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Abstract: In this paper, we use Frame Theory to develop a generalized OCT image reconstruction
method using redundant and non-uniformly spaced frequency domain samples that includes us-
ing non-redundant and uniformly spaced samples as special cases. We also correct an important
theoretical error in the previously reported results related to OCT image reconstruction using the Non-
uniform Discrete Fourier Transform (NDFT). Moreover, we describe an efficient method to compute
our corrected reconstruction transform, i.e., a scaled NDFT, using the Fast Fourier Transform (FFT). Fi-
nally, we demonstrate different advantages of our generalized OCT image reconstruction method by
achieving (1) theoretically corrected OCT image reconstruction directly from non-uniformly spaced
frequency domain samples; (2) a novel OCT image reconstruction method with a higher signal-
to-noise ratio (SNR) using redundant frequency domain samples. Our new image reconstruction
method is an improvement of OCT technology, so it could benefit all OCT applications.

Keywords: optical coherence tomography; non-uniform discrete fourier transform; redundant
samples

1. Introduction

Optical coherence tomography (OCT) has established itself as an important imaging
modality for various medical and industrial applications [1]. Medical applications of OCT
include ophthalmology, cardiovascular imaging, and gastrointestinal endoscopy, while
its industrial applications include nondestructive testing, material characterization, and
microscopic surface profiling. In this paper, we will focus on OCT technology rather than
on any specific application.

Because of its higher sensitivity and imaging speed, compared to time-domain OCT,
interest in Fourier domain OCT has grown rapidly [2–4]. Fourier domain OCT could
be further divided into two broad categories: spectral-domain OCT and swept-source
OCT (SS-OCT). In spectral-domain OCT, broadband light is backscattered from an object,
analyzed by a diffraction grating, and is detected using a line camera [1]. SS-OCT detects
backscattered light from an object due to an incident laser whose wavelength is rapidly
swept in time [5–8].

Image reconstruction in Fourier domain OCT typically involves an inverse Fourier
transform step applied to its A-scan data. Typical acquisition of this A-scan data, par-
ticularly in the case of SS-OCT, leads to non-uniformly spaced samples in the frequency
domain. Therefore, it is common to acquire oversampled, i.e., redundant, A-scan data, from
which critically sampled, i.e., non-redundant, and uniformly spaced frequency domain
samples could be obtained. To avoid the inefficiency of having to acquire redundant A-scan
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data only to overcome this non-uniform sampling issue, OCT image reconstruction using
the Non-uniform Discrete Fourier Transform (NDFT) has been proposed by one of our
co-authors [9].

In this paper, we use Frame Theory to develop a generalized OCT image reconstruc-
tion method using redundant and non-uniformly spaced frequency domain samples. Our
method includes, as special cases, OCT image reconstruction using non-redundant samples,
uniformly spaced samples, or both. This method also demonstrates and corrects an impor-
tant theoretical error in previously published results related to OCT image reconstruction
using the Non-uniform Discrete Fourier Transform (NDFT). To demonstrate the advantage
of using our corrected OCT image reconstruction method, i.e., a scaled NDFT, compared to
using the NDFT, we compare OCT images reconstructed from the same non-redundant
and non-uniformly spaced frequency domain samples, using both methods.

Taking an opposite point of view, we also demonstrate for the first time (to our
knowledge) the advantages of OCT image reconstruction using redundant, possibly non-
uniformly spaced, frequency domain samples to achieve image reconstruction with a
higher signal-to-noise ratio (SNR).

This paper is organized as follows: Section 2 gives a brief review of Frame Theory.
Section 3 describes our general method for signal reconstruction from redundant and
non-uniformly spaced samples and its application to OCT A-scan reconstruction. We also
describe an efficient method to compute our corrected reconstruction transform, i.e., a
scaled NDFT, using the Fast Fourier Transform. Section 4 describes a theoretically corrected
OCT image reconstruction from the redundant uniformly spaced frequency domain, and
non-uniformly frequency domain spaced samples. Section 5 describes a novel OCT image
reconstruction with higher SNR. Section 6 presents our conclusions and future work.

