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Abstract: Owing to the fact that large-scale peak-load-regulation nuclear power turbine units’ thermal
signal is greatly influenced by background noise and has non-stationary and nonlinear characteristics,
this paper proposes a new fault diagnosis method for thermal sensors based on an improved
independent component analysis (Improved-ICA) algorithm and random forest (RF) algorithm.
This method is based on independent component analysis (ICA), which is not capable of extracting
components independently. Therefore, we propose the use of the maximum approximate information
negative entropy optimization model in order to improve the ICA algorithm’s independent principal
component extraction ability and obtain better non-Gaussian physical source signal separation results.
The improved ICA algorithm is used for the blind source separation of the thermal parameters of
peak-load-regulation nuclear power units. A series of stationary physical source functions and a
series of non-stationary noise signals are obtained. Then, according to the specific signal format and
data volume of the nuclear power parameter signal, the network parameters of the random forest
algorithm are determined, giving rise to the fault diagnosis model. Finally, the real-time operation
data of an 1121 MW nuclear power unit are used to complete the training and fault diagnosis of the
random forest network and analyze the diagnosis results. The results indicate that the model can
effectively mine the abnormal sample points of thermal parameters and classify the fault type of the
thermal sensor during peak load operation of the nuclear power unit. The accuracy rate is found to
be at the threshold of 99%.

Keywords: nuclear power unit; thermal sensor fault diagnosis; peak load regulation; blind source
separation; random forest

1. Introduction

China, in recent years, has witnessed the growth of the number of nuclear power
units put into operation and their share of power generation. In nuclear power units that
participate in peak load regulation, their operating parameters deviate from the design
values, and the stress, thermal expansion, and thermal deformation of each component
of the unit will change. Thermal system sensors work in harsh environments and thus,
are more prone to failure. The thermal signal of large-scale peak shaving nuclear power
turbine units will experience considerable disturbance due to background noise, as well
as non-stationary and non-linear. The traditional data mining technology finds it diffi-
cult to analyze this kind of data effectively, which impedes the extraction, analysis and
diagnosis of fault information. Hence, research on the signal separation technology and
feature extraction technology used for the thermal signals of nuclear power units, and
obtaining accurate abnormal signals from the monitoring signals, are the basis of sensor
fault diagnosis in thermal systems. A recent serious accident was caused by the failure
of a thermal sensor. The thermal sensor had a serious precision degradation fault, but
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the signals were misjudged as peak-load-regulation. Due to wrong judgment and op-
eration, the thermal parameters exceeded the threshold, causing serious damage to the
power units and bringing huge economic losses. Affected by the above problems, the
operation safety of peak-load-regulation power plants is facing great challenges, especially
peak-load-regulation nuclear power stations.

Chinese peak-load-regulation nuclear power unit is an innovative engineering prob-
lem that has emerged in recent years. Most research on the peak load operation of nuclear
power units mainly focuses on the aspects of economy and feasibility. Shi et al. [1] con-
ducted an in-depth study on the parameter changes of nuclear power units during peak
load regulation. It was found that a change in any of the parameters (power, flow, pressure,
temperature, etc.) during peak load operation will directly affect the operation status of the
main steam turbine, as well as the sensors in the thermal system. Consequently, abnormal
data fluctuations of the sensor largely originate from two sources: abnormal thermal sys-
tem parameters caused by the load fluctuation of peak load regulation and the abnormal
parameters of the thermal system caused by sensor faults. Zhao et al. [2] pointed out
that it is now difficult to ensure the baseload operation of nuclear power units previously
designed and operated in accordance with the basic load mode. Therefore, it is necessary
to consider adjusting the characteristics of the equipment to cope with the peak-regulation
pressure, to enable it to gradually participate in the peak load operation. Song et al. [3]
completed a study on the feasibility of nuclear power peak regulation. Some nuclear power
units in China have participated in short-term power reduction peak regulation operations
during special festivals, such as national day and Spring Festival, and the results of the
peak regulation operation are sound. Peng et al. [4] and Gao et al. [5] who studied nuclear
power abroad share a common view that the power fluctuations in European countries
are too small to reach the level where nuclear power units are required to participate in
peak load operation. Although nuclear power can regulate peak loads, it still maintains
the baseload operation for the purposes of economy and safety. Wu et al. [6], who studied
the peak-load-regulation operation and vibration fault of large-scale thermal power plants,
proposed a vibration fault diagnosis model based on the PCA-HKNN (Principal Compo-
nent Analysis-Hierarchy K Nearest Neighbor) algorithm and carried out experiments with
the data of 1000 MW thermal power units. The experimental outcomes illustrate that the
model can efficiently diagnose the peak shaving fault of thermal power plants. Li et al. [7]
improved auto-associative kernel regression (AAKR) with the sequential probability ratio
test (SPRT). Simulations of fault detection and identification in the sensors and components
of the reactor coolant system of the Qinshan nuclear power plant were carried out, with
the results demonstrating the effectiveness of the proposed model.

International scholars attach great importance to the nuclear industry and nuclear
power market. Zhang et al. [8] studied the nuclear power market in North America and
proposed a rapid method for the calculation of nuclear power performance, which can also
analyze the evaluation index of the nuclear power market. Shorthill et al. [9] put forth the
Bayesian and HRA-Aided Method for the Reliability Analysis of Software (Bahamas) for
analyzing nuclear power in North America. Based on human reliability analysis (HRA),
and common cause failure (CCF), the algorithm can diagnose the vibration failure and
human factor faults of nuclear power. Reichenberg et al. [10] studied the performance
of European nuclear power plants and proposed the improved conditional value at risk
(CVaR) algorithm to evaluate the transient adjustment capability of European nuclear
power plants. Choi et al. [11] analyzed the future development mode of nuclear power
in South Korea. The future of nuclear power in South Korea is based on the safety of
the nuclear industry and the capacity of nuclear energy absorption. Tripathi et al. [12],
meanwhile, described the design-time methodology that can be used to map and analyze
the system security qualitatively and quantitatively using Stochastic Petri nets and their
fundamental properties. The effectiveness of this method was verified by the study of an
Indian nuclear power plant.
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Recent studies in this field only briefly discuss the feasibility and necessity of the
participation of nuclear power units in peak load regulation and lack any in-depth analysis
of the thermal sensor fault diagnosis of peak-load-regulation nuclear power units. Ther-
mal sensors are very important instruments in nuclear power plants; their accuracy and
effectiveness are closely related to the efficiency and safety of nuclear power units.

