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Abstract: Mobile construction machineries are accident-prone on a dynamic construction site, as
the site environment is constantly changing and continuous safety monitoring by human beings
is impossible. These accidents usually happen in the form of machinery overturning or collapsing
into risk areas, including the foundation pit, slopes, or soft soil area. Therefore, preventing mobile
construction machineries from entering risk areas is the key. However, currently, there is a lack
of practical safety management techniques to achieve this. Utilizing a wireless sensor device to
collect the location information of mobile construction machineries, this research develops a safety
warning algorithm to prevent the machineries moving into risk area and reduces onsite overturning
or collapsing accidents. A modified axis aligned bounding box method is proposed according to the
movement patterns of mobile construction machineries, and the warning algorithm is developed
based on the onsite safety management regulations. The algorithm is validated in a real case
simulation when machinery enters the warning zone. The simulation results showed that the overall
algorithm combining the location sensing technology and the modified bounding box method could
detect risk and give warnings in a timely manner. This algorithm can be implemented for the safety
monitoring of mobile construction machineries in daily onsite management.

Keywords: construction machinery; accident prevention; axis aligned bounding box method; location
sensing technology; safety warning algorithm

1. Introduction

With the increasing complexity of modern construction projects, the types and quantity
of onsite construction machinery are also increasing, which brings more challenges for the
safety management on construction sites. For example, in terms of housing and municipal
engineering projects in China, the number of construction accidents has been increasing
from 2015 to 2019, namely 442, 634, 692, 734, and 773 for each year [1]. Specifically, the 2018
and 2019 annual statistical reports of construction accidents in China show that 29.63% and
30.78% of total accidents in respective years have involved machineries, and they are from
three categories: (1) construction machine and equipment injury; (2) foundation/ground
collapsing accidents, which are caused by a lack of management of mobile machinery, and
(3) others including vehicle injury [2,3]. Although there is no specific category for accidents
related to mobile construction machineries, it is widely known that, compared to fixed
construction equipment and facilities, mobile construction machineries are more frequently
involved in onsite accidents.

Accidents involving construction machineries are likely to cause long project delays
and large economic loss, as construction machineries are key components to keep projects
on schedule and are also expensive equipment [4,5]. Some major accidents caused by
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mobile construction machineries which were widely reported in China, e.g., a mobile crane
collapsed at the edge of a construction foundation pit in August 2017 in Harbin, China,
causing one death and direct economic losses of US $0.26 million [6]. In January 2020, a
construction machine collapsed at the edge of a deep foundation pit in Chongqing, China
and overturned into the foundation pit, causing one death and direct economic losses of
US $0.22 million [7].

Mobile construction machinery accidents usually happen at the edge of foundation
pits, sloped sites, and soft soil areas, since these risks are not always visible for machine
operators [8,9], leading to overturning of the mobile machinery or collapsing into soft soil.
These types of accidents are often reported by various news media, and two examples are
given in the references [10,11].

Although poor safety awareness and behaviour have been the focus of construction
safety research in developing countries [12–17], technologies can certainly be utilized to
improve onsite safety management practice [18,19]. There are many on-site risk areas
for moving machinery, and accidents can only be avoided by preventing the machinery
from entering their proximity [20]. There are two challenges in onsite safety management
for mobile construction machineries. First, the construction site environment is dynamic
and constantly changing, and therefore machine operators might be unfamiliar with the
surroundings [21]. Second, safety management of construction machinery is currently
mainly carried out by human monitoring and supervision and is usually inadequate and
error prone [22,23]. As it is impossible for people to constantly monitor the movement of
construction machinery onsite, an automated and effective way to monitor mobile machin-
ery and issue safety warning of potentially dangerous situations is required throughout
the whole construction process.

Some location acquisition and mobile communication techniques have been intro-
duced to monitor safety of construction site, such as collecting mobility information of
moving objects using GPS data [24], Bluetooth beacons for acquiring trajectory information
of workers [20,25], as well as RFID and magnetic field technologies for proximity detection
and alert of risky working areas [20]. These studies can be used for proximity analysis
to prevent collisions, identify unauthorized access to hazardous areas, and to support
the reduction of transportation accidents. However, previous works are more based on
monitoring workers’ activities to avoid accidents, and an effective trajectory monitoring
method focused on mobile machinery on construction sites remains lacking. This paper
aims to develop a safety warning algorithm to prevent mobile construction machineries
from entering risk areas, to minimize or totally avoid overturning and collapsing accidents.