2. Brief Review of Frame Theory

Frame Theory is a powerful mathematical tool for the study of redundant linear signal
representations. In a linear finite dimension inner product vector space, H, a frame is a
generalization of the familiar notion of a basis. Any set of linearly independent vectors{

φbasis
n

}
n=1, 2,..., N

in H with dimension, N, could be considered a basis for H.

Let f be an N-dimensional vector f ε H, 〈·, ·〉 be an inner product, and ‖·‖ be its
induced norm. Therefore, f could be represented as

f =
N

∑
n=1
〈 f , φbasis

n 〉φ̃basis
n (1)

where
{

φ̃basis
n

}
n=1, 2,..., N

are the dual basis vectors of
{

φbasis
n

}
n=1, 2,..., N

that are given by

〈φbasis
n , φ̃basis

m 〉 =
{

1 n = m
0 n 6= m

(2)

Therefore, as a special case, the dual basis vectors for any complex-valued orthonormal
basis are simply the complex conjugates of its vectors.

In any linear finite dimension inner product vector space, H, with dimension, N, and
f ε H, a vector set {φn}n∈Γ is called a frame if and only if [10]

A‖ f ‖2 ≤ ∑
n∈Γ
|〈, f , φn, 〉|2 ≤ B‖ f ‖2 (3)

where 0 < A ≤ B are finite values called the frame bounds. We note that the frame
condition (3) could be satisfied by {φn}n∈Γ that are either (1) N linearly independent
vectors (a basis); or (2) larger than N linearly dependent vectors (a frame). Therefore, a
frame in a linear finite dimension inner product space is a generalization of a basis that



Sensors 2021, 21, 7057 3 of 14

allows for a potentially redundant linear representation of any vector in this space. In this
case, f could be represented as

f = ∑
n∈Γ
〈 f , φn〉φ̃n (4)

where
{

φ̃n
}

nεΓ are the dual-frame vectors of {φn}nεΓ that are given by φ̃n = (Φ∗Φ)−1φn,
where Φ is a matrix whose rows are {φn}n∈Γ, and ∗ denotes Hermitian transpose [10].

We note that Equation (4) is mathematically equivalent to the reconstruction of f by
orthogonally projecting its frame coefficients vector 〈 f , φn〉 = Φ f , using the pseudoinverse
of Φ that is given by Φ+ = (Φ∗Φ)−1Φ∗. Therefore, Equation (4) could also be written
as f = Φ+Φ f . For shift-invariant frames, i.e., when φn are shifted versions of a single
vector, instead of using φ̃n = (Φ∗Φ)−1φn in the time domain, the dual-frame vectors could
be obtained easily in the frequency domain. In this case, the Fourier transforms of the
dual-frame vectors, ˆ̃φn(k), where k denotes the frequency variable, are given by [10]

̂̃φn(k) =
φ̂n(k)

∑nεΓ
∣∣φ̂n(k)

∣∣2 (5)

3. Signal Reconstruction from Redundant and Non-Uniformly Spaced Samples
3.1. Redundant and Non-Uniformly Spaced Samples of Bandlimited Functions as
Frame Coefficients

According to the Nyquist–Shannon sampling theorem, non-redundant and uniformly
spaced samples, obtained at, tn = nT, of bandlimited signals with bandwidths, [−π/T, π/T],
could be viewed as the coefficients representing these signals in an orthonormal basis,{

φbasis
n (t)

}
n∈Z

[10]. The basis vectors are given by

φbasis
n (t) = T−1/2 sin(π(t− nT)/T)