In terms of sensor fault diagnosis, Li et al. [13] carried out the research on the thermal
sensor fault diagnosis of thermal power units and used empirical mode decomposition
(EMD) to decompose the sensor signal to obtain the eigenvalue of the signal. A fault
diagnosis method for sensor signals based on deep learning was proposed by Xing et al. [14].
This method employs the LSTM algorithm to optimize the CNN model and improve its
ability to diagnose the mixed faults of sensors. Yu et al. [15,16] improved the EMD by
using probabilistic neural networks on the basis of Li et al. [13]. This method focuses on
the fault diagnosis of temperature sensors in thermal power units. Yu et al. [17] proposed
a double improved principal component analysis model to improve the safety of sensors
in nuclear power plants. The Corrected Reconstruction Algorithm (CRA) was used to
facilitate the accuracy of the reconstruction. The second improvement is in the form of a
cyclic monitoring PCA (CPCA) model that can detect multi-sensor failures. A modification
of the traditional AAKR method that enhances the signal reconstruction robustness was
proposed by Baraldi et al. [18]. The obtained results reflect an improvement in the early
detection of abnormal conditions and the correct identification of the signals responsible
for triggering the detection.

In other industrial fields, Sun et al. [19] proposed a blast furnace fault diagnosis
model based on an independent component analysis algorithm, this model has a high
accuracy of non-Gaussian fault diagnosis of a steel-making blast furnace. Wan et al. [20]
implemented a multi-block independent component analysis algorithm for correcting
the random gross error of chemical sensors. Peng et al. [21] established a vibration fault
diagnosis model of high-speed machinery based on machine vision and ICA blind source
separation. Sun et al. [22] proposed an adaptive selection method for nonlinear function
in ICA. This method tackles the separation of rolling bearing fault signals under multiple
vibration sources. In some fields, information entropy is widely used in data validation,
outlier analysis, weight determination and so on. Dang et al. [23] proposed a variable
mode decomposition method based on information entropy. This method could extract
the characteristic signal from the vibration signal of the wind turbine gearbox and give the
information weight value, so as to improve the calculation speed of the neural network.
Wang et al. [24] proposed a sensor fault diagnosis method of a hydraulic condition moni-
toring system based on information entropy and the K-2 algorithm. Information entropy
and the K-2 algorithm were used to improve the search strategy, so as to optimize the
generation method of Bayesian network structure and improve the calculation accuracy
and speed.

In this paper, we studied the thermal sensor fault of a large-scale peak-load-regulation
nuclear power turbine generator set and propose a new thermal sensor fault diagnosis
method based on an improved independent component analysis algorithm and the random
forest algorithm. Signal analysis technology, data mining technology, feature recognition
technology and machine learning technology are used in the manuscript. Two main models
are studied and analyzed, including the blind source separation (BSS) model and the tree
classification model. The ICA algorithm is used to realize the BSS model, and the RF
algorithm is selected for the tree classification model. Taking RF as an example, when the
noise of data is too large, RF is prone to overfitting and the accuracy is not high. Therefore,
ICA is used for signal analysis and data mining to reduce the noise signal in the original
signal and enhance the RF. The mathematical calculation of the cost function of traditional
ICA is difficult, and the signal separation speed is low. The maximum approximate
information negative entropy method can reduce the calculation difficulty and improve
the calculation speed. This method is used to strengthen ICA in this manuscript, and its
rationality is proved.
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The research object and data source is a 1121 MW peak-load-regulation nuclear power
unit. Firstly, the collected data samples are analyzed and an ICA blind source separation
model is established. Then, the maximum approximate information negative entropy
algorithm is used to optimize the non-Gaussian judgment function in the ICA algorithm
with the purpose of improving the independent principal component extraction ability of
the ICA. The improved-ICA algorithm is employed to complete the blind source separation
and feature extraction of the original signals. Finally, the RF algorithm is used to complete
the thermal sensor fault diagnosis of the peak-load-regulation nuclear power unit, and the
diagnosis results are evaluated based on the actual operation experience and feedback data
of the nuclear power unit.

2. Analyzing Techniques
2.1. Blind Source Separation
2.1.1. Independent Component Analysis Algorithm

ICA, a blind source separation signal analysis and data processing technology can
separate the source signal from the observed mixed signal by an inverse transformation
without the characteristics and mixed conditions of the source signal. Supposing that in
the presence of noise NSi(t), n observation signals xi(t) are composed of m physical signal
sources sij(t) in some way, and the m physical signal sources are statistically independent,
the n observation signals can be expressed as follows:

xi(t) = NSi(t) +
m

∑
j=1

aijsj(t) (1)

Where, xi(t) is the observation signal, aij is a linear mixed function, sij(t) is the
physical source signal, and NSi(t) is the noise signal. For a certain xa(t), Equation (1) can
be written as a matrix pattern:

X = AS + M (2)

S = A−1X− A−1M (3)

Where X is the observation signal matrix, M is the noise matrix, A is the mixed matrix,
and S is the independent component matrix.

In engineering practice, in order to simplify the calculation, noise signal M is usually
regarded as a special physical source signal. Suppose that the observed signal X obtained
by the sensor is a combination of the physical source signal S including the noise signal,
and the physical source signal cannot be obtained. Let A−1 = BT, then the above formula
can be rewritten as:

X = A−1S = BTS = ∑
i

bixi (4)

ICA, based on the principle of statistical independence, is usually implemented using
a non-Gaussian maximization method which shows that the results of a group of random
variables whose mean and variance are of the same order of magnitude must be close to a
Gaussian distribution. Therefore, the problem boils down to finding a set of transformation
parameters bi to maximize the non-Gaussian property of X.

If the observed signal is a linear combination of multiple independent physical source
signals, then the observed signal is closer to a Gaussian distribution than the physical source
signal. When the non-Gaussian property of the separated physical source signal reaches
its peak, the separation can be considered to be optimal. Improving the independent
component extraction algorithm is a sound foundation by which to improve the separation
effect of the ICA algorithm.