2. Literature Review

Many previous studies focused on the collapse of foundation pits or tunnels caused
by deformation of a large settlement, ineffective original reinforcement, or lack of stability
of support structures, while few studies considered collapsing accidents caused by mobile
machinery [26–29]. How to prevent mobile machineries from overturning/collapsing into
risk areas has not been explored. There are some previous studies on overturning accidents,
but they are mainly focused on those machines whose main function is lifting operations.
For example, Edwards et al., [30] and Mitrev and Marinković [31] calculated the safe
working load and simulated operations to enhance the excavator stability of lifting tasks.
Huidong et al., [32] made a virtual prototype simulation for safety of lifting operations on
mobile cranes. These studies are limited to the lifting process rather than moving status of
mobile machinery on construction sites.

Proximity detection/collision warning needs to collect real-time location data [20].
There are different types of position data acquisition technologies or devices available
that can be implemented on construction sites, such as GPS, sensors and RFID [33,34].
Many commercial positioning and sensing devices can be used to provide location data of
targeted objects or areas [20,35,36]. The method of proximity status analysis between mobile
construction machineries and risk areas can also be regarded as an anti-collision or collision
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detection method. Previous studies on collision detection are mainly focused on preventing
collision between machineries [22,35–38], or between construction machineries and fixed
construction items, or building elements [33,34] and workers on construction sites [39,40].
Ren and Wu [22] proposed a real-time automated anti-collision system to prevent collisions
between a crane and fixed obstacles during the crane lifting operation process. Hwang [37]
used ultra-wideband technology for the real-time monitoring of equipment operation and
designed a platform with several functional modules, including real-time data acquisition,
visualization, decision making, and possibility analysis of collision. Li, Gu and Jia [34]
designed an anti-collision method using ultrasonic sensors to locate obstacles, and multi-
sensor information fusion technologies are integrated for anti-collision warning. RFID can
also be used for collision detection of construction machinery, such as hydraulic excavators
and cranes [20,41]. Jo, Lee, Kim, Kim and Choi [39] designed an RFID-based warning and
excavator control system to prevent collision accidents between equipment and workers.
Most of these studies involved in proximity situations that focused mainly on preventing
collisions between machinery and obvious obstacles. To prevent mobile machinery entering
risk area, the main challenge is to detect the relationship of machinery with the identified
risk areas from live onsite location data. For construction projects, using just-in-time onsite
position data to give early safety warning and prevent accidents is an important area to be
developed [42,43]. Based on previous published studies in this field, there is a lack of an
effective algorithm developed for continuously monitoring the mobile machineries and
preventing them entering risk areas on construction sites. In this study, a practical collision
detection algorithm is developed which can use real-time location data of construction
machinery to give safety warnings when machinery is entering onsite risk areas.

3. Research Methodology

The development of a safety warning algorithm has a few steps, including the es-
tablishing warning rules, developing a collision detection algorithm, collecting real-time
location data and coordinating system development, as well as implementation and testing.

3.1. Establishing Warning Rules

Before the safety warning algorithm can be developed, warning rules need to be
determined based on the onsite management regulations. Warning rules include safe
distances and the classification of warning states.

3.1.1. Determining Safety Distances

The safety distance is the minimum distance that should be maintained between
construction machinery and the risk area. Many rules, technical specifications, and reg-
ulations have been established to regulate the behavior of workers and machinery on
construction sites. For example, China’s “Administrative Regulations on the Work Safety
of Construction Projects” states that warning signals must be clearly set up at the edge of
holes, foundation pits, and other dangerous places [44]. China’s “Technique Specification
for Safety Operation of Construction Machinery” also specifies requirements for safety
distances when machineries are working around these areas, as shown in Table 1.

On a construction site, the real-time distance between a construction machinery and
risky area is to be compared with the specified safety distance. The real-time distance
must be bigger than the safety distance, so when machinery is getting close to a risky
area, the operator can have sufficient time to brake or make a turn to avoid entering the
area. To make the algorithm suitable to be used for any machinery, the maximum distance
requirement for all types of machines is adopted in this research, which is 2 m, as shown
in Table 1. However, this distance could be adjusted in different situations and countries
when implemented in real cases. For machineries moving at a relatively high speed and
when more response time is needed, this distance can be further increased.
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Table 1. Safety distances for moving construction machinery from onsite regulations in China.