π(t− nT)/T
(6)

where T is the Nyquist sampling interval in the given space of bandlimited functions.
Similarly, redundant and non-uniformly spaced samples obtained at tn of bandlimited
signals whose bandwidths are included in [−π/T, π/T], could be viewed as the coefficients
resulting from representing these signals in a frame, {φn(t− tn)}n∈Z. The frame vectors
are given by

φn(t) = ΛnT−1/2 sin(π(t− tn)/T)
π(t− tn)/T

(7)

where tn is the arbitrary location of the nth sample, Λn = [(tn+1 − tn−1)/2T]1/2, and T is
once again the Nyquist sampling interval in the given space of bandlimited functions. If the
maximum sampling distance δ satisfies

δ = max
n∈Z
|tn+1 − tn| < T (8)

then the frame is bounded by A ≥ (1− δ/T)2 and B ≤ (1 + δ/T)2. We note that
T/δ represents the oversampling ratio, relative to the Nyquist sampling rate, and the scale
factor, Λn, in Equation (7) accounts for this oversampling and location irregularities of the
sampled points.

3.2. Frame-Based Reconstruction of an OCT A-Scan

The reconstruction of an OCT A-scan, u(z), where z is the axial spatial domain variable,
from its redundant and non-uniformly spaced frequency domain (k-space) samples, is
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equivalent to reconstructing its Fourier transform, û(k), from its frame coefficients, û(kn) =
〈û, φn(k− kn)〉, followed by an inverse Fourier transform. Therefore, using Equation (4)

û(k) = ∑
n∈Z

û(kn) φ̃n(k− kn) (9)

For ease of implementation, instead of applying the inverse Fourier transform, we
obtain a flipped version of the A-scan by applying the forward transform to Equation (9).
By using Equation (5) we obtain

u(−z) = ∑
n∈Z

û(kn)
φ̂n(z)

∑nεΓ
∣∣φ̂n(z)

∣∣2 (10)

where z is the axial spatial domain variable. The Fourier transforms of the frame vectors
corresponding to Equation (7), but in the frequency domain, are given by

φ̂n(z) = F{φn(k− kn)} = Λnφ̂0(z)e−jknz (11)

where φ̂0(z) is the Fourier transform of the unshifted frame vector φ0(k) = K−1/2 sin(πk/K)/
(πk/K), where K is the Nyquist sampling interval in the frequency domain. Substituting
Equation (11) into Equation (10), we have

u(−z) =
φ̂0(z)

∑n∈Γ
∣∣φ̂n(z)

∣∣2 ∑
n∈Z

Λn

[
û(kn)e−jknz

]
(12)

Since the Fourier transform of sin(·)/(·) is a rectangular window, and assuming
a finite number of frame expansion coefficients, N f , and then replacing the continuous
spatial variable, z, in Equation (12) by its corresponding uniformly sampled spatial variable,
zs = 0, 1, . . . , NT − 1, we could approximate u(−zs) as

u(−zs) ∼=
1

NT

N f−1

∑
n=0

[Λnû(kn)]e−jknzs (13)

where NT is the number of Nyquist samples, NT = δN f /T. Equation(13) is a scaled version
of the non-uniform discrete Fourier transform (NDFT) at arbitrary points kn, rather than
the standard NDFT used for OCT reconstruction in [9,11,12]. We note that, compared to the
standard NDFT, the extra scale factor Λn in Equation (13) accounts for both oversampling
and location irregularities of the sampled points. We will refer to Equation (13) as our
theoretically corrected OCT image reconstruction.

