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Abstract: For high-resolution side scan sonar images, accurate and fast segmentation of sonar images
is crucial for underwater target detection and recognition. However, due to the characteristics of low
signal-to-noise ratio (SNR) and complex environmental noise of sonar, the existing methods with
high accuracy and good robustness are mostly iterative methods with high complexity and poor
real-time performance. For this purpose, a region growing based segmentation using the likelihood
ratio testing method (RGLT) is proposed. This method obtains the seed points in the highlight and
the shadow regions by likelihood ratio testing based on the statistical probability distribution and
then grows them according to the similarity criterion. The growth avoids the processing of the
seabed reverberation regions, which account for the largest proportion of sonar images, thus greatly
reducing segmentation time and improving segmentation accuracy. In addition, a pre-processing
filtering method called standard deviation filtering (STDF) is proposed to improve the SNR and
remove the speckle noise. Experiments were conducted on three sonar databases, which showed that
RGLT has significantly improved quantitative metrics such as accuracy, speed, and segmentation
visual effects. The average accuracy and running times of the proposed segmentation method for
100 × 400 images are separately 95.90% and 0.44 s.

Keywords: segmentation; sonar images; fast and accurate; region growing

1. Introduction

Sidescan sonar (SSS), which can provide high-resolution images of the seabed, is one
of the most common sensors for various underwater applications, such as topography
measurement [1], search for sunken vessels and submerged settlements [2], underwater
mine detection [3], fish stocks detection, cable or pipeline detection [4–6], and offshore
oil prospecting [7]. Accurate and efficient segmentation of SSS images is essential for
underwater objects detection. Because segmenting sonar images into highlight areas with
objects, regions of shadow, and seafloor reverberation is an effective method to obtain
the region of interest (ROI), this is usually an important step before object classification.
However, the existing issues on sonar images such as low SNR, intensity inhomogeneity,
and complex marine environment noise severely affect the performance of segmentation
algorithms especially for small targets. In addition, the characteristics of sonar images
are unstable, for example, shadows are not always present. In addition, shadows and
highlight areas are affected by sonar position and the properties of the environment, which
adds challenges for this task and makes it difficult to obtain a dataset that is robust for all
environments to be encountered. Moreover, the algorithms should be rapid and efficient to
enable real-time detection, but it is difficult to do this due to the high resolution of sonar
images. This work concentrates on fast and accurate segmentation of sonar images into
highlighted areas with objects, shadowed areas, and reverberant areas of the seafloor.

Various methods have been put forward to carry out sidescan sonar imagery segmen-
tation. Widely used algorithms in the field of sonar image segmentation include threshold
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methods [8], clustering methods [9–11], Markov random field model (MRF) [12–15], curve
evolution methods [16–18], convolutional neural networks (CNN) [19], etc. The threshold
method usually faces the problem of varying illumination in sonar images, so it is difficult
to find a suitable adaptive threshold. Methods based on clustering techniques (e.g., fuzzy
C-means [11]) do not introduce modeling of the statistical distribution characteristics of
luminance within the different types of regions, so these approaches lack robustness [15].
Active contour method [16,18] and level set method [17] based on curve evolution have
been proposed and have been further investigated with good performance. MRF models
are applied to sonar image segmentation and satisfactory results are achieved. However,
these algorithms are quite complicated and require a large number of computational
resources and running time [11], making them difficult to be applied for Autonomous
Unmanned Vehicles (AUVs). Recently, CNN based methods have been researched on sonar
segmentation [19]. However, the availability of a sufficient amount of training data to learn
the classification model is still challenging, and the model results depend on the similarity
between the training data and the test data. When the data are mismatched, the observed
results may be inferior.

Filtering is commonly used to remove speckle noise to enhance the segmentation
effect. Traditional image denoising algorithms can be generally divided into spatial domain
and transform domain filtering methods. Lee [20], Frost [21], and SRAD [22] are typical
spatial domain filtering methods with excellent filtering performance. However, the
processed image appears too smooth and has blurred edges [23]. The transform domain
filtering method contains common Discrete Cosine Transform [24], principal component
analysis [25], and wavelet denoising algorithms [26]. Karthikeyan and Chandrasekar
proposed a method combining the SRAD filter with the wavelet-based technique [27].
The method achieved a PSNR metric value of over 70 dB, as measured on a test dataset.
Researchers used the stationary wavelet transform for sonar image denoising in [28], and
the method has outstanding performance in terms of PSNR and SSIM. The transform
domain filtering method can achieve a certain denoising effect, but it will remove the high
frequency components of the signal itself at the same time, which results in detail loss [23].