Type Requirement of Safety Distance Reference

Bulldozer Keep away from deep ditch, foundation pit or
steep slope area for at least 2 m [45]

Towed scraper
Distance between two scrapers working together

shall be no less than 2 m [45]

The distance from edge of new embankment
slope shall be no less than 1 m [45]

Wheel loader The distance from the edge of slope, trench and
pit should be more than 1.5 m when unloading [45]

Concrete spreader The distance from other equipment should not
be less than 0.6 m [45]

Others Moving machinery from edge of foundation pit
shall be no less than 2 m [46]

3.1.2. Classify Safety Warning States

The safety distance is used to distinguish three areas (Figure 1): the safe zone, the
warning zone, and the risk area. The safe zone refers to the area that the machinery can
work safely in and there is no need to take any prevention actions. The warning zone
refers to the area that is less than the safety distance from the risk area, as specified in site
regulations, where there is a need to take actions to move away and prevent accidents
happening. The risk area refers to areas, such as foundation pits, sloped areas, or soft
soil, where overturning and collapsing accidents will happen if construction machinery
enters. The size of a risk area can be adjusted in consideration of the slope stability and
soil property. For the construction site with an unstable slopy area, the risk area should be
marked bigger according to empirical data.
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Figure 1. Relationship of moving machinery with risk area and warning states.

The movement pattern of construction machinery is examined. Construction ma-
chineries are usually large in size and can only move forward or backward in a straight or
curved line. This means that either the head or rear part of the machinery will move into
the risk area first. Therefore, warning signals will be triggered if the head or rear part of the
machine enters the warning zone, and Figure 1 shows these two statuses: State 1 checks
if there is a collision between the head of the moving machinery and the warning zone,
and State 2 checks if there is a collision between the rear of the machinery and the warning
zone. The distance between the nearest point of a moving machinery to the boundary of
risk area is d, to the boundary of the warning zone is ∆d, and the safety distance adopted
in this paper is D = 2 m (Figure 1).

Safe status: d > D;
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Warning status: d ≤ D and ∆d is decreasing;
Accident happening in risk area: d ≤ 0.
According to the movement patterns of construction machineries, the two critical

states are checked to trigger the warning signals.

• State 1: The head of the machine enters the warning zone

If the moving machine is going towards the warning zone, the critical state is that
d = D and ∆d = 0, as shown in Figure 1. The head of the machine intersects with the
warning zone boundary, which triggers the warning signal to be sent immediately. There is
no need to conduct further detection of the rear part of the machine. Otherwise, it indicates
that the head of the machine is in a safe zone, and then State 2 test is conducted to check if
the rear part of the machinery intersects with the warning zone boundary.

• State 2: The rear of the machine enters the warning zone

In a similar way, if the rear of the machine intersects with the warning zone, the critical
state is that d = D and ∆d = 0, as shown in Figure 1. The rear of the machine intersects with
the warning zone boundary, which triggers the warning signal to be sent immediately. If
there is no intersection, then combined with the results of the State 1 and State 2 checking,
the machine is in a safe zone.

There is a third state worth some discussion, which is when the side edge of moving
machinery collides with the warning zone, but the head and rear part of the machinery are
in safe zone, as shown in Figure 2.
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Figure 2. Special state when side edge of a machinery collides with warning zone boundary.

This is a special state when a machine is making a turn close to the warning zone, and
the side edge of the machine collides with the corner of the warning zone. In this case, the
contour of the whole machine has collided with the warning zone. However, it is still in
the safe stage as both the head and rear parts of the construction machinery are located
in the safe ground, and this state is of “temporary nature” and the machinery can return
to a safe state where no part collides with the warning zone. This state is regarded as a
safe state, but noting this state is important for the collision detection design which will be
discussed in the next section.

3.2. Collision Detection Method

Whether machinery is at risk is based on the relative position between the head and
rear of the machinery to the warning zone. From the 2D projection view of the construction
site, machinery entering a warning zone can be taken as a collision problem in image
processing. The design of a collision detection mechanism should consider the purpose of
detection and performance of different collision methods.