3.3. Frame-Based Reconstruction of an OCT A-Scan Using the FFT

The reconstruction of an OCT A-scan using the above scaled NDFT, Equation (13),

has a computational complexity of N f f
(

log2 N f

)2
[9]. However, we could use O(N f )

operations to enable computing Equation (13) using the Fast Fourier Transform (FFT). We
could write Equation (13) as

u(−zs) ∼=
1

NT

N f−1

∑
n=0

[
Λn û(kn)e−j [kn−round(kn)] zs

]
e−j round(kn) zs (14)

where round (kn) = 0, 1, . . . , NT − 1, is the nearest integer to kn after linearly mapping
the measured range of kn to

[
0, N f − 1

]
. We note that Equation (14) is the Discrete Fourier

transform (DFT) of the measured A-scan in the Fourier domain, û(kn), multiplied by a
complex-valued frequency-dependent scale, Λne−j [kn− round(kn)] zs . This resulting DFT
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could be efficiently computed using the Fast Fourier Transform (FFT) with computational
complexity NT(log2 NT).

4. Theoretically Corrected OCT Image Reconstruction from Non-Uniformly Spaced
Frequency-Domain Samples
4.1. Background and Literature Review

In SS-OCT, a one-dimensional depth profile of an object, i.e., an A-scan, is obtained as
a Fourier transform of the acquired data [13]. By combining a series of A-scans, one B-scan
image could be obtained, and by combing a series of B-scans, volumetric images could be
obtained.

The Fourier inversion step required in SS-OCT is typically implemented using the
fast Fourier transform (FFT), a computationally efficient implementation of the discrete
Fourier transform (DFT). One major problem of using a DFT-based inversion method is
that equally spaced samples in the frequency domain (k-space) are necessary, or else the
image quality would be compromised [14]. Equally spaced samples in k-space cannot be
obtained easily because of the nonlinear relationship between the output frequencies of
typical swept laser sources and time [15].

Many methods for acquiring uniform samples in k-space have been presented in the
literature. One method used an auxiliary Mach-Zehnder interferometer (MZI), with a fixed
delay between its arms, and a balanced detector. As the wavelength of the laser source
is swept, this MZI optical output would be a periodic calibration signal with equidistant
maxima and minima in k-space [16,17].

A time-domain interpolation scheme was implemented by applying a Fourier trans-
form, followed by a low pass filter, to equidistant samples of the MZI calibration signal.
This calibration signal was reconstructed again by applying an inverse Fourier transform on
its single-sided spectrum. The resulting complex calibration signal yielded time-dependent
wavenumbers, k(t), that would be fitted by a 3rd order or a higher-order polynomial [18].
Another method that was proposed in [19] used a direct k-domain interpolation method
based on the spectral phase of the MZI calibration signal. However, MZI based calibration
methods add hardware complexity to the system because of the need for an auxiliary
interferometer, in addition to the non-efficient use of the optical source since a portion of
its power goes to this auxiliary interferometer. A different technique to obtain real-time
uniform samples from k-domain interpolations used a simple software-based calibration
mask [20]. This technique could simultaneously compensate for system dispersion, using
generated noise residuals, without elaborate numerical or hardware requirements. A recent
method corrected for nonlinear k-sampling, in addition to dispersion mismatch in the
system, was proposed in [21]. It extracted two calibration vectors to enable numerical
resampling for k-linearization and phase correction for dispersion compensation.

In [9], one of our co-authors proposed an image reconstruction method for SS-OCT
based on the standard NDFT. Compared to interpolation-based image reconstruction meth-
ods, this NDFT-based is computationally more efficient, thereby, is more practical [11,12].
However, because this method was not derived earlier from the first principles, it lacks a
scale factor that would compensate for the irregularity of samples in the frequency domain.
We corrected this important theoretical error in this paper, as shown in Equation (13).

To demonstrate the validity and performance of our scaled NDFT based image recon-
struction method, in the following sections, we compare its SS-OCT image reconstruction
results to results obtained by using the standard NDFT.

4.2. Generalized Reconstruction Results Using Synthetic SS-OCT Samples

To quantitatively compare the performance of our scaled NDFT based image recon-
struction method with the performance of the standard NDFT reconstruction, we applied
both methods to non-uniformly spaced, possibly redundant, frequency domain samples
that we synthetically generated from two OCT images (512× 1000 pixels) of human retinas.
These two images are from a public dataset of Fourier-domain OCT images that were
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obtained from either control subjects or subjects with intermediate age-related macular
degeneration [22].

