data.
• Category E: Implementing the normalization of the dataset, augmentation as well as

balancing of data.
• Category F: Implementing the full normalization, augmentation as well as balancing.

The last two categories include a three-step process.

For every category, outcomes are compared among the pixel-wise neural network
classifier or a classifier of support vector machine (SVM). Such as shown in Figure 9 and
Tables 1 and 2, the pixel-level neural network classifier delivers improved precision as
compared to the support vector machine (SVM) classifier for each examined category
(i.e., category A to F). The output of this system progressively improves by growing the
utilized preprocessing stages, i.e., with the help of the suggested step of normalization
of intensity, which increases the overall classification accuracy from 61.35% to 63.98%.
Including balancing or augmentation, the step increases the performance to CA = 68.86%
or CA = 69.34%, correspondingly. Lastly, including all the suggested stages increases
the accuracy of the suggested system to CA = 84.62% or CA = 88.10%. These outcomes
demonstrate the effect of the suggested preprocessing stages for enhancing performance.
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Table 2. Results comparison for the severity grading of the first phase of four levels of diabetic retinopathy with the help of
alternate arrangements.

Category

Preprocessing

Labels
Number of

Images

Classification Accuracy

Normal Augmentation Balancing Inception-
ResNet

State-of-the-Art
NN

A Not used Not used Not used

Mild DR 27 0 0
Moderate DR 171 57.82 71.03
Normal DR 169 79.00 56.55

PDR 153 55.52 52.88
Final 520 61.35 45.13

B Used Not used Not used

Mild DR 27 0 0
Moderate DR 171 28.41 29.51
Normal DR 169 81.00 78.51

PDR 153 88.13 81.41
Final 520 63.98 46.17

C Used Used Not used

Mild DR 52 0 0
Moderate DR 332 36.62 13.77
Normal DR 334 88.00 97.58

PDR 310 93.62 83.49
Final 1028 68.86 48.46

D Used Not used Used

Mild DR 30 41.86 71.59
Moderate DR 25 41.86 12.76
Normal DR 45 72.43 11.66

PDR 50 94.43 98.86
Final 150 69.34 47.04

E Used Used Used

Mild DR 55 92.34 92.34
Moderate DR 55 67.66 21.23
Normal DR 55 98.95 55.33

PDR 100 90.95 93.33
Final 265 88.10 65.00

4.3. Second Phase Results

A second phase Inception-ResNet model is included to differentiate between the two
classes (severe/PDR), whereas the adjusted severe or proliferative DR fundus photographs
of the initial phase are fed into it. In order to show the benefit of the suggested 2-step model
for diabetic retinopathy classification, it is associated with further relevant studies on the
similar IDRiD dataset. As illustrated in Table 2 and Figure 9, the performance of the system
steadily improves by increasing the utilized steps of preprocessing. For example, with the
help of the suggested step of intensity normalization, the classification accuracy increases
from 61.35% to 63.98%. Including a balancing step or an augmentation process improves
the classification accuracy from 63.98% to 68.86% or classification accuracy = 69.34%, cor-
respondingly. Lastly, including all the anticipated steps increases the accuracy of the
proposed model from classification accuracy = 69.34% to classification = 88.10%; these
outcomes express the effect of the anticipated steps of preprocessing in order to enhance
the performance. As shown in Table 2, the proposed 2-step Inception-ResNet model has
shown better performance by implementing all the suggested preprocessing stages.

4.4. Analysis of the Performance and Complexity

The benefit of the suggested 2-step Inception-Residual-Net model is its capability
to differentiate among all the categories with great performance, which is supported by
the value of CA. Furthermore, as we train the proposed model offline, so the overhead to
include the second phase Inception-Residual-Net is minimized, taking into consideration
that the second Inception-ResNet phase is used only when the result of the initial stage
is in the form of class “severe or PDR”. We compare the results of our model with the
current state-of-the-art work [10,29–32] because this model follows the technique that has
some resemblance with our proposed model. As in our proposed model, we try different
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combinations of preprocessing steps and come up with better results after adding the new
step every time; this model also implements the preprocessing steps by bringing together
eight models of CNN. These above mentioned models are composed of five different-sized
ResNets (ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152) and three Inception
Nets. As we can see, the above method uses both ResNet and Inception Net. So, it is wise
to compare our model with the above model because our model also applies both Inception
and ResNet models with fewer layers as compared to the largest ResNet152 of the above
technique, which clearly shows that the training process of our proposed Inception-ResNet
model has high performance and lower cost of computation. Furthermore, the testing time
will be considered short. With the help of a 3.4 Intel CORE i3 and 8 GB of RAM and Python
as the programming language, the suggested two-step Inception-ResNet model processes a
testing fundus image and delivers its stage, usually an average of 1.32 s that includes 0.21 s
for normalization of data and 0.41 s to calculate the first-phase DR stage and 0.41 to give
the results of the second-phase DR stage. Table 3 shows the comparison of results between
associated techniques.