3.2.1. The Bounding Box Methods

Collision detection is based on the principle that two non-penetrating objects cannot
share the same area, and collision can be predicted by estimating if the surfaces of two non-
penetrating objects are going to touch each other [47,48]. Bounding boxes are commonly
used to process the intersection of objects by using simplified shapes [49,50]. Checking
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the intersection among bounding boxes is almost always more efficient than checking
the intersection of complex objects [48,50]. Commonly used bounding boxes include the
axis aligned bounding box (AABB), oriented bounding box (OBB), K-discrete orientation
polyhedral (k-DOP), and bounding sphere. The representations of these methods are shown
in Figure 3 [50–52]. Among them, AABB is the easiest to develop, as the box is bounded
by the minimum and maximum coordinates of the object in each dimension [53–55]. The
OBB bounding box is of the minimum area that covers a complex object tightly, whose
coordinate system is chosen individually based on the orientation of the object [50,53].
k-DOP is a convex polytope which is bounded by spaces aligned with axes from a small,
fixed set of k orientations (where k is an even number) [52,56,57]. Bounding sphere is the
minimum enclosing sphere of objects and is simple and fast for intersection, as only the
radiuses are required to compute the distances between objects [49,50].
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Two main factors need to be considered in selecting a bounding box: computational
cost and accuracy [50]. Computational cost includes the coding complexity of bounding
the object and the computational intensity of collision detection [50,53]. Accuracy is usually
determined by the tightness or compactness between objects and the bounding box [51,54].
In terms of computation costs, the AABB and bounding sphere are simple and fast for
processing, and for continuous collision tests, sphere bounding box method can be faster
than AABB [50,54]. OBB is more complex in processing as it needs to rotate with objects,
which requires additional computation effort [50,52]. k-DOP is the most computationally
intensive method since the coordinate system needs to rotate with objects and k times
overlapping tests are required [50,51]. The k-DOP method has the highest accuracy in
representing objects and the sphere box has the least accuracy in most cases [52,54]. OBB is
the minimum box, so it is a more accurate representation than AABB, but it is less compact
than k-DOP [52,55]. In summary, the rank of each bounding box method in terms of
computational costs and compactness is given in Table 2. Each method has advantages and
disadvantages, and the selection of the bounding box needs to consider the characteristics
of objects and the application scenarios.

Table 2. Ranking of different bounding box method in terms of computation cost and compact-
ness [50–52,54,55].

Type Computation Cost Compactness

AABB 2 3
OBB 4 2

k-DOP 3 1
Bounding Sphere 1 4

Note: 1 represents the best and 4 represents the worst.

In this study, the warning zone on a construction site can be taken as a two-dimensional
shape. Although a machine is a three-dimensional object, the intersection test can be carried
out between the warning zone and the projection of moving machinery on the ground. For
the majority of construction machines, their projection on the ground is close to a rectangle.
Therefore, AABB or OBB are better options, as they are of the same shape as the objects
that they represent [54,56]. As can be seen from Table 2, AABB is more efficient in the
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computational process, while OBB has higher accuracy. Therefore, these two methods are
further considered for this study.

3.2.2. A Modified Bounding Box Method

The purpose of collision detection is to identify the critical State 1 and State 2 as shown
in Figure 1. First, OBB bounding box is considered, as OBB can accurately represent the
whole machine for the collision test with the warning zone. However, if OBB is adopted, the
special state demonstrated in Figure 2 could be detected as a collision, while the machine
is actually in a safe state. Therefore, using OBB to represent the whole machine is not an
effective method as it may give false alarms. For safety warnings, it is important that false
alarms are avoided, as if the warning signals are not reliable, they may be ignored by onsite
operators as a habit and cannot effectively prevent accidents. Therefore, the development
of the bounding box needs to exclude the middle area of the machine to prevent false
alarms.

The AABB bounding box is considered due to its computational efficiency for practical
purpose. The traditional way to develop AABB representing the whole machinery could
result in extra areas being included, as shown in Figure 4a. Based on the states illustrated
in Figures 1 and 2, only the head and rear parts of the machinery need to be considered.
Therefore, two AABB bounding boxes can be used to represent the front and rear parts
of the machinery, respectively, as illustrated in Figure 4b. As the machine is not always
parallel to the coordinate axis when it is moving, there may be extra areas of these AABB
bounding boxes be included [54]. However, as the sizes of the two AABBs (front and rear)
are much smaller than the original AABB representing the whole machine, these extra
areas are much smaller and the errors caused by them can be ignored. In fact, these extra
areas can be regarded as a small warning buffer, as these extra areas are always in the same
direction as the machinery’s movement. When the extra area collides with the warning
zone, it indicates the machine is moving towards the warning zone and will collide with
it. Therefore, this modified AABB bounding box method not only reduces the large error
areas of the original single AABB bounding box which includes the middle part of the
machinery, but also enhances the effectiveness of the safety alarm with a small additional
warning buffer.
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Figure 4. Comparison of conventional AABB and improved AABB. (a) Conventional AABB: extra area causing false alarm.
(b) Improved AABB: extra area as warning buffer.