We generated these synthetic samples by Fourier transforming the A-scans of this
OCT image and oversampling them by 20 times. Then, non-uniformly spaced, possibly
redundant, samples were obtained by non-uniformly selecting samples from these 20 times
oversampled Fourier-domain A-scans. The original OCT image of the human retina was
then reconstructed from these synthetic samples using both the standard NDFT and our
scaled NDFT methods.

Figures 1a and 2a show the original OCT images of a human retina. Reconstructed im-
ages obtained by applying the standard NDFT are shown in Figures 1b and 2b, while recon-
structed images obtained by applying our scaled NDFT to the same non-redundant and non-
uniformly spaced synthetic OCT samples are shown in Figures 1c and 2c. Figures 1d and 2d
show correlation coefficients between corresponding A-scans of the original images and
different reconstructed images.

Figure 1. (a) Original OCT image of a human retina; (b) reconstructed image using standard NDFT
(without scaling); (c) reconstructed image using our scaled NDFT; (d) correlation coefficients between
corresponding A-scans of the original image and each reconstructed image.

Figure 2. Cont.
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Figure 2. (a) Original OCT image of a human retina; (b) reconstructed image using standard NDFT
(without scaling); (c) reconstructed image using our scaled NDFT; (d) correlation coefficients between
corresponding A-scans of the original image and each reconstructed image.

From Figures 1 and 2, we note that, compared to the images reconstructed using the
standard NDFT, the images reconstructed using our scaled NDFT appear more similar to
their original OCT images. This is quantitatively confirmed by the average value of the cor-
relation coefficients between corresponding A-scans in the original images, and the images
reconstructed using the standard NDFT (Figure 1 average value = 0.9889 and Figure 2 av-
erage value = 0.9733) and using our scaled NDFT (Figure 1 average value = 0.9905 average
and Figure 2 average value 0.9867). This is a quantitative demonstration of the benefit of
using our scaled NDFT for OCT image reconstruction.

4.3. Generalized Reconstruction Results Using Measured SS-OCT Samples

To qualitatively compare the performance of our scaled NDFT based image reconstruc-
tion method with the performance of the standard NDFT reconstruction, we applied both
methods to non-uniformly spaced, possibly redundant, frequency domain samples that
we experimentally obtained from imaging an Axolotl salamander egg using our SS-OCT
system shown in Figure 3. Axolotl salamanders are important lab models for studying
numerous biological phenomena ranging from tissue regeneration to cancer. In our SS-OCT
system, an interferometer is illuminated with light emitted by our wavelength-swept laser
source. A 2 × 2 fiber coupler directs 90% of the incoming light into the sample arm and
the remaining 10% into the reference arm. The light reflected back from both reference
and sample arms is then redirected into another 2 × 2 fiber coupler, where the interference
fringes of the two wavefields are detected by a balanced photodetector. This detected
analog OCT signal is then converted to a digital signal using a data acquisition board
before being sent to a host computer for digital signal processing.

Figure 3. (a) Our experimental SS-OCT; (b) Axolotl salamander egg at the sample arm.
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The implementation of our scaled NDFT, Equation (13), requires knowledge of the
relationship between the output frequencies of the swept laser source and time. Assuming
the wavelength of the laser source, λs(t), is a third-degree polynomial in time,

λs(t) = λ0 + at + bt2 + ct3 (15)

where λ0 is the initial wavelength. The coefficients a, b, c could be obtained by using
nonlinear least squares

min︸︷︷︸
a,b,c

‖IMZI(t)− yMZI(t)‖2 (16)

to fit the measured MZI calibration signal, yMZI(t), to its theoretical model given by

IMZI(t) ∝ cos(∆φ(t)) = cos
(

2πd
λs(t)

− 2πd
λ0

)
(17)

where ∆φ(t) is the phase shift due to path length difference, d, between the MZI arms. After
obtaining λs(t) we could easily obtain, ks(t), from which we could obtain the sampled
k-space frequencies to be used in Equation (13).