2.1.2. Improved-ICA Algorithm

Although the ICA algorithm can be widely used to extract non-Gaussian independent
components, due to the use of orthogonalization, the ICA algorithm has the following drawbacks:
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(1) The selection of the independent principal component has a direct impact on the
effectiveness of the ICA algorithm;

(2) In the ICA algorithm, the different ranking weights of the same batch of indepen-
dent principal components have a certain impact on the effectiveness of the ICA algorithm.

When the ICA algorithm is used to monitor the working state of the process, the
number of selected independent principal components and the order of each independent
principal component will affect the final result, thus affecting the accuracy of the fault
detection. In particular, the peak load regulation of a nuclear power unit will lead to large
changes in several thermal parameters, creating a burden on the determination of indepen-
dent principal components, and the separation effect will experience an obvious dip.

Therefore, it is necessary to optimize ICA, and finding a new model to optimize the
selection and ranking of independent elements is an important research component of
optimizing ICA. The selection and ranking of independent components is actually the
method of component analysis. At present, the principal component analysis, the factor
clustering and the Gaussian sigma criterion clustering are commonly used. This paper
combines the information entropy analysis technology of signal theory to improve the
ICA algorithm.

Information entropy is a basic concept in information theory. The entropy of random
variable can be interpreted as the amount of information contained in the observed variable.
The more random and unpredictable a variable is, the greater its entropy is. Strictly
speaking, entropy is related to the coding length of random variables. In fact, under some
simple assumptions, entropy is the coding length of random variables. The information
entropy H of random variable Y is defined as follows:

H(Y) = −∑
i

P(Y = ai)logP(Y = ai) (5)

In information theory, there is a basic conclusion: among all random variables with
equal variance, the Gaussian variable has the largest entropy which means that the in-
formation entropy can be used as a measure of non-Gaussianity. In fact, it shows that
the Gaussian distribution is the most random distribution of all distributions. The more
concentrated the distribution of random variables is, the smaller the entropy is. In order to
obtain a non-Gaussian measure with zero and permanent nonnegative Gaussian variables,
the negative entropy is usually used. The definition of the negative entropy J is as follows:

J(y) = H(yGuass)− H(y) (6)

where J is the negative entropy of information, yGuass is a Gaussian random variable with
the same variance as y, and H is the information entropy.

According to statistical theory, the negative entropy is the best estimation of whether
something is non-Gaussian. However, the calculation of the negative entropy is very
complex and requires the estimation of the probability density function through defining
the negative entropy. The negative entropy algorithm is still a theoretical algorithm that
needs to be optimized.

Based on the principle of the maximum information entropy, the improved-ICA
algorithm is proposed in this paper. The maximum entropy principle assumes that the
information does not make any unknown assumption and treats the unknown event as an
equal probability event. The definition of the maximum approximate negative entropy is
as follows:

Jmax(y) =
p

∑
i=1

ki[E{Gi(y)} − E{Gi(v)}]2 (7)

Where ki is a positive constant, y and v are Gaussian variables with a mean value of 0 and
a variance of 1, and Gi is a non-quadratic function.

In the ICA algorithm, an important part is the non-Gaussian judgment method of
a signal. The negative entropy has the ability to distinguish the non-Gaussianity in the
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statistical sense, but it needs to be strictly mathematically proved before taking the negative
entropy as the cost function of ICA.

If the negative entropy can become the non-Gaussian criterion in the ICA algorithm,
the entropy maximum theorem must be satisfied: among all distributions with the same
covariance matrix, the entropy of Gaussian distribution is the largest. It can be proven with
the Kullback–Leibler divergence equation.

Assuming that pg(x) is a joint probability density function of Gaussian distribution,
p(x) is a joint probability density function distributed in any way. p(x) and p(x) have
the same covariance matrix. The Kullback–Leibler divergence between them is shown in
Equations (8) and (9):

D
(

p(X) ‖ pg(x)
)
=
∫

p(X) ln
p(X)

pg(x)
dx (8)

∫
p(X) ln pg(x)dx =

∫
pg(x) ln pg(x)dx (9)

The logarithmic function satisfies the following relationship, as shown in Equation (10):∫
p(X) ln

p(X)

pg(x)
dx = −

∫
p(X) ln p(x)dx +

∫
p(X) ln p(X)dx (10)

The definition of information entropy has been explained in Equation (5), and Equation (11)
can be obtained:

H = −
+∞∫
−∞

p(X) ln pg(x)dx (11)

Equation (12) can be obtained from Equation (8) to Equation (11):

D
(

p(X) ‖ pg(x)
)
= HG(X)− H(X) (12)

The Kullback–Leibler divergence equation is nonnegative. Then Equation (12) meets
the following conditions, as shown in Equation (13):

HG(X)− H(X) ≥ 0⇒ HG(X) ≥ H(X) (13)

Equation (13) proves the maximum entropy theorem, that is, in all distributions with
the same covariance matrix, the entropy of the Gaussian distribution is the largest. In
other words, under certain conditions, a specific distribution can be found, which has the
maximum information entropy, and this distribution is just the Gaussian distribution. The
definition of negative entropy is shown in Equation (14):

J(X) = HG(X)− H(X) = D
(

p(X) ‖ pg(x)
)

(14)

In Equation (14), if and only if p(X) satisfies Gaussian distribution, J(X) = 0. An
important property of the negative entropy is that it remains unchanged for reversible
linear transformation. The property of the information entropy is that it remains unchanged
for orthogonal transformation. Compared with the entropy theory, the condition of the
negative entropy is more relaxed. In ICA, this property makes it possible to take the
maximum approximate negative entropy as the cost function, so the effectiveness of the
maximum approximate negative entropy criterion in the ICA algorithm is valid.

The cost formula of the original entropy method is shown in Equation (6), but mathe-
matically, Equation (6) is difficult to calculate. In general, some empirical formulas will be
used to simplify Equation (6), as shown in Equation (15):

J(y) ≈ 1
12

E
{

y3
}2

+
1
48

kurt(y)2 (15)
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The error of the empirical formula is often large and the empirical formula is not a
good cost function. Therefore, in the maximum information negative entropy, the Newton
method is introduced to obtain the maximum approximate solution.