As seen in Figure 4b, the minimum and maximum coordinates in abscissa and vertical
axes of the two AABB bounding boxes for machinery are determined by the position
data of four wheels. These position data and the position data of the risk area need to be
determined and a coordination system established for collision detection.
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3.3. Position Data Acquisition and Coordinate System Development
3.3.1. Position Data Acquisition

In this study, the risk area is always simplified as a rectangle shape to represent a site
area with potential risk, such as a foundation pit. The risk area is also taken as a large AABB
bounding box in the collision detection, and its position is determined by the location of its
four corners.

To obtain the location data of the risk area and mobile machinery, a wireless positioning
device needs to be adopted [37,57]. Currently, there are multiple applications in the market
which can be used to collect position data [58]. LocalSense is a widely used sensor device
for detecting location in China with high accuracy of 10 mm, as shown in Figure 5, and it
is adopted in this research. This device has two parts: tags and base stations, and it has
its own coordination system (referred to as the global coordinate system in this paper).
The system can capture real-time position based on ultrawide band antennas and calculate
coordinates of tags with collected data information [59,60]. The mechanism of determining
the location of the LocalSense tags is illustrated in Figure 5: Two base stations can provide
two possible locations of the tag (two circles have two common points), and the third
station can determine the exact location (x, y) of the tag. Mathematically, the tag position
(x, y) is resolved using the three equations in Figure 5: the three base stations’ coordinates
are (x1, y1), (x2, y2), (x3, y3) in the global coordinate system, and d1, d2, and d3 are the
distances between each base station and the tag, determined by the signal’s travelling time
between the tag and the base stations. Therefore, three base stations can be installed on a
construction site, and with four tags attached to the wheels of mobile machinery, the global
coordinates H1(xh1, yh1), H2(xh2, yh2), R1(xr3, yr3), and R2(xr4, yr4) of the four wheels can
be collected.
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In the same way, tags are installed at the corners of the identified risk area and their
coordinates can be obtained. These tags can be reused and can be moved when the risk
areas change. To prevent the tags of the risk area from destroying by machinery, the tags
will be removed after the coordinates of the risk area are captured by the locating device.
The obtained coordinates will be recorded in the software system.

3.3.2. Coordinate System of Risk Area

In most cases, the risk area is not parallel to the global coordinate system. As the usual
AABB development takes the maximum coordinates of the rectangular shape, it is not an
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accurate representation of the risk area in the global coordinate system (Figure 6a). In this
research, a local coordinate system is established for the risk area with the x and y axes of
the coordinate system parallel to the sides of risk area, and the AABB is exactly the same
as the risk area, which removes the errors caused by using the global system directly, as
shown in Figure 6b.
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Figure 6. AABB development of risk area.

Establishment of the local coordinate system also allows multiple risk areas which
are not parallel to each other (and to the global system) to be processed separately and
effectively. Transformation between global coordinate system and the local coordinate
system of risk area is required, and it is shown in Figure 7. The transformation matrix T is
used to establish a local coordinate system. The available data are four coordinates of the
risk area collected by positioning application, namely A1 (x1, y1), A2 (x2, y2), A3 (x3, y3),
A4 (x4, y4). The way to calculate T can be regarded as a matrix to transform coordinate Ai
in global system to AiL in local system, where AiL is the original point in local coordinate
system.
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T = Tt·Tr =

 1 0 0
0 1 0

−(x1) −(y1) 1

·
 cos(−θ) sin(−θ) 0
− sin(−θ) cos(−θ) 0

0 0 1

 (1)

θ = arctan
x2 − x1

y2 − y1
(2)

After transformation, coordinates of risk area are A1L (x1L, y1L), A2L (x2L, y2L), A3L
(x3L, y3L), A4L (x4L, y4L), where AiL can be calculated as:

[
xiL yiL 1

]
=

[
xi yi 1

]
·T =

[
xi yi 1

]
·

 1 0 0
0 1 0

−(x1) −(y1) 1

·
 cos(−θ) sin(−θ) 0
− sin(−θ) cos(−θ) 0

0 0 1

, (i = 1, 2, 3, 4) (3)

As mentioned in Section 3.1, the coordinates used for collision detection are from
the warning zone rather than risk area. Therefore, coordinates of warning zone can be
represented as W1L (x1L − 2D, y1L − 2D), W2L (x2L − 2D, y2L + 2D), W3L (x3L + 2D, y3L +
2D), W4L (x4L + 2D, y4L − 2D), as seen in Figure 7b).