We start by obtaining the values of the non-uniform k-space frequencies used to
acquire our A-scans. The following result is for our wavelength-swept laser source (Thor
Labs, SL1325-P16). It has a center wavelength of 1325 nm, a wavelength range from
1250 nm–1375 nm, and an average output power of 15 mW. This laser has a built-in MZI
clock, i.e., an interference fringe signal whose zero crossings are equally spaced in k-space.
We measured this MZI clock using an oscilloscope (Agilent Technologies, MSO-X 3104A).

After measuring the MZI calibration signal, yMZI(t), of our swept laser source, and
using the Gauss-Newton method to solve Equation (16), we have

λs(t) = λ0 + 0.00225t + 1.9812× 10−6t2 + 1.999× 10−9t3 (18)

where λs and t are in nanometres and nanoseconds, respectively. Using λ0 = 1250 nm,
Equation (18) could be approximated as a linear function

λs(t) = 1250 + 0.00225t (19)

which we used to obtain the needed sampled k-space frequencies, ks(t).
Figure 4a shows an image of an Axolotl salamander egg that was reconstructed from

non-redundant and non-uniformly spaced SS-OCT samples using the standard NDFT.
Figure 4b shows the result of applying our scaled NDFT to the same SS-OCT samples.

Figure 4. Reconstructed OCT image of a salamander egg using: (a) standard NDFT (without scaling);
(b) our scaled NDFT.
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We note that the image reconstructed using our scaled NDFT is clearer overall and
has better-defined edges compared to the one reconstructed using the standard NDFT.
This demonstrates that our scaled NDFT-based OCT image reconstruction is valid and is
superior to the current standard NDFT-based reconstruction method.

5. Novel OCT Image Reconstruction with Higher SNR Using Redundant
Frequency-Domain Samples
5.1. Background and Literature Review

In this section, we describe a novel OCT image reconstruction with a higher signal-to-
noise ratio (SNR) using redundant frequency domain samples, where we obtain signifi-
cantly higher peak SNR values for reconstructed images with increased frequency domain
sampling rates. Our method could enable faster OCT image acquisition by replacing the
sequential acquisition and averaging of a number of similar critically sampled A-scans, a
commonly used practice to reduce noise variance in OCT images. Our method is suitable
for reducing the variance of any additive zero-mean white noise in OCT data samples.

Noise in OCT systems could be classified as either system noise or speckle noise (1)
System noise: Typically, due to optical and electrical components of the system, e.g., light
source and optical detectors. Shot noise is generated because of random arrival times of
photons at the surface of photodetectors [23–26]. Thermal noise is another important type
of system noise that is generated due to the random thermal motion of electrons inside
resistive materials [23,27]. We note that system noise is typically modeled as additive noise.
(2) Speckle noise: When an optically rough object is illuminated with coherent light, e.g.,
laser, transmitted or reflected light forms a random pattern of dark and bright spots of
variable shapes called a speckle pattern [28,29].

Therefore, OCT images are also degraded by speckle noise due to interference of
multiple scattered optical fields inside the imaged object. Speckle noise is typically modeled
as multiplicative noise; however, one could convert multiplicative noise to additive noise
using the Log Stabilizing Transform. This resulting additive noise would not be zero-mean,
but the mean of the transformed noisy signal could be subtracted before denoising and
added back before inverting the Log Stabilizing Transform [30–32].