Assuming y = BTx, the information negative entropy formula satisfies the following
constraints, as shown in Equation (16):

δJG(B)− β
(
||B ||2 − 1

)
δB

= 2E
{

xG′
(

BTx
)}
− 2βB = 0 (16)

Suppose B0 is the optimal solution, then the following equation is satisfied, as shown
in Equation (17):

β = E
{

BT
0 xG′

(
BTx

)}
(17)

The problem is simplified to solving the root of the equation. According to Newton’s
method, if the tangent of the curve is used to approximately describe the curve, the root
of the tangent equation is the root of the curve equation. If not, continue to perform the
Newton method until convergence is reached. The formula of Newton method is shown in
Equation (18):

xn+1 = xn −
f (xn)

f ′(xn)
(18)

After the parameters are substituted, Equation (18) is transformed into Equation (19):

Bn+1 = Bn −
E
{

xG′
(

BT
n x
)}
− βBn

E{xG′′ (BT
n x)} − βE{xxT}

(19)

Continue the Newton method to get the recurrence equation. Bn+1 is replaced by B∗,
and Bn is replaced by B. It is shown in Equation (20):

B∗ = B−
E
{

XGi
(

BTX
)}
− βB

E{Gi(BTX)} − β
(20)

B =
B∗

||B∗ || (21)

Since the B value is updated, β = E
{

BTXGi
(

BTX
)}

. The iterative formula for this is:

B∗ = E
{

XGi

(
BTX

)}
− E

{
Gi

(
BTX

)}
B (22)

The de-averaging process should be performed before the calculation. De-averaging
means that each dimension subtracts the mean value of the corresponding dimension
so that each dimension of the input data is centered to 0. After de-averaging, the data
distribution is near the coordinate axis. The network parameters are generally initialized
randomly before network training. If the data has been de-averaged, the function obtained
by random initialization can approach the objective function faster. In addition, if the
data has not been de-averaged, the algorithm is easy to fall into local optimization and
overfitting can easily occur. The de-averaging code is described in the Appendix A, Pseudo
Code, Step 1 to Step 4. The algorithm steps are as follows and the flow chart is shown
in Figure 1:
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Figure 1. Improved ICA Flow Chart.

(1) Whiten X to obtain whiten matrix Z
(2) Initialize B
(3) Set B∗ = E

{
ZGi

(
BTZ

)}
− E

{
Gi
(

BTZ
)}

B and select the nonlinear function Gi

(4) Set B = B∗
||B∗ || . If it does not converge, return to step 3

(5) The results of the observed signal are obtained as physical source signal
S = [s1, s2, s3, . . . , sm] and noise signal M.
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2.2. Random Forest Algorithm

The random forest is an integrated method that combines multiple decision trees.
The random forest algorithm uses the bootstrap sampling method to extract multiple
samples from the original samples and establishes the decision tree model according to
each bootstrap sample. Then, the predictions of multiple decision trees are integrated, and
the final results are obtained by voting. Random forest regression can be regarded as a
strong predictor integrating many weak predictors. Since the three common construction
methods for the random forest, including ID3, CART, and C4.5, are top-down greedy
algorithms [25], one of the most important bases for establishing a random forest model is
the minimum mean square deviation.

Minimum mean square deviation (MMSE) is the basis of selecting features and divid-
ing points. For any partition feature A, the data set divided on both sides of any partition
point a is called D1 and D2. The corresponding feature and eigenvalue partition points
corresponding to the minimum mean square deviation of each set of D1 and D2 and the
minimum sum of the mean square deviations of D1 and D2 are obtained. The expression
for this is:

min
A,a

min
c1

∑
xi∈D1(A,a)

(yi − c1)
2 + min

c2
∑

xi∈D2(A,a)
(yi − c2)

2

 (23)

c1 is the sample output mean of D1 data set and c2 is the sample output mean value of
D2 data set.

The steps taken to establish the random forest regression model are as follows, and
the flow chart is shown in Figure 2.

Figure 2. Random Forest Flow Chart.
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(1) N is defined as the number of training samples and M is defined as the number
of features.

(2) The input feature number m is used to determine the decision result of a node on
the decision tree. It should be noted that m should be much less than M.

(3) Take samples n times from N training samples using put-back-sampling to form
a training set. This process is called the bootstrap method. In addition, the unselected
samples are used for prediction and the error is evaluated.

(4) For each node, m features are randomly selected, and the decision of each node in
the decision tree is determined based on these features. According to these m characteristics,
the optimal splitting mode is calculated.

(5) Each tree will grow completely without pruning and may be adopted after building
a normal tree classifier.

(6) Repeat the above steps to form a random forest; the result is determined by the
voting of trees in the random forest.

2.3. Data Acquisition

In this paper, data are collected from the real-time database of unit 1 and unit 2 of the
Qinshan nuclear power plant in Zhejiang Province, China. The steam turbine of this nuclear
power plant is a saturated-steam single-shaft three-cylinder four-exhaust-intermediate-
reheater half-speed nuclear power turbine manufactured by Dongfang Steam Turbine
Manufacturer. The data are one sampling point per minute with each sampling containing
200 different types of parameters. The screenshot of the nuclear power monitoring program
is shown in Figure 3.

Figure 3. Monitoring and Forecast Program of Nuclear Power Unit.

The research object of this method is the sensor of the thermal system, with no
consideration of the fault of the nuclear power unit itself. Therefore, the premise of this
method is that the sampled data should be from the non-fault nuclear power units, so
as to avoid the interference of parameter fluctuation caused by the fault of the nuclear
power unit itself on the fault diagnosis results of the model. The method includes the
following steps:

(1) In normal operation, the N sensors to be diagnosed are resampled K times, the
sampling interval is ∆t, and the sample length is L. The normal operation data sample Q1
is obtained. The data label named “stable operation” is added to each sample in Q1.

(2) In peak load operation, the sampling mode of 1) is repeated to obtain the peak load
operation data sample Q2. The data label named “peak load operation” is added to each
sample in Q2.
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(3) On the basis of the actual operation data and the sensor fault simulation model
proposed in reference [20], the fault signal simulation of the typical faults of four kinds of
sensors is completed. Repeat the sampling mode of 1), obtain the data samples for each
fault, and add the corresponding fault data label for each data sample. The sample set of
fault 1 is named Q31, the data label is “Catastrophic Failure (or Complete Failure)”; the
sample set of fault 2 is named Q32, the data label is “Precision Degradation Failure”; the
sample set of fault 3 is named Q33, the data label is “Drift Failure”; the sample set of fault
4 is named Q34, the data label is “Constant Deviation Failure”.