In order to perform unsupervised segmentation effectively and efficiently, an al-
gorithm based on region growing and a priori statistical distribution characteristics is
proposed, called RGLT. The method first selects seed regions containing highlight and
shadow areas and then grows them according to similarity criteria. Because the seabed
reverberant areas take up the largest proportion of the sonar images while the highlight and
shadow take up a small proportion, avoiding processing seabed areas when growing can
save a considerable amount of time. The statistical characteristics are taken into account by
a highlight-shadow likelihood ratio test at the stage of the seed regions selection, allowing
the algorithm to efficiently and adaptively obtain preliminary segmentation. To solve the
problem of low contrast, low SNR, and varying illumination, pre-process enhancement
methods are presented to improve the contrast and SNR of a side scan sonar image, remove
the speckle noise, and balance the illumination throughout the image. The results show
significant gains in terms of quantitative metrics (speed and accuracy) and visual effects
using RGLT. Compared with Fuzzy C-means [11] and active contour method [18], RGLT
has obvious advantages in processing images with large differences in the ratio of back-
ground, highlight areas and shadows, and has better adaptability to noisy backgrounds
and can clearly segment small targets.

The existing general issues on sonar images include low SNR, intensity inhomogeneity,
and complex marine environment noise, which severely affect the performance of segmen-
tation algorithms especially for small targets. In addition, most of the current methods
with high accuracy and good robustness are iterative methods with high complexity and
poor real-time performance.

The contributions of this article are summarized as follows:

1. This paper describes a pre-processing method for correcting time-varying gain (TVG)
effects in sidescan sonar data, to balance the intensity throughout range.
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2. To remove the speckle noise and enhance the SNR as well as the contrast of the sonar
image, a filter STDF is proposed in this paper. The enhancement is beneficial to the
subsequent segmentation.

3. An unsupervised segmentation algorithm is presented based on the assumption that
the region of the seafloor obeys the Weibull distribution. Experiments showed the
method has significantly improved quantitative metrics such as accuracy, speed, and
segmentation visual effects. It is an effective and efficient algorithm based on region
growing that can be used in the real-time sonar application.

2. Materials and Methods
2.1. Overview

As illustrated in Figure 1, in this paper, the side-scan sonar images are processed in
four steps. Firstly, the time gain of sonars is re-compensated in order to make the echo
level independent of range. The step can alleviate the problem of varying illumination in
sonar images and make the seabed intensity distribution in different regions consistent. It
contributes to improving the robustness of adaptively seeds selection and region growing
during subsequent segmentation. Sonar images suffer from low SNR and speckle noise,
which adds difficulties to fine segmentation. Therefore, a filter referring as STDF is used to
enhance sonar images and remove the speckle noise. Secondly, the ratio of the standard
deviation to the mean (RDM) is a constant under the assumption that the sonar images
obey the Rayleigh distribution. Exploiting the feature that the highlight regions have higher
RDM than the seabed reverberation regions, STDF improves the SNR while removing
speckle noise. To speed up the segmentation process for high-resolution sonar images, an
algorithm based on regional consistency is proposed instead of the global iteration. To
avoid losing the highlight and the shadow regions and to reduce the probability of the
seabed regions being misclassified into the foreground, seed points are selected based on the
statistical distribution characteristics and likelihood ratio test. The seed points are selected
in the highlight and the shadow areas adaptively and efficiently to obtain the preliminary
segmentation. Then, the subsequent growing is based on the preliminary segmentation and
is conducted on the proposed similarity criterion. The seed selection enables the growth
process to save lots of time without processing the seafloor reverberation region with large
areas. The segmentation obtains fine details and high accuracy by the growth step.
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2.2. Time Gain Re-Compensation

Time gain compensation (TGC) is indispensable in sonars in order to compensate
for transmission loss and inconsistency of reverberation so as to make the echo level
independent of range. The usual TGC will be embedded in the hardware according to the
formula and then fine-tuned by manual adjustment. However, because the estimation of the
parameters in the TGC formula is coarse (the parameters are related to the bottom substrate,
geometric spreading type, water temperature, sonar frequency, etc.), the dependence of the
intensity on the range cannot be completely eliminated, and the uniformity of the intensity
is essential for the subsequent segmentation task, so a time gain re-compensation technique
is proposed to reduce the dependence further.