Much work focused on the study of OCT speckle noise and its reduction. These noise
reduction methods use either digital processing or compounding techniques. (1) Digital
processing techniques: based noise reduction include using an adaptively weighted me-
dian filter [33]. By adjusting the filter weights based on the neighborhood statistics of each
image pixel, it was possible to suppress noise while preserving important image features.
However, its drawbacks include insufficient noise reduction in the case of high noise levels,
as well as a loss of image details that could be unacceptable in some applications [34].
Another method to suppress speckle noise is to sequentially apply a set of directional
filters to an image and select their maximum output [35]. However, this method could
result in a significant loss of image details. An anisotropic diffusion-based noise reduction
method, where a family of successively more blurred images is generated through the
convolution of the original image with different filters that depend on its local content,
was also used for speckle noise reduction [36,37]. Though this method offers better noise
suppression and less loss of image detail, it is of limited effectiveness for high speckle
noise levels. Total variation regularization was also used for noise reduction [38]. However,
this denoising method could lead to a stair-casing effect. Wavelet and other multiscale
transformations-based noise reduction methods, where OCT images underwent multiscale
decompositions and their coefficients associated with the speckle noise were suppressed,
were also used [39–42]. Nevertheless, such methods could introduce substantial artifacts,
dependent on the used wavelet, that could diminish the overall image quality. Other
denoising methods using compressed sensing [43] and deep learning [44] have also been
reported. (2) Compounding techniques: rely on acquiring and averaging different images
having uncorrelated or partially correlated speckle patterns [45,46]. Methods to acquire
images with uncorrelated speckle patterns include: changing either position or angle of
the imaged object or using different optical frequency bands. These methods are referred
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to as spatial [47], angular [48], and frequency [49] compounding, respectively. However,
a drawback of such image compounding is that it could degrade resolution [50]. Other
work to maintain the resolution of compounded images, while suppressing noise, has
been reported in [51,52]. However, the extra time needed to acquire different images for
averaging is always a concern regarding compounding-based noise reduction techniques.

In the following sections, we propose a novel method for SS-OCT noise reduction that
requires oversampling, beyond the Nyquist rate, of the acquired interferograms followed by
our frame-based signal reconstruction described in Section 3. This noise reduction method
is conceptually similar to compounding methods, where a number of redundant interfero-
gram samples are averaged to reduce the noise power. However, our oversampling-based
noise reduction method has a significant advantage, compared to compounding methods,
of saving the extra time needed to sequentially acquire multiple SS-OCT interferograms to
construct a single A-scan.

5.2. Oversampling-Based SS-OCT Noise Reduction Method

Let the redundant frequency domain (k-space) A-scan samples, û(kn), i.e., the frame
coefficients vector, be corrupted by additive zero-mean white noise, w(kn), with variance σ2,
such that their corresponding noisy coefficients be written as ûnoisy(kn) = û(kn) + w(kn).
We note that our theoretically corrected OCT image reconstruction, i.e., the scaled NDFT
shown in Equation (13), was derived using the dual-frame reconstruction expression given
by Equation (4). As mentioned in Section 2, Equation (4) is mathematically equivalent to
an orthogonal projection of the frame coefficients vector, Φ f , by the pseudoinverse of the
frame analysis operator, Φ+ = (Φ∗Φ)−1Φ∗. Therefore, the application of our scaled NDFT
to k-space A-scan samples is equivalent to

Φ+(û(kn) + w(kn)) = û(−zs) + Φ+(w(kn)). (20)

Since Equation (20) implements an orthogonal projection, and the noise w(kn) is
assumed white with zero-mean and variance σ2, the power of the projected noise Φ+w(kn)
will be bounded by [10]

E
{∣∣Φ+w(kn)

∣∣2} ≤ σ2

A
‖φn‖2. (21)

Thus, in general, the noise power in the reconstructed A-scan coefficients would
be changed from σ2 to σ2 (‖φn‖2/A

)
. For our frame of interest given by Equation (7),

the minimum noise variance reduction would occur when ‖φn‖2 = max
{

Λ2
n

}
= δ/T,

and A = (1− δ/T)2. Figure 3a shows this theoretical minimum noise reduction (dB) for
different values of the oversampling ratio, T/δ. We also show the theoretically expected
noise reduction (dBs) due to sequentially acquiring and averaging an integer number of
T/δ of the same critically sampled A-scan, where, in this case, the noise variance would be
reduced by T/δ.