(4) The Improved-ICA algorithm is applied to Qtotal = [Q1, Q2, Q31, Q32, Q33, Q34].
Obtain the physical source signal Stotal =

[
SQ1, SQ2, SQ31, SQ32, SQ33, SQ34

]
and noise signal

Etotal =
[
EQ1, EQ2, EQ31, EQ32, EQ33, EQ34

]
under these five working conditions.

(5) Take the physical source signal Stotal and noise signal Etotal as the input value of
the random forest model, then use the bootstrap method to select the training subset.

(6) According to the minimum mean square deviation, divide the left and right
subtrees of the regression tree, carry out recursive calculation until the termination con-
ditions are met, and obtain the random forest regression model by training the random
forest model.

(7) Substitute the test subset into the random forest regression model to obtain the final
prediction results for each sample and compare the actual value to evaluate the accuracy of
the model.

3. Fault Diagnosis Process

According to the improved ICA algorithm and the random forest algorithm mentioned
above, the fault diagnosis model is established. First of all, the signal obtained by the
sensor is decomposed by the improved ICA and the characteristic sub-signal is extracted.
Second, the decomposed characteristic sub-signal and noise signals are converted into
training samples. Next, the labeled training samples are substituted into the random forest
algorithm to complete the training, and the fault diagnosis model is obtained. Finally, the
accuracy of the model is verified.

The steps of the model are as follows:
Signal analysis and feature extraction (completed by improved ICA)

1. Input original signal;
2. Completes the blind source separation by improved ICA;
3. Obtain the separated signal feature and remove the noise;
4. Taking the signal feature as one of the input values of the classifier;

Fault diagnosis (completed by random forest)

5. Take the signal feature and fault labels as the total samples;
6. The total samples are divided into training samples and test samples;
7. Initialize the random forest model;
8. Input training samples and complete the training;
9. Pass verification? If not, adjust the RF parameters and return to step 8;
10. Output the trained model;
11. Select the test sample as the input value of the trained model;
12. Input test samples and complete the test;
13. The test results are output and compared.

The flow chart of the fault diagnosis model is shown in Figure 4.
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Figure 4. Fault Diagnosis Flow Chart.

3.1. The Result of Improved-ICA Algorithm

In order to verify the effectiveness of the fault diagnosis method, the data in the SIS
real-time database of a 1211 MW nuclear power plant are analyzed. During the peak load
operation of the nuclear power plant, the parameter signal of reheated steam pressure is
abnormal, and the deviation between the collected sample data and the actual experience
value is large; thus, the reheat steam pressure sensor is taken as the sensor to be diagnosed.

Apart from the reheat steam pressure, the fluctuation of the main-steam flow, low-
pressure exhaust pressure, condenser temperature and other parameters also exceed the
specified threshold. However, the fluctuation of these parameters is not as apparent as
that of reheat steam pressure, especially the research on the fluctuation of main-steam flow
also involving the finite element calculation of venturi pipe flow field. Another group of
our research team is currently studying the fluctuation of the main steam flow. This study
is based on the finite element calculation of the venturi flow field, which is also related
to the vibration and cracking of the tube. Owing to its complexity, this is not analyzed
in this manuscript. Considering the length of the paper and the research direction, these
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parameters are not discussed in this paper. Our team will focus on this part of the study in
the next manuscript.

The data of reheat steam pressure under stable operation and peak load operation are
shown in Figures 5 and 6.

Figure 5. Reheat Steam Pressure of Stable Operation.

Figure 6. Reheat Steam Pressure of Peak Load Operation.

The improved ICA model is used for the blind source separation of the signal and
outputs the separation result signals. In the figure, a total of four window graphs are listed
from top to bottom, including the first separated principal component signal, the second
separated principal component signal, the third separated principal component signal and
the noise signal.

The separation results when the sensor works normally and the unit maintains stable
operation are presented in Figure 7. When the sensor works normally and the unit is in
peak load regulation, the separation result is shown in Figure 8.
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Figure 7. Separation Result (Stable Operation).

Figure 8. Separation Result (Peak Load Operation).

When the sensor works normally, the first independent principal component extracted
by the improved ICA is relatively stable, which is an approximately linear signal with a
little burr noise. In stable operation, the second and third principal component signals are
almost weak pulse signals, and the amplitude of the noise signal is small. In peak load
operation, the second main component signal changes from the pulse signal to the section
signal, and there are large negative value changes consistent with the time when the unit
load fluctuation occurs. The amplitude of the third principal component signal and the
noise signal increases, and the pulse form of the third principal component signal is more
obvious. It can be seen that the pulse signal with the second weight degenerates into the
third weight signal when the unit is in peak load regulation, while the parameter fluctuation
signal caused by the load change in the unit evolves into the second weight signal.

In the thermal system sensors, the classical sensor faults can be divided into four
categories: Catastrophic Failure, Precision Degradation Failure, Drift Failure and Constant
Deviation Failure. There is no obvious Constant Deviation Failure in the sensor of this
nuclear power station, thus this paper only studies the first three classical faults.

(1) When the sensor works in conditions of Catastrophic Failure, the measured value
of the sensor remains unchanged for a certain period, and the measured value usually
deviates from the actual experience value. During the peak load operation, the thermal
parameters vary considerably according to the load fluctuation, and the measured values
will not change in a certain period after the peak load regulation. The nuclear power unit
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was overhauled in March 2018 and August 2019. It was found that the sensor was in the
state of Catastrophic Failure in both maintenances. After extracting this part of data, the
sample data are analyzed. The signal separation result is shown in Figure 9. The negative
value of the second principal component signal in Figure 9 corresponds to the Catastrophic
Failure of the sensor. The Catastrophic Failure of the sensor will lead to the generation of a
zero value signal. Due to the existence of a large number of zero value signals, the pulse
form of the third principal component signal is more complex.

Figure 9. Separation Result of Catastrophic Failure.