When we consider the submarine interface reverberation, the received echo level, E,
for an active sound system can be expressed as [29]:
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E = SL− (2TL + Ss,v + 10 log
cτ

2
φR) (1)

where SL is the source level, TL is the one-way transmission loss, Ss,v is the surface/volume
backscattering intensity. c, τ, φ and R are speed of sound, width of transmitted pulse,
horizontal opening angle of the transducer, and the range, respectively. The transmission
loss is mainly caused by the geometric spreading and absorption of the acoustic. The
commonly used function has the form 2TL(R) = 40 log R + 2αR, where 40 log R represents
the transmission loss caused by the geometric spreading, and this function takes the
assumption of spherical spreading in the free field. However, the sonar signal transmission
does not always follow this ideal assumption. The function will be 20 log R or 60 log R,
respectively, when taking the assumption of cylindrical spreading between parallel planes
or hyperspherical spreading in free field with time expansion field. In addition, 2αR
represents the transmission loss caused by the absorption of the acoustic, and α represents
the logarithmic absorption coefficient. α is estimated on the experience usually, but the
estimation is complicated and inaccurate, for that α is related to various factors such as
sonar frequency, water temperature, salinity, and pressure.

From the above analysis, the gain compensation related to the range is abbreviated
as follows:

20 log

 I
(

Rre f

)
I(R)

 = Gain(R, λ, α, γ) = 10β logR + 2αR + γ (2)

where I
(

Rre f

)
and I(R) are the echo intensity at reference range Rre f and range R. β and

γ are constants. It is often the case that the image intensity still depends on the range due
to imprecise parameters estimation in fact. Therefore, it is necessary to re-compensate the
gain that has been compensated by hardware. In this paper, the parameters estimation
problem is described as the nonlinear least squares problem as follows:

min ∑
R
(20 log

Ĩ
(

Rre f

)
Ĩ(R)

− Gain(R, γ, α, C))2 (3)

Then, this problem is solved by the Gauss–Newton method to estimate parameters β, α,
and γ. In the above equation, the mean of intensity at R and Rre f (i.e., Ĩ(R) and Ĩ

(
Rre f

)
)

obtained from data are used as the estimation of I(R) and I
(

Rre f

)
. The mean of the

intensity at range R for origin data and re-compensated data are shown in Figure 2c.
The re-compensation can balance the intensity inhomogeneity between the range. The
intensity of sonar image without re-compensation is dependent on range obviously in
Figure 2a. The sonar image with the presented re-compensation has a uniform intensity
distribution over different ranges in contrast as shown in Figure 2b and can contribute to
subsequent segmentation.

2.3. Filter for Enhancement

Since SSS systems generate images by coherent processing of the scattered signals,
they are severely suffered from speckle noise [30]. Due to high levels of speckle noise, the
underwater images often are generally poor quality with low SNR and contrast. Therefore,
the pre-processing should be done to suppress noises and enhance the images before
segmentation, feature extraction, and object detection. A pre-processing filter based on the
statistical properties of the sonar scattering signal is proposed to remove the speckle noise.
We called the proposed filter STDF.
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2.3.1. Speckle Noise Analysis

Speckle is a granular interference that inherently exists in and degrades the quality of
the active radar, medical ultrasound, and sonar images [31]. In a sidescan sonar imaging
system, the echo signal can be regarded as the coherent accumulation of backscatter signals
generated by a large number of scattering points.

Z = uejφ =
N−1

∑
i=0

ziejθi (4)

where Z = uejφ is the overall impulse response of the SSS imaging system, and zi, θi as well
as N are the signal intensity, phase of the ith scattering point, and the number of scattering
points within a resolution cell, respectively. If θi is a uniform distributed random variable
taking values between 0 and 2π, and zi meets independent and identical distribution,
the probability density function of u can be written as follows by using the central limit
theorem [19]. where a is a constant:

p(u) =
u
a2 exp

(
− u2

2a2

)
(5)

The ratio of the deviation σ and the mean µ (RDM) of the above distribution can be
easily calculated as