From Figure 5a, we note that our oversampling-based SS-OCT noise reduction method,
at minimum, would result in significantly reduced noise variance levels. However, these
levels would be slightly lower than ones expected by sequentially acquiring and averaging
A-scans, and it would be effective only when the oversampling ratio is approximately over
2.3 times. However, our method has the significant advantage of eliminating the relatively
long time required to sequentially acquire a number of similar critically sampled A-scans
to be averaged. We note that this relatively long sequential acquisition time is equal to the
(number of acquired critically sampled A-scans × time to acquire a single A-scan), while
our method requires time to acquire a single A-scan only.
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Figure 5. (a) Theoretical minimum noise variance reduction for different oversampling ratios;
(b) PSNR gain in reconstructed salamander embryo images for different oversampling ratios.

5.3. Experimental Results

Figure 6a,b show images of an Axolotl salamander egg that were reconstructed from
1250 and 10,000 non-uniformly spaced SS-OCT samples, using our scaled NDFT algorithm,
respectively. Compared to the image reconstructed from the smaller number of samples, the
one reconstructed from the larger number of samples appears clearer, with better-defined
edges, and the two layers of gel that protect the cell of the embryo could be seen. Therefore,
improved image quality, demonstrated by the presence of more visible image details, could
be achieved, due to noise reduction, by using a higher sampling rate.

Figure 6. Reconstructed image of a salamander egg using our scaled NDFT with (a) 1250 samples;
(b) 10,000 samples.

Such improvement of image quality could be quantified by comparing the peak signal-
to-noise ratio (PSNR) [53] of different images reconstructed, using our scaled NDFT, from
samples with different oversampling ratios. For these PSNR values, shown in Table 1, we
used a reference image that was reconstructed, using our scaled NDFT, from 10,000 samples,
and we assumed a critical sampling value of 1250 samples, which is a common order of
magnitude in typical OCT images.

Table 1. PSNR of reconstructed salamander embryo images using our scaled NDFT at different oversampling ratios.

Sampling Rate Critical 1.6 × Critical 2 × Critical 2.6 × Critical 4 × Critical

PSNR [dB] 21.33 24.66 26.28 28.86 33.7
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Figure 5b shows values of PSNR gain (dB) in reconstructed salamander embryo
images, computed from Table 1, for different oversampling ratios. On comparing Figure 5b
with Figure 5a, we note that our obtained PSNR gain values follow a similar trend as the
theoretical minimum noise variance reduction, as expected.

6. Conclusions

We used Frame Theory to develop a generalized OCT image reconstruction method
using redundant and non-uniformly spaced frequency domain samples that includes using
non-redundant and uniformly spaced samples as special cases. We also corrected an impor-
tant theoretical error in the previously reported results related to OCT image reconstruction
using the Non-uniform Discrete Fourier Transform (NDFT). Moreover, we described an
efficient method to compute our corrected reconstruction transform, i.e., a scaled NDFT,
using the Fast Fourier Transform (FFT). Finally, we demonstrated different advantages of
our generalized OCT image reconstruction method by achieving (1) a theoretically cor-
rected OCT image reconstruction directly from non-uniformly spaced frequency domain
samples; (2) a novel OCT image reconstruction method with a higher signal-to-noise ratio
(SNR) using redundant frequency domain samples. This noise-reduction method could
enable faster OCT image acquisition by eliminating the relatively long time required to
reduce noise variance by sequentially acquiring and averaging a number of similar criti-
cally sampled A-scans. Our new image reconstruction method is an improvement of OCT
technology, so it could benefit all OCT applications.
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