(2) When the accuracy of the sensor declines, the measured value of the sensor will
fluctuate around the real value. Generally, the fluctuation range outstrips the maximum
allowable value of the sensor error, and the fluctuation is irregular and periodic. During
a peak load operation, the thermal parameters experience dramatic changes. From July
2019 to January 2020, the nuclear power unit experienced several incidents of excessive
fluctuation. The field staff temporarily installed measuring points and the occurrence of
Precision Degradation was verified. This paper selects a part of the fault sample data for
analysis. The signal separation result is shown in Figure 10. Owing to the drop of precision,
the third principal component signal is composed of a stepped signal and pulse signal with
a great number of burr noises. The amplitude of the noise signal is also relatively large.

Figure 10. Separation Result of Precision Degradation Failure.

(3) When Drift Failure occurs, the measured value of the sensor changes in a divergent
manner with time, and the change is fast with a wide scope. A thermal performance test
was completed in September 2016. During the test, the reheat steam pressure changed
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greatly and increased with time. After stopping the thermal performance test, it was
found that the sensor had Drift Failure. The signal separation result is shown in Figure 11.
The second principal component signal is an approximately linear signal. The third
principal component signal also presents certain linear characteristics with a small number
of step pulses.

Figure 11. Separation Result of Drift Failure.

3.2. Model Training

The physical source samples and noise samples obtained in Section 3.1 are taken as
the input values (characteristic parameters) of the random forest model. The sensor failure
and fault type are taken as the output values (target parameters) of the random forest
model. 1,440,000 groups of samples are randomly divided into a training set (accounting
for 60% of the total number of samples) and a test set (constituting 40% of the total number
of samples).

The most important parameters in the random forest regression model include the
number of regression trees ntree, the maximum characteristic number of regression trees
mtry, the maximum depth of regression trees mdepth, the minimum number of samples
divided into internal nodes msplit, and the minimum number of samples in leaf nodes mlea f .
If ntree is too small, the model will be is prone to underfitting; if ntree is too large, the model
will be prone to overfitting. If the number of samples in a node is less than msplit, it will
not continue to select the best features to partition. mlea f is related to the pruning of the
regression tree. If the number of leaf nodes is less than mlea f , it will be pruned together
with its sibling nodes. Pruning helps to improve the generalization ability of the random
forest. The parameters of ntree, msplit and mlea f are adjusted to obtain a more accurate
random forest regression model [26,27].

Wu et al. [28] studied the relevant parameters of random forests. When the number of
samples ranged from one million to ten million, the recommended parameter combination
was msplit ∈ [2, 11] and mlea f ∈ [2, 11]. It is considered that if the number of data samples
reaches the level of a million and the number of trees reaches 100, the accuracy will be
improved slightly if the number of trees continues to increase. Moreover, the training time
increases exponentially, which is not conducive to computer calculation.

Firstly, the parameters of msplit and mlea f are optimized. The parameter range is given
as ntree = 100, msplit ∈ [2, 11] and mlea f ∈ [2, 11]. Each model is trained by the training set.
The evaluation index is out-of-bag error (oob error). Some of the training results are shown
in Table 1.
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Table 1. Parameter Optimization (msplit and mlea f ).

msplit mleaf Oob Error

7 2 17.69%
7 3 8.84%
7 4 3.21%
7 5 5.44%
5 4 9.17%
6 4 7.81%
8 4 6.93%
9 4 8.22%

Then, the parameter ntree is optimized. The parameter range is given as ntree ∈ [50, 300]
(ntree is a multiple of 10), msplit = 7, mlea f = 4. Some of the training results are shown
in Table 2.

Table 2. Parameter Optimization (ntree).

ntree Accuracy Time (s)

50 88.58% 38
100 97.04% 44
150 97.11% 89
200 94.77% 118
250 90.19% 142
300 85.16% 191

The parameter combination used in this paper is: msplit = 7, mlea f = 4, ntree = 100.

3.3. Experiments and Results

In the model training, four experiments are selected. Each model is trained by the
training set and 20-fold cross-validation is used to evaluate the training effect of the model.
The evaluation indexes are accuracy and calculation time. According to Krstajic et al. [29],
a small number of K cannot meet the accuracy requirements, but at the same time, a larger
number of K may not bring higher accuracy, although the overall trend is that the higher the
number of folds is, the higher the accuracy is. To be sure, a large discount will cause a large
computational overhead, causing a very long calculation time. Zhang et al. [30] suggested
that when the total number of samples is very large, K ≈ log (n) and n/K > 3d. n is the
total number of samples and d is the number of features. It is proved by Jung et al. [31] that
the stability of the 20-fold is better. It has quite good universality and can carry out better
accuracy and calculation rate under different sample sizes. Based on the suggestions of
these three references 20-fold cross-validation is used in the manuscript. The screenshot of
the cross verification is shown in Figure 12. The training results of these four experiments
are shown in Table 3.

Table 3. The Results of Model Training.

Experiments Training Accuracy Training Time (s)

Exp. 1 ICA-RF 98.5% 70.606
Exp. 2 ICA-KNN 88.1% 36.199
Exp. 3 RF 77.2% 80.135
Exp. 4 KNN 68.4% 48.625
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Figure 12. Confusion Matrix.

(1) Experiment 1: Complete the fault diagnosis according to the methods and steps
described in Sections 3.1 and 3.2

(2) Experiment 2: The same training and test samples as those in Experiment 1 are
used, but the random forest model is changed to KNN (K-Near-Neighbor) model;

(3) Experiment 3: Blind source separation in Section 3.1 is not performed. Using the
observation signal as the input value, the fault diagnosis is completed according to the
contents of Section 3.2;

(4) Experiment 4: The blind source separation in Section 3.1 is not performed. The
observation signal is used as the input value, and the KNN model is used to complete the
fault diagnosis.

The fault diagnosis of the sample is carried out under the specified parameters. The
following three groups of experiments have been carried out. In order to better evaluate
the diagnosis results, a confusion matrix is used to compare the diagnosis results. The
following definitions exist in the confusion matrix, and the details are given in Table 4 and
Figures 13–16:

Table 4. Confusion Matrix.