σ

µ
=

√
2− π/2

π/2
≈ 0.523 (6)

Speckle is caused by the coherent accumulation of backscattered signals and can be
modeled as multiplicative noises [20]. When the number of scatters which have random
phases θ with uniform distribution tends to infinity, the above result will be obtained. The
seabed reverberation areas are more consistent with the assumption than the highlight
areas with targets. Experiments show that the RDM in the seabed reverberation areas
is closer to the theoretical value of 0.523, and the RDM of the highlight areas is higher
than that of seedbed reverberation areas. The RDM of highlight areas (µh/σh) and seabed
reverberation areas (µb/σb) in 10 sonar images are calculated and shown in Table 1.
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Table 1. Ratios of mean and deviation of highlight areas and seafloor reverberation areas in 10 sonar
images.

Sonar Images σh/µh σb/µb

Image 1 0.8926 0.5590
Image 2 0.9266 0.5622
Image 3 0.9957 0.5665
Image 4 0.8484 0.5582
Image 5 0.8347 0.5537
Image 6 0.8882 0.5648
Image 7 0.9822 0.5639
Image 8 0.9187 0.5762
Image 9 1.0921 0.5768
Image 10 0.9791 0.5766

2.3.2. The Proposed Filter STDF

The mean filtering can suppress the speckle noises and improve image quality by
calculating the mean of the neighborhood to estimate the value of the centroid pixels [32].
As illustrated above, the mean of the neighborhood of a pixel can be estimated by estimating
the standard deviation of the neighborhood, because the RDM is a constant. In our method,
the deviation of each pixel is chosen instead of the mean of the pixel to enhance the targets
and suppress speckle noise. The above description shows that the statistical properties
of the highlight areas with targets are different from those of the seabed reverberation
areas, i.e., the RDM of the highlight areas is higher than that of seabed reverberation areas.
Therefore, using the standard deviation as an estimate for each pixel point can widen the
margin between classes, amplify the signal of object areas, suppress the signal of seafloor
background, and then improve the SNR and contrast of sonar images. The filter is called
STDF and is defined as calculating the standard deviation of its 8-neighborhood as the

estimated illumination of the pixel as Y(x, y) =
√

1
n−1 ∑s∈S (J(xs, ys)− J(x, y))2, where

J(xs, ys) is the intensity at pixel (xs, ys) in the original sonar images. J(x, y) and n are the
mean of pixels’ intensity and the number of pixels, in the 8-neigborhood S centering at
(x, y). Y(x, y) is the STDF result at pixel (x, y). The filter can be calculated in matrix form
and be expressed by Equation (7):

ISTDF � ISTDF =
1

n− 1
{(I � I)⊗ h}+ 1

n(n− 1)
{(I ⊗ h)� (I ⊗ h)} (7)

where I is the original sonar images, ISTDF is the STDF result. h is a filter operator of size
3× 3 whose elements are all 1.

⊗
indicates the convolution operation.

⊙
indicates the

dot multiplication.

2.4. Proposed Segmentation

Because the sidescan sonar typically has a centimeter range resolution and a large
range of hundreds of meters, there are numerous pixels in a single scan line. Most current
segmentation (e.g., active contour [16,18], Fuzzy C-means [11], MRF [12–15]) are algorithms
with high numbers of iterations and struggle to meet real-time requirements. Each iteration
step of these algorithms involves the processing of reverberant regions of the seabed. The
highlight regions with targets occupy a small proportion of the target, while the seabed
reverberant regions occupy a large area. Aiming at concentrating on the highlight areas and
shadow areas, the method based on seeded region growing (SRG) [33] is considered which
focuses on the growth of the boundary pixels rather than on global processing. The region
growing algorithm can correctly separate the regions that have similar properties as defined
and is stable to noise. Yu et al. [34] proposes an image segmentation method that uses the
region growing technique and edge strength information to improve the traditional MRF-
based approaches. Jiao et al. [35] proposes an SRG algorithm with superior performance
based on the Gaussian pyramid, which automatically selects seed points and optimizes
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the growth path. Wu et al. [36] proposes an effective segmentation method combined with
MRF and region growing for sonar images. However, the speed of current region growing
based methods combined with MRF does not meet the real-time requirement, and the
region growing methods not employing the statistical features of sonar lack robustness.