3.3.3. Coordinates of the Mobile Machinery

As presented in Section 3.2.2, coordinates of the head and rear parts of mobile ma-
chinery are required to establish modified AABB bounding box. Therefore, four wheels
are marked as points 1, 2, 3, and 4, as shown in Figure 8. The coordinates of the two head
wheels are H1(xh1, yh1) and H2(xh2, yh2), and coordinates of rear wheels are R1(xr3, yr3)
and R2(xr4, yr4). Currently coordinates of machinery are also collected in global system,
which should be transformed to the local system as developed in Figure 8. By using
transformation matrix T to get the coordinates in the same way, the local coordinates of
machinery are H1L(xh1L, yh1L), H2L(xh2L, yh2L), R1L(xr3L, yr3L), R2L(xr4L, yr4L). Based on the
four coordinates, the modified AABB method can be developed to represent the machinery
as designed. Therefore, in the local system, the other two coordinates of head AABB1 are
H3L(xh2L, yh1L) and H4L(xh1L, yh2L), and the other two are R3L(xr3L, yr4L) and R4L(xr4L, yr3L)
for rear AABB2. All coordinates of the modified AABB are obtained, as shown in Figure 8.
The models of the warning zone and construction machinery are established in the same
local coordinate system.
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3.4. Implementation of Safety Warning Algorithm
3.4.1. Proximity Detection/Collision Warning Analysis

The critical process is to conduct proximity detection/collision warning analysis using
collected location data. After the coordinate system development of the pre-identified
warning zone and machinery in a local system, proximity detection is used to check if the
AABB representing the machinery (head or rear) intersect with the AABB representing
the warning zone on either the X or Y axes. The algorithm of intersection tests is given as
follows:

for (i = 0; i < 2; i++)
if L1i > H2i || L2i > H1i
return 0;
else return 1;
Where the minimum and maximum vertices of the two AABBs are P1(L10,L11),

Q1(H10,H11), and P2(L20,L21), Q2(H20,H21), as illustrated in Figure 9. Based on the above al-
gorithm, if it returns “1”, it means the two boxes intersect or are colliding. Otherwise, if the
algorithm returns “0”, it means there is no collision. There are four possible relationships
between the two AABB bounding boxes. If the two AABBs do not intersect with each other
on both axes, there is no collision between them, as marked in green circles in Figure 9a.
If there is an intersection on either of the axes with no intersection on the other axis, the
two AABB still do not intersect with each other, as seen in Figure 9b,c. If the two AABB
intersect with each other on both axes, there is collision between them as marked in red
circles in Figure 9d.
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This proximity detection will be adopted to check if the modified AABB bounding
boxes (representing the head and rear of a mobile machinery) collide with the warning
zone. As the machinery is constantly moving, a continuous checking mechanism needs to
be established.

3.4.2. Warning Algorithm Implementation

Both head and rear AABB bounding boxes of machinery need to be tested using the
proximity detection with the warning zone (W0). For practical onsite operation, most of
the time the machine is in a state of moving forward, so the front wheels are more likely
than the rear wheels to move into the warning zone (W0). Therefore, it is reasonable to
test collision of the head AABB1 (H1) first followed by the rear AABB2 (R1). The complete
process for implementing the collision detection is given in Figure 10. The warning signal
can be given instantly based on the developed algorithm.
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4. Case Simulation and Validation
4.1. Case Background

A real case simulation is carried out to validate the proposed algorithm. Figure 11
shows a construction site layout. The site is complex with different construction areas, and
some foundation pits are under excavation, which are potential risk areas for onsite mobile
machineries, and they are presented as red rectangles in Figure 11. Some risk areas are not
exactly in the shape of a rectangle. However, they are simplified to the closest rectangular
areas for an easier process. In this study, a relatively small risk area, marked in a red circle
in Figure 11, is selected for case simulation to validate the algorithm. The dimension of the
area can be determined directly from the coordinates captured by the tags installed at the
four corners of the risk area.
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Figure 11. Case example of potential risk area for mobile machinery and arrangement of positioning
application.