Predict

1 0 Total

Actual

1 True Positive
(TP)

False Negative
(FN)

Actual Positive
(TP+FN)

0 False Positive
(FP)

True Negative
(TN)

Actual Negative
(FP+TN)

Total Predicted Positive
(TP+FP)

Predicted Negative
(FN+TN) (TP+FN+FP+TN)

True Positive Rate (TPR): TP/(TP+FN). False Negative Rate (FNR): FN/(TP+FN).
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Figure 13. Fault Diagnosis Result of ICA-RF.

Figure 14. Fault Diagnosis Result of ICA-KNN.

Figure 15. Fault Diagnosis Result of RF-Only.
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Figure 16. Fault Diagnosis Result of KNN-Only.

(1) If the positive class is predicted to be a positive class, it is a True Positive (TP).
(2) If the positive class is predicted to be a negative class, it is a False Negative (FN).
(3) If the negative class is predicted to be a positive class, it is a False Positive (FP).
(4) If the negative class is predicted to be a negative class, it is a True Negative (TN).
The test is divided into four parts:
(1) Test 1: Improved ICA-RF Model. The results are shown in Figure 13;
(2) Test 2: Improved ICA-KNN Model. The results are shown in Figure 14;
(3) Test 3: RF Model. The results are shown in Figure 15.
(4) Test 4: KNN Model. The results are shown in Figure 16.
The analysis and discussion of the test results will be carried out in detail in Section 4.

4. Discussion

Compared with the other three methods, the performance of the KNN-Only algorithm
was the worst. The diagnostic accuracy of the KNN-Only algorithm for peak load operation
was very low, and the classification effect of peak load operation and stable operation
was not ideal. In addition, the KNN-Only algorithm was almost unable to identify the
fault with reduced accuracy, and the diagnosis accuracy rate of the fault was only 33.7%.
There were some deficiencies in the identification of data drift fault, and the accuracy rate
was 80.6%. After blind source separation and feature extraction using improved ICA, the
correct rate of the ICA-KNN algorithm for peak load operation increased to 99.8%, while
the accuracy rate of data drift fault diagnosis was improved to 100%. The recognition
ability of the fault with a reduced accuracy was promoted slightly, and the accuracy rate
jumped to 49.2%, but the accuracy rate remained low.

Compared with the KNN algorithm, the RF algorithm showed a better performance.
The recognition rate of the RF-Only algorithm outstripped that of the KNN-Only algorithm
greatly, being close to that of the ICA-KNN algorithm. However, the RF-Only algorithm
also had a poor identification accuracy standing at only 38.7%. Among all the methods, the
ICA-RF algorithm showed the best performance. The diagnostic accuracy of the ICA-RF
algorithm for complete failure and data drift fault was 100%, and the diagnostic accuracy
of peak load operation was more than 99.7%. The accuracy of the model was 98.4% and
it could not be diagnosed by the other three methods. Obviously, the improved ICA-RF
algorithm model proposed in this paper could more quickly and accurately identify the
working state and fault type of sensors in the peak shaving nuclear power thermal system.

In fact, when the observation signal is directly input into KNN, the characteristics
of the peak load operation signal and stable operation signal are not significant at the
initial stage of the peak load operation. In addition, some fault signals and peak load
operation signals are similar to each other. These two factors cause serious interference in
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the KNN which uses spatial Euclidean distance to complete sample classification. When
the signal features are vague, KNN cannot correctly identify the signal features, leading
to low accuracy of diagnosis. RF can separate small-scale fluctuations on account of its
use of the decision tree algorithm. However, the parameters of the peak-load-regulation
nuclear power units fluctuate greatly, and the mixed-mode of signals is complex, creating
a high demand for the accuracy of the decision tree function, increasing the difficulty of
the decision tree classification and greatly augmenting the training time required. After
ICA, physical source signal and noise signal represent different local characteristics of
the original signal. Therefore, when ICA decomposed data are trained, KNN and RF can
better reflect the characteristics of signals and greatly improve the diagnostic accuracy of
RF. With the help of the above analysis, the improved ICA-RF algorithm can grasp the
characteristic information of the sensor signal correctly and effectively, so as to clearly
identify the working state and fault type of the sensor.

In addition to the experiments of the above algorithm, in this paper, we also con-
ducted experiments on the Without-Improved ICA-RF model and the Support Vector
Machine (SVM) model, as shown in Figures 17 and 18, respectively. The parameters of the
SVM model are as follows: The kernel function is Gaussian kernel function; the nuclear
scale is 3.2.

Figure 17. Fault Diagnosis Result of ICA-RF (Without Improved).

Figure 18. Fault Diagnosis Result of SVM.
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Compared with the fault diagnosis model proposed in this paper, the accuracies of the
Without-Improved ICA-RF model and the SVM model are relatively low. More importantly,
in terms of diagnosis time, the Without-Improved ICA model achieved 302 s, the SVM
model achieved 542 s, and the Improved ICA-RF model achieved 44 s. The Improved
ICA-RF model has more merits in terms of the accuracy and time taken for diagnosis.

Through deeper consideration, we realized that the EMD is a signal decomposition
method widely used in signal analysis, and the CNN is a very mature deep learning algo-
rithm. We proposed some simple experiments of the EMD-RF [16] and the CNN [32,33].
The CNN is named Multi-Dimensional Signal Processing Convolution Neural Network
(MDSP-CNN). In this paper, the MDSP-CNN runs on the basis of Python 3.8.8 and Tensor-
flow 2.3.0, and the editor is Jupyter 6.3.0. The signals processed by the EMD are shown in
Figures 19–21. The result of the EMD-RF is shown in Figure 22. The result of the CNN is
shown in Figure 23.

Figure 19. Catastrophic Failure Signal of EMD.

Figure 20. Precision Degradation Failure Signal of EMD.
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Figure 21. Drift Failure Signal of EMD.

Figure 22. Result of EMD-RF.