The proposed segmentation method is composed of the following main steps: first,
seed pixels or regions as started points are selected, similar to [33], and then, pixels with the
same or similar properties in the vicinity of the seed pixel are merged into the seed pixel
domain according to the growth criteria. In this paper, the seed selection principle and
the similarity criterion for the region growing step are redesigned for segmenting sonar
images fast and accuracy. The seeds are selected from the foreground (i.e., the highlight
and shadow areas) to avoid the long-time iterative growth of the seabed reverberation area.
The seed points are grouped into two sets Ai, i.e., the highlight areas A1 and shadow areas
A2. The selection should be adaptive with no human interaction. Aiming at reducing the
appearance of false targets without losing the foreground areas, every highlight region
which needs to be extracted should have one seed point at least, and the probability that
the seed points are in the seabed background area should be reduced as much as possible.
Therefore, the method of likelihood ratio testing is adopted on the statistical distribution
of the sonar images. Take the distinction between the seabed and the highlight points
as an example. ys ∈ {l0, l1} stands for the class of image points, and l0 stands for the
“highlight” label while l1 corresponds to the “sea-bottom” class. Type I error is the rejection
of a true null hypothesis, and type II error is failing to reject a false null hypothesis. The
criterion for the selection of the rejection domain is to choose the rejection domain with the
smallest possible probability of making the type II error while ensuring that the probability
of making the type I error does not exceed a certain level. The criterion is consistent with
the requirements of seed points selection.

According to the Section 2.3.1, the luminance within the seafloor reverberation area
follows the Rayleigh distribution as Equation (5). In this section, we assume that the
luminance within the seafloor reverberation area follows the Weibull distribution including
the Rayleigh distribution, and the highlight and shadow areas follow the Gaussian law [15].
The conditional density function for the sea-bottom is modeled by a Weibull law and for
highlight is modeled by a Gauss law as

P(u|λ, k, l1) =

{
k
λ (

u
λ )

k−1e−(
u
λ )

k
u ≥ 0

0 u < 0
(8)

P(u|σg, µg, l0) =
1√

2πσ2
g

exp(−
(u− µg)

2

2σ2 ) (9)

where k, λ, σg, and µg are parameters to be estimated. To estimate the parameters for the
seabed area luminance model precisely, pre-segmentation will be conducted using the
threshold segmentation method with STDF images. The highlight regions, the shadow
regions, and the seabed regions obtained by the pre-segmentation refer to the highlight
dataH, the shadow data S , and the seabed data B. The points numbers in three kinds of
regions are nH, nS, and nB. The parameters of the Weibull model are estimated based on
the raw data after time gain re-compensation but without STDF, as STDF will change the
luminance distribution. The following expression of the maximum likelihood estimator
can be obtained as follows, where nF stands for nH or nS, and F stands forH or S .

λ̂ =

(
1

nB

nB

∑
iεB

ui
k

) 1
k

(10)

1
k̂
=

∑iεB ui
k ln ui

∑iεB ui
k − 1

nB

nB

∑
i=1

ln ui (11)

µ̂g =
1

nF
∑
iεF

ui (12)
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σ̂g
2 =

1
nF

∑
iεF

(ui − µ̂g)
2 (13)

The likelihood ratio is calculated as

β(u) =
P(u|H0)

P(u|H1)
=

P(u
∣∣σg, µg, l0)

P(u|λ, k, l1)
(14)

The assumption test is as Equation (15), where η is the threshold for seed points
selection. η is chosen by restricting the probability of making type I error e1 to a certain
percentage. Next, a test is chosen which minimizes class e2. When β(u) ≤ η, pixels are
assigned to the seed point sets; else, pixels are assigned to unallocated pixels.

β(u)

H0
>
≤
H1

η (15)

The details of the process of region growing are shown in Appendix A. Firstly, the
neighbors of the points in Ai are marked as boundary pixels. Next, it is judged whether the
bounding pixels set is empty. If the set is not empty, it is judged whether the points in the
set satisfy the similarity criteria. The similarity criteria can be represented by the formula:
In ≥ µB + σB, where In represents the intensity value of points in the boundary set. IB
and σB represent the average intensity and the standard deviation of the intensity of the
seabed reverberation area. If the points meet the similarity criteria, they are assigned to Ai,
otherwise they are labeled as unallocated points. The iteration continues until the boundary
set is empty, and all unallocated points are marked as seabed reverberation points.