As mentioned in Section 3.3.3, three base-stations could determine the position of
a tag. In this case simulation, a total of four base stations are installed, and the system
will use the closest three base station data to calculate the tags’ location. The layout of the
base-stations and the tags for collecting coordinates are shown in Figure 12 (diagram is not
in proportion with the real distance on site). The base-stations could obtain x, y coordinates
of these tags in global coordinate system. Then, these coordinate data are transmitted
to a monitor terminal, where the proposed algorithm is installed. These coordinates are
the input data of the proposed safety warning algorithm. The data flow is also shown in
Figure 12, which demonstrates how tags on the risk area and machinery in the construction
site are linked with the proposed safety warning algorithm.
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4.2. Model Development and Collision Test Results

The location data collected by the tags installed at the four corners of the risk area
are expressed in the global coordination system as A1 (22.62, 27.86), A2 (26.72, 34.96), A3
(44.35, 15.31), and A4 (48.45, 22.41). As discussed in Section 3.3.2, transformation matrix T
is applied to convert these data into the local coordinate system, which is computed as:

T =

 1 0 0
0 1 0

−22.62 −27.86 1

·
 0.866 0.5 0
−0.5 0.866 0

0 0 1

 =

 0.866 0.5 0
−0.5 0.866 0
−5.659 −35.442 1

 (4)

The local coordinates are then obtained as A1L (0, 0), A2L (0.0, 8.2), A3L (25.1, 8.2),
and A4L (25.1, 0). Therefore, the risk area is of the dimension 8.2 × 25.1 m. The warning
zone is identified as W1L (−2.0, −2.0), W2L (−2.0, 10.2), W3L (27.1, 10.2), W4L (27.1, −2.0).
Four tags are installed on the wheels of machinery. Tag 1, tag 2, tag 3, and tag 4 are used
for continuous location data collection of H1, H2, R1, and R2 respectively. The global
coordinate data are collected real-time at every 0.5 s and are input into the safety warning
algorithm simultaneously. Multiple rounds of simulation and data collection were carried
out, which validated the effectiveness and accuracy of the proposed algorithm. In this
paper, two key datasets are reported, one is data collected while moving forward and
another is collected while moving backward. Machinery is simulated to be moving on the
construction site, starting from about 20 m away from the risk area. A wheel loader was
taken as the machinery in the simulation, and its approximate dimension is 1.98 × 2.82 m.
In some reported research, the working speed of wheel loader is about 5 km/h (around
1.39 m/s) on a construction site [61,62]. Therefore, the simulation speed of moving forward
is set as 1.5 m/s, and the speed of moving backward is set as 1 m/s. Table 3 shows the
continuously collected location data (every 0.5 s) of the four tags on the wheel loader. These
data are the input data of the safety warning algorithm.
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Table 3. Global coordinate datasets of four tags of machinery.

Tag1_x Tag1_y Tag2_x Tag2_y Tag3_x Tag3_y Tag4_x Tag4_y

Data
(Moving
Forward)

36.63 53.92 34.68 53.58 36.14 56.70 34.19 56.36
36.76 53.18 34.81 52.84 36.27 55.96 34.32 55.62
36.89 52.45 34.94 52.10 36.40 55.22 34.45 54.88
37.02 51.71 35.07 51.36 36.53 54.48 34.58 54.14
37.15 50.97 35.20 50.63 36.66 53.75 34.71 53.40
37.28 50.23 35.33 49.89 36.79 53.01 34.84 52.66
37.41 49.49 35.46 49.15 36.92 52.27 34.97 51.93

. . . . . . . . . . . . . . . . . . . . . . . .

Data
(Moving
Bacward)

51.74 48.18 53.02 46.67 49.58 46.37 50.86 44.86
51.36 47.86 52.63 46.35 49.20 46.05 50.47 44.53
50.98 47.54 52.25 46.03 48.82 45.73 50.09 44.21
50.59 47.22 51.87 45.70 48.43 45.41 49.71 43.89
50.21 46.90 51.48 45.38 48.05 45.09 49.32 43.57
49.83 46.58 51.10 45.06 47.67 44.77 48.94 43.25
49.45 46.26 50.72 44.74 47.29 44.44 48.56 42.93

. . . . . . . . . . . . . . . . . . . . .

In terms of data collected while moving forward, the starting position of machinery
as the location data collected by the 4 tags is H1 (36.63, 53.92), H2 (34.68, 53.58), R1 (36.14,
56.70), and R2 (34.19, 56.36). After transformation to the local coordinate system, the
coordinates are H1L (−0.89, 29.57), H2L (−2.41, 28.29), R1L (−2.71, 31.73), and R2L (−4.23,
30.46). The boxes in dotted line in Figure 13a represent the moving path of the machinery.
The black box represents the machinery at the starting position. Similarly, the starting
position data collected while moving backward are H1′ (51.74, 48.18), H2′ (53.02, 46.67), R1′

(49.58, 46.37), and R2′ (50.86, 44.86), and the corresponding local coordinates are H1L′ (15.06,
32.16), H2L′ (16.92, 31.48), R1L′ (14.09, 29.51), and R2L′ (15.96, 28.83), as shown in Figure 13b.