The overall comparison of the models is shown in Table 5. For different algorithms, the
advantages of the improved ICA-RF are mainly reflected in accuracy and time-consuming.
After the maximum approximate information, negative entropy was used to improve the
ICA, compared with ICA-RF (Without Improved), the time-consuming of the algorithm
proposed in this paper is significantly reduced from 302 s to 44 s; the ICA algorithm
improves the classification accuracy. Compared with the RF and the KNN, the ICA-RF
and the ICA-KNN improve the accuracy from 85% to 99.6% and from 67% to 89.78%
respectively. Compared with some mature algorithms, such as the SVM and the EMD, the
ICA-RF also has certain advantages. Compared with the SVM, the ICA-RF has just a small
advantage in terms of accuracy, but the time consumption is nearly 500 s less than SVM;
When the classifiers are both the RF, the total diagnostic accuracy of the EMD-RF is about
93%, but the diagnostic results of these three faults are poor, and the average accuracy is
about 85%. In the diagnosis of those three faults, the model proposed in this paper has
higher accuracy than the EMD-RF.
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Figure 23. Result of CNN.

Table 5. Compare of Results.

Model Test Accuracy Test Time (s)

Improved ICA-RF 99.60% 44
Improved ICA-KNN 89.78% 29

RF 85.04% 59
KNN 67.14% 30

ICA-RF (Without Improved) 94.86% 302
SVM 97.50% 542

EMD-RF 92.87% 57
CNN (Epoch 1) 47.83% 22
CNN (Epoch 5) 98.33% 98
CNN (Epoch 10) 91.16% 173
CNN (Epoch 15) 99.98% 298

The diagnostic accuracy of the CNN is related to the epoch and the depth of network
layers. A sufficiently large number of network layers can obtain very high accuracy. When
the network depth is insufficient, the diagnosis accuracy of the CNN is low. However,
the value of network depth needs research and experiment and is affected by sample
size and data type. Although excessive network depth can reach a high accuracy, the
calculation speed will be low, the code complexity will increase significantly, and the
demand for computer hardware will be high. Though the ICA-RF has no advantage in
accuracy compared with the CNN in certain epochs, the CNN needs a lot of experiments
to determine the depth of network layers and the number of epochs, while the ICA-RF
does not.

Finally, we studied and analyzed the stability of the improved ICA-RF algorithm.
We expanded the test samples from 1 to 100 times (the number of 1-time samples = 1440)
and calculated the accuracy of test samples of different sizes, as shown in Figure 24. The
algorithm proposed in this paper reaches a high test accuracy when the number of samples
is small, which is related to the small number of test samples. When the sample increases,
the test accuracy decreases for a short period, but finally converges to the training accuracy.
The model proposed in this paper has good stability and can be used for a large number of
test samples.
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Figure 24. The Stability of Improved ICA-RF.

The improved ICA-RF algorithm proposed in this paper has advantages in accuracy
and time-consuming and can be applied to thermal sensor fault diagnosis of peak-load-
regulation nuclear power units. The stability of this method is also good, and overfitting is
not easy to occur when the sample size is large. Compared with the CNN, this method
is simpler, does not need to optimize parameters through a large number of experiments,
and is simpler and more convenient to use.

The shortcomings of the ICA mainly appear in the impact on the original data samples.
Because the ICA decomposes the original signal, the total number of data will become
larger. A large number of samples may increase the difficulty and time-consuming of
calculation. The ICA algorithm itself is used to extract signal features, but the extracted
features may not contain all the features of the original signal, so there is a case of changing
the features of the original signal. The distortion of signal characteristics may affect the
accuracy of the model. In addition, the ICA is inferior in algorithm complexity and
computing time compared with some widely used signal analysis algorithms, such as
median filtering algorithm and local mean decomposition algorithm. Moreover, the ICA is
mainly used for signal separation and feature extraction of the non-Gaussian signals. When
the noise is specific Gaussian noise, the effect is poor. The median filter is a nonlinear signal
processing technology that can effectively suppress noise. The local mean algorithm has
more advantages in analyzing the time-frequency distribution of signals. We will analyze
these two methods in the next manuscript.



Sensors 2021, 21, 6955 26 of 28

5. Conclusions

This paper proposed the Improved ICA algorithm, which can separate peak shaving
signal from fault signal and obtain better signal characteristics. Additionally, according
to the strong self-organization and self-learning ability of the random forest algorithm, a
sensor fault diagnosis model based on the Improved ICA-RF algorithm is proposed. The
experiment was carried out using MATLAB 2020b and the control group was set up. The
results show that this method can distinguish peak shaving operation and sensor fault
better and can identify the working state and fault type of sensor faster and more accurately
than the method used in the control group.

The sensor fault diagnosis mentioned in this paper has been realized and is currently
in test operation in the fourth power plant of the China National Nuclear Corporation
(CNNC). Due to the security level of the CNNC and the strict management due to COVID-
19, more data will be obtained and made public only after the acceptance of the project. In
a follow-up study, we will expand the research case and research scope, and use data with
a larger time span for our research, including the research results for sensor failure and
steam turbine failure. This will be included in our next manuscript.
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Appendix A

Pseudo Code: Improved ICA

Start
Step 1: Input data samples X
Step 2: Calculate the number of rows Xrow and columns Xcol

Define matrix size function as size ()
[Xrow, Xcol] = size(X)

Step 3: Calculate the average aveX
Define average function as mean()

aveX = mean(X)
Step 4: Remove mean values

Define all 1 matrix function as ones()
For i = 1 : Xrow

X(i,:)= X(i,:)- aveX(i)*ones(1, Xcol);
End For
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Step 5: Calculate the covariance Cx
Define the covariance function as cov()

Cx = cov(X, 1)
Step 6: Calculate the feature vector eigvector and the feature value eigvalue

Define the feature vector function as eig()
[eigvector, eigvalue] = eig(Cx)

Step 7: Calculate the whiten matrix Z
Z = eigvector√

eigvalue
∗ X

Step 8: Iterative initialization
Set iteration steps Maxcount
Set convergence condition Critical

Step 9: Initialize B and Gi
Define random function as rand()

B = rand(Xrow)
Set Gi as nonlinear function

Step 10: Iterative operation
Define expectation function as E()

B∗ = E
{

ZGi

(
BTZ

)}
− E

{
Gi

(
BTZ

)}
B

B =
B∗

||B ||∗

Define absolute value function as abs()
Set count=0
If abs(B− B∗) & abs(B + B∗) > Critical
Then

count=count+1
If count= Maxcount

Then
print(“Unconvergent”)
Break

Else
Goto Step 9

End If
Else

Output B
Break

End If
End
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