3. Results and Discussion

The testing environment of the algorithm proposed in this paper is as follows: Intel
(R) Core (TM) i58250U CPU, 8G RAM (Intel, Santa Clara, CA, USA), Windows, Matlab.

3.1. Dataset

In order to verify the effectiveness and superiority of the proposed algorithm, this
paper conducts experiments on real sonar datasets. The seabed materials include sandy
bottom and muddy bottom. The data are collected by a 500 kHz multi-beam sonar. Each
scan line on each side covers a range of 175 m with 7000 pixels. The datasets contain
complex landforms, such as terraces, ridges, ravines, gravel areas, etc.

3.2. Results of Proposed STDF

Aiming at evaluating the performance of the STDF, the results are compared with
mean filter, median filter, Gaussian filter, and Lee filter [20] in Table 2 in terms of SNR and
contrast, defined as

SNR =
(

IM − IB
)
/σB (16)

contrast =
(

IH − IB
)
/IB (17)

where IM is the maximum intensity value of the highlight areas; IB and IH represent
the average intensity of the highlight areas and the seabed background areas, and σB
represents the standard deviation of the intensity of the seabed background area. The
results demonstrate that the proposed STDF has higher SNR and contrast than other
methods. The RDM of the highlight areas is higher than that of the seabed reverberation
areas, thus calculating the standard deviation of its 8-neighborhood as the estimated
illumination of the pixel can significantly improve SNR and contrast. The visual results of
different filters are shown in Figure 3. The subgraph (a) shows a raw SSS image without
filtering, and subgraphs (b), (c), (d), and (e) respectively show the results for mean filtering,
median filtering, Gaussian filtering, Lee filtering, and the STDF proposed in this paper. The
results in (b), (c), (d) suffer from details missing, namely, the tail of the cable in white boxes
is not clear. The results in (e) still have obvious intensity inhomogeneity in the seabed area
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indicated by the green boxes. In addition, as illustrated in blue boxes, the results of STDF
shown in (f) have better contrast of highlight areas with seabed areas than other methods,
i.e., the STDF can improve the SNR and contrast of the sonar images meanwhile preserving
details and edges. To verify the sensitivity characteristics with respect to the resolution of
the sonar images, sonar images are downsampled in the column with the sampling rate
reduction factors of 2, 4, and 8 in the column’s direction as shown in subgraphs (A), (B),
and (C) in Figure 4, respectively. The subgraphs (a)–(f) in Figure 4 correspond to the same
methods as Figure 3. As the downsampling rate increases, the resolution of the image
decreases. It can be seen that the proposed STDF still has finer edges and higher contrast
than other methods under low resolution conditions. It proves that the proposed method
has low sensitivity.

Table 2. Comparison of the SNR and contrast of several filtering methods.

Method SNR Contrast

Raw image 110.97 1.09
mean filter 87.53 1.08

median Filter 83.84 0.99
Gaussian Filter 84.54 1.08

Lee Filter 113.17 1.07
STDF 126.42 1.36
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3.3. Segmentation Results of Proposed Method

The method is compared with two robust unsupervised segmentation methods,
namely, the fuzzy C-means clustering [11] and the active contour method [18]. The cor-
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responding ground-truth segmentation maps of the real sonar images are obtained by
manual segmentation. The segmentation accuracy ρ is used for the overall evaluation of
the whole segmentation results, which is calculated as follows.

ρ = Nc/Nt × 100% (18)

where Nc is the number of correctly segmented pixels, and Nt is the total number of pixels.
The ratio of correct to incorrect is defined as ζ = Nc/(Nt − Nc).