Table 3. Results comparison between associated techniques ([10], 2018) for 5-stage DR classification and the suggested
2-phase model with the help of Inception-ResNet relating neural network classifiers.

Techniques Labels Data
CA%

ResNet Inception-ResNet

Two-stage proposed system (Case E)

Mild 50 93.33 93.33
Moderate 50 20 66.67
Normal 50 53.33 100
Severe 50 86.66 93.33
PDR 50 86.67 87.33
Total 1250 65.00 86.67

Inception/ResNet ensemble Total Images 56 83.90

We are concerned with the problem in which our final output results are in the
form of multiple classifications, so for loss function the use of cross-entropy is most
suitable. Cohen’s kappa is widely used for evaluation purposes. This evaluation matrix is
usually used for the measurement of the agreement between predicted and actual labels.
As this evaluation matrix is non-distinct, we cannot use the Kappa as a loss function.
Simultaneously, we can use this result to measure the performance of the suggested
system. We use an optimizer named “Adam” initially by using a learning rate (LR) of 0.002.
Throughout the process of training, we use an LR scheduler that multiplies the LR with
0.5 after each five epochs’ group. This assists in making slighter variations to the weights
of the network as we are approaching optimization.

After every epoch during training, we authenticate the proposed model on the selected
images. We take out the class score from the last fully connected (FC) layer and forecast the
correspondence of image class to the maximum score. The training process is designed for
15 epochs, following the evaluation matrices such as Cohen’s kappa and validation loss.
The training process will be stopped if the kappa is unchanged for five successive epochs
and weights of the model will be saved for the epoch related to the uppermost validation
kappa. The visualization of loss and training is shown in Figure 10.

We also build a confusion matrix (CM) of the model that is trained in Figure 11. The
values in the cells represent the percentages (%). The preliminary results show that the
model is not well capable of distinguishing between the moderate and mild stages of
diabetic retinopathy (DR): 85% of data in the mild category are categorized in the moderate
category. Only the data of the normal category show an encouraging performance. As a
whole, we conclude that the model is inclined to complicate the nearby severity classes but
hardly misclassifies the proliferative DR as well as the mild category.
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The process of fine-tuning is performed on the targeted data in four-fold validation.
To make sure that we have sufficient samples of every category or stage, we perform cross-
validation through the process of stratification. After the fine-tuning, the matrix shows
the benefits of the tuned network over the pretrained convolutional neural network and
shows an improved performance in categorizing the mild classes of diabetic retinopathy
(Figure 12). Yet, when the visualization of loss and training is shown in Figure 13 we also
notice that this fine-tuned model categorizes numerous examples as class 2 (moderate).

After training the model we will now offer some estimates regarding the test data.
We combined these predictions with the help of the model trained through the loop of
cross-validation. For this purpose, from the last FC layer, we take out class scores and
express predictions of every class with the highest score. Then, we make an average of the
predictions of the four models trained on alternative arrangements of the training folds.
Tables 4–6 given below show the various arrangements of predictions.
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Table 5. Correlational matrix.

0 1 2 3

0 1.0000 0.9634 0.9563 0.9544
1 0.9634 1.0000 0.9696 0.9480
2 0.9563 0.9696 1.0000 0.9488
3 0.9544 0.9480 0.9468 1.0000

The mean correlation is 0.9673.

Table 6. Summary statistics.

0 1 2 3

Count 1927.00 1927.00 1927.00 1927.00
Std 0.9737 0.9740 0.9706 0.9610

Mean 1.6877 1.7113 1.7162 1.6511
min 0.0000 0.0000 0.0000 0.0000
25% 1.4000 2.0001 2.0001 1.3751
50% 2.0001 2.0001 2.0001 2.0001
75% 2.0001 2.0001 2.0001 2.0001
max 4.100 4.100 4.100 4.100

5. Conclusions and Future Work

This study presents a three-phase framework to automate the detection grading of
DR. The suggested method is composed of preprocessing, extraction of feature, and lastly,
classification. Experimental outcomes express that with the help of augmentation and
balancing of data we can considerably enhance the performance of the system. Comparing
the outcomes with other state-of-the-art work on the IDRiD dataset endorses the greater
accuracy of the suggested system for grading of DR. In the future, there will be some ways
to improve this method. Initially, the help of bigger architecture and enhancing the number
of epochs during the training phase will have an extraordinary probability for improved
outcomes. Simultaneously, this would need additional processing power and resources,
which seems to be impractical when we use an automated system in real practice. Secondly,
the preprocessing methods of target image data could be further enhanced. Lastly, the state-
of-the-art results of other researchers are dependent on the assembling of CNN architectures
by variations in sizes and architectures. Combining several dissimilar networks and joining
together their expected results could also enhance the suggested solution. Our idea is to
examine the fundus images with the help of other deep learning techniques to enhance the
performance and we will also use other databases and datasets to verify the strength of the
suggested system.
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