The next step is the collision detection test, which will also be carried out every 0.5 s.
In the safety warning algorithm, the improved AABB of machinery will be automatically
created in the local coordinate system, as shown in Figure 8. The continuous collision
detection was carried out. As shown in Figure 13a, at the time of 11:42:11.790′, collision
was detected, and the head bounding box was displayed in red colour and warning is
given. The warning signal instructs the operator of the machinery to move backwards in
a timely manner. A similar simulation was carried out while the machinery was moving
backward, as shown in Figure 13b. Collision was detected at the time of 11:44:59.798′. The
rear AABB was displayed in red and a warning given.

These two simulations demonstrate the safety warning signals are triggered success-
fully and instructions are released to the machinery operator to avoid an accident.
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5. Discussions and Conclusions

The above case simulation represents typical situations for construction machinery
moving around a risk area. The proposed algorithm could continuously process input loca-
tion data of moving machinery and release safety warning signals to machinery operators
when the machinery enters the warning zone.

In this simulation, the safe distance between the risk area and the warning zone
boundary is set as 2 m, this distance is used according to the construction site regulations
in China as listed in Table 1. Considering the fact that a machine operator needs to have
some response time, and when machinery is moving at a speed of 1–1.5 m/s (about 3.6−5.4
km/hour), 2 m only provides less than 2 s of response time. Therefore, it is suggested that
in real construction practice, this distance is to be increased according to the machinery’s
speed. When this algorithm is used in other countries or in a specific situation, this distance
can also be adjusted to provide appropriate response time to the machine operator.

The collision detection was carried out every 0.5 s in this simulation, and as the
computation process is efficient and almost instant, this frequency can also be adjusted
according to the speed of the machinery to meet the requirement of onsite monitoring in
real projects.

This study proposed a safety warning algorithm for moving construction machineries
to prevent them from entering risk areas to avoid overturning and collapsing accidents.
The designed algorithm and the continuous processing of the collected location data by
sensor devices offer a reliable and practical means for the automated onsite monitoring of
construction machineries. There are two major contributions of this proposed algorithm.

Firstly, for improving computation efficiency and reducing false alarm, a modified axis
aligned bounding box (AABB) method is proposed. AABB is a relatively simple method.
However, using two AABBs to represent the head and rear part of a construction machinery
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respectively is a novel approach. The error caused by the simplification is minimized, and
the small extra space of the two AABBs serves as warning buffer, which increases the
sensitivity of the warning algorithm. The modified AABB method also eliminates the
possibility of the false warning caused by the turning machinery at the corner of the
warning zone. This method is suitable for monitoring onsite construction machineries as it
can make a flexible representation of machinery for collision detection analysis compared
with other bounding box methods, and therefore improves its reliability in capturing actual
situations of onsite construction machineries with an efficient computational approach.

Secondly, the proposed algorithm could be conveniently integrated with various real-
time location sensing techniques and use their own coordinate system to collect location
data. It then converts the location data into a local coordinate system established for each
risk area. The use of a local coordinate system enables that each risk area is accurately
represented by a standard AABB bounding box and ensures the computation accuracy
when multiple risk areas are included. The proposed algorithm provides a practical method
for continuous monitoring of construction mobile machineries.

The simulation results demonstrate that the proposed safety warning algorithm works
effectively in detecting risks and can release timely warning signals. It also requires very
little data space for data storage, and is of very low computational cost. The warning
signals can be triggered by using wireless communication technologies, such as Wifi and
Internet of Things (IoT), and the details of implementing these technologies are reported in
other studies [63–65].

Construction site safety management is an important aspect of an efficient overall
site layout planning [66]. The limitation of this algorithm is that the risk area identified in
this case needs to be simplified as a rectangular shape, while there are some risk areas in
construction sites that are in circular or other irregular shapes, and some machineries could
also be of a different shape, such as excavators in the form of a bounding sphere. Therefore,
in the future, a more flexible bounding box development method could be proposed for
risk areas and machineries of other shapes, and this could support a more efficient and
accurate safety status check for different mobile machineries working close to all types of
risk areas. Moreover, this research only considers proximity detection between machineries
and risk areas. Thus, future research could address monitoring the relative positions of
multiple machineries and preventing collision between them.
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