The quantitative measures of the results are given in Table 3. Our proposed algorithm
is named RGLT I (w/o STDF) or RGLT II (w/ STDF). Table 3 shows that the performance
of both proposed methods RGLT I and RGLT II is better than that of the fuzzy C-means
clustering and active Contour method in segmentation accuracy. In addition, the accuracy
and the correct to incorrect ratio of RGLT II is higher than that of RGLT I, which indicates
that STDF filtering not only contributes to the improvement of SNR, contrast, and visual
effect but also improves the final segmentation effect significantly. Table 3 shows the
average running times of the four segmentation methods used for 100 × 400 images
segmentation. The proposed segmentation method is much faster than the fuzzy C-means
and the active contour method. The data generation speed is 1 s/ping, and the speeds
of RGLT I and RGLT II are 0.75 s/ping and 0.77 s/ping on average; thus, the proposed
methods have an obvious advantage for real-time sonar detection. The results demonstrate
that only growth in the highlight areas and shadow areas can effectively increase the speed
of segmentation. Some segmentation results of the four methods are given in Figure 5 and
are summarized in Table 4. As can be seen from Figure 5c, the fuzzy C-means method
is sensitive to noise, and the problem of misclassifying the background into highlighted
or shadowed areas occurs. As shown in Figure 5d, the active contour method appears to
misclassify the background reverberant region into the highlight region when the area size
of the three types of regions is very different, for example, when the bright region in the
image is very small. In addition, for small targets, the segmentation results of the active
contour method are not accurate enough, as shown in the red bounding box in Figure 5d.
Figure 5e shows that our proposed RGLT I is robust to noise and has a low probability
of background misclassification. This was a benefit from the low false alarm obtained by
the maximum likelihood ratio test during the seed region selection phase. By comparing
Figure 5e,f, it can be seen that the segmentation results are more accurate at the edges after
using STDF. The details in the blue bounding box show that the growth of RGLT II is finer
and more complete in the presence of noises than RGLT I. It shows that STDF can alleviate
the interference of noise on the target edge.

Table 3. Comparison of the overall accuracy and speed using several segmentation methods.

Methods Accuracy (%) Correct to Incorrect Ratio Running Time (s)

Fuzzy C-means 62.23 1.65 13.71
active contour 86.70 6.52 6.23

RGLT I 95.76 22.58 0.43
RGLT II 95.90 23.39 0.44

Table 4. Summary of the visual effects of the segmentation methods.

Methods Visual Effects

Fuzzy C-means Is sensitive to noise and has the problem of misclassifying the background into
highlighted or shadowed areas.

active contour

1. Misclassify the background when the area size of the three types of regions is very
different.
2. For small targets, the segmentation results of the active contour method are not
accurate enough.

RGLT I Is robust to noise and has a low probability of background misclassification.

RGLT II The growth of RGLT II is finer and more complete in the presence of noises than RGLT I.
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4. Conclusions

In this paper, an unsupervised segmentation algorithm that using likelihood ratio
testing is presented, which can rapidly and accurately segment noisy sonar images. Firstly,
a time gain re-compensation method is used to balance the intensity throughout the range.
Then a filter referring to as STDF is proposed in this paper to enhance the SNR and contrast
of the sonar image. The results demonstrate that the proposed STDF has higher SNR
(126.42) and contrast (1.36) than other methods. The enhancement can preserve details
as well as edges and be beneficial to the subsequent segmentation. Lastly, the proposed
segmentation method, RGLT, is applied with real sonar images. The results demonstrate
that the proposed method achieved favorable performance in both visual quality and
qualitative quality in comparison with other outstanding methods. The performance of
RGLT is better than that of the fuzzy C-means clustering and active Contour method
in segmentation accuracy (95.90) and the correct to incorrect ratio (23.39). As for the
running time, the proposed segmentation method is much faster than other methods, and
thus, the proposed method has an obvious advantage for real-time sonar detection. In
the future, we will study the integration of RGLT and detection algorithms to achieve
real-time and intelligent detection and identification on AUVs in search and rescue at sea.
Future work also involves generalizing existing algorithms to other sonar images, such as
forward-looking sonar and synthetic aperture sonar.
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Appendix A

Algorithm A1 The pseudo-code for the proposed segmentation process.

Seed selection based on likelihood ratio test
Input: The original image and the pre-segmentation using the threshold method.
Output: foreground points set Ai and sedbed reverberation points set.
Begin:
1: Estimate the distribution parameters using (10)–(13)
2: Calculate the likelihood ratio β(u) using (14)
3: if β(u) ≤ η then
4: Pixels are assigned to the seed points sets Ai ;
5: else
6: Pixels are assigned to unallocated pixels.
7: end if

Region growing
8: Label boundary pixels set B and their candidate labels i(x)
9: while (B is not empty) then
10: If the points x in set B satisfy the similarity criterion then
11: Append x to Ai ;
12: else
13: Append x to unallocated pixels set.
14: end if
15: Upate the Label boundary pixels set B and their candidate labels i(x)
16: end while
End
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