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Abstract: Direct-to-satellite Internet of Things (IoT) solutions have attracted a lot of attention from
industry and academia recently, as promising alternatives for large scale coverage of a massive
number of IoT devices. In this work, we considered that a cluster of IoT devices was under the
coverage of a constellation of low-Earth orbit (LEO) satellites, while slotted Aloha was used as a
medium access control technique. Then, we analyzed the throughput and packet loss rate while
considering potentially different erasure probabilities at each of the visible satellites within the
constellation. We show that different combinations of erasure probabilities at the LEO satellites
and the IoT traffic load can lead to considerable differences in the system’s performance. Next,
we introduce an intelligent traffic load distribution (ITLD) strategy, which, by choosing between a
non-uniform allocation and the uniform traffic load distribution, guarantees a high overall system
throughput, by allocating more appropriate amounts of traffic load at different positions (i.e., different
sets of erasure probabilities) of the LEO constellation with respect to the IoT cluster. Finally, the
results show that ITLD, a mechanism with low implementation complexity, allows the system
to be much more scalable, intelligently exploiting the potential of the different positions of the
satellite constellation.

Keywords: machine-type communications; IoT; satellite communications

1. Introduction

Terrestrial low-power wide area networks (LPWANs) are already massively deployed,
enabling several applications that short-range or cellular communications technologies
cannot support in an efficient way [1,2]. New technologies such as LoRaWAN [3] and
SigFox [4] are extensively utilized all over the world in a number of different use cases.
However, there has been increased interest in enabling truly global connectivity for Internet
of Things (IoT) devices, which can only be achieved with satellite communications. Global,
or very wide-area, IoT connectivity can leverage several applications to their full potential,
in areas such as environmental monitoring, disaster prevention, smart agriculture and
industrial digitalization [5–8]. Global IoT can be used to map possible environmental
disasters such as earthquakes and floods, and to provide connectivity to under-served
regions. In particular, it is expected that low-Earth orbit (LEO) satellites will play a
fundamental role in this scenario, providing direct or indirect satellite communication to a
massive number of devices [9,10].

The space industry has been growing exponentially in recent years due to remarkable
advances in the manufacturing of satellites and rocket launching technologies, and the
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development of embedded systems circuits and communication technologies [11]. One of
the attractive outcomes under these successive evolutions has been a significant reduction
in the cost of communication via LEO satellites. With its relatively low cost compared
to geostationary-Earth orbit (GEO) satellites, modular implementation and low latency,
this type of satellite has gained considerable attraction for future applications. In this
context, LEO orbit satellites would be beneficial due to their smaller propagation signal
loss and potential global coverage. Many private sector players are investing massively in
the launching of small satellites, as SpaceX [12] and OneWeb [13]. LoRaWAN technology
is already being used in IoT networks assisted by LEO satellites—for instance, those
of Lacuna Space (https://lacuna.space/ (accessed on 14 September 2021)) and Swarm
Space (https://swarm.space/ (accessed on 14 September 2021)), in which most traffic is
from the devices to the LEO satellites. Another example of a successful IoT system using
LEO satellites is the ARGOS system (https://www.argos-system.org/ (accessed on 14
September 2021)). Moreover, there are ongoing standardization efforts in order to integrate
satellites with 5G terrestrial networks, with IoT being one of the use cases [14]. In line with
the fact that one LEO is not enough to provide service to a large IoT network, a strong
trend for applications in future networks is the deployment of several satellites spread
across space, that is, a constellation [15].

1.1. State-of-the-Art

In the design of a satellite IoT network, several factors are of paramount importance,
directly influencing the system performance, such as constellation design, number of
satellites, number of orbital planes, elevation angle, orbital plane spacing, and the orbital
eccentricity [16]. Added to these factors is the wireless access technique used by the
IoT devices. Different methods have been proposed to establish a connection between
a device and a satellite, with their own advantages and disadvantages. We start with
indirect communication, in which data are transmitted to the satellite via a terrestrial
gateway. Therefore, the biggest advantage is the possibility to use current terrestrial
LPWAN technologies at the end nodes. The IoT devices actually connect to the terrestrial
gateway, in which protocols, such as LoRaWAN and SigFox, can be used to connect to
end nodes [1]. A disadvantage of this architecture is the limited terrestrial coverage [17].
Another negative factor is the difficulty of installing a gateway in remote regions or in
cases where monitoring is carried out for a short period of time, which makes the cost of
the service higher.

Arguably, the most attractive method in terms of ease of deployment is direct satellite
communication, better known as direct-to-satellite (DtS-IoT) [5]. In this case, users com-
municate directly to the satellite, most probably a LEO satellite, without the need for a
terrestrial gateway. However, some of the challenges of this approach are the long link dis-
tance and the short communication windows. LEO satellites are concentrated at altitudes
between 340 and 650 km [6] and provide time windows for communication according to
their passing orbits. Some manufacturers in the field of wireless communications [3,4] have
been working on cutting-edge technologies that are getting closer and closer to meeting the
challenge of DtS-IoT. In [17], interesting advances in the interconnection of technologies
were already presented to allow adequate DtS-IoT communication design using a satellite
constellation and LPWAN technology such as LoRaWAN.

In addition to direct and indirect communication, other alternatives are also presented,
such as the hybrid land-satellite network (HSTN) proposed in [18]. Due to characteristics
such as communication delay, latency, mobility, and coverage performance, the authors
proposed three basic cooperative models for the HSTN. In the so-called L model, the satel-
lite communicates with the device via a terrestrial gateway (i.e., indirect communication).
An example of a network operating in the L model with LoRaWAN terrestrial devices can
be found in [19]. In the X model, devices communicate using direct and indirect techniques.
Communication between users-satellite and users-terrestrial base station is executed sepa-
rately, sharing wireless resources. Interference patterns found in this model are diverse and

https://lacuna.space/
https://swarm.space/
https://www.argos-system.org/


Sensors 2021, 21, 7099 3 of 20

complicated, such as mutual interference between users. Furthermore, they are dependent
on channel fading influences and cell coverage effects. In urban areas, the satellite user and
the terrestrial user coexist, yielding unwanted co-channel signals. The V model considers
the cooperation of a satellite with a terrestrial base station to serve the same user, being
therefore a combination of the indirect and direct approaches. Signal diversity reception
is used to compensate for large channel fading. Furthermore, the terrestrial and satellite
network protocols may be different, requiring translation.

Independent on the architecture, whether direct, indirect, or a combination of both,
medium access control (MAC) techniques implemented in commercial satellite networks
were not designed to provide scalable solutions for the growing number of devices en-
visioned for IoT. Traditional solutions such as Code Division Multiple Access (CDMA)
and Time Division Multiple Access (TDMA), when placed in the context of LEO satellites
and large device density, may lose performance due to the need for strict synchronization.
Requirements such as simplicity, storage, and energy consumption should be incorporated
into the designs of MAC protocols for satellite IoT networks [20]. With a focus on DtS-IoT
networks, a taxonomy of MAC protocols is presented in [20], including four groups: (i)
Aloha-based; (ii) reservation and adaptive protocols; (iii) interference cancellation based;
and (iv) hybrid protocols. A detailed analysis on the trade-offs involving complexity
and scalability is provided. The authors finished their review with the conclusion that a
better balance among different metrics should drive the design of novel MAC protocols
for DtS-IoT networks. In particular, it is apparent that the choice of a MAC protocol for
satellite IoT networks should carefully consider the complexity of implementation and
energy consumption.

Therefore, random access (RA) protocols based on Aloha [21] are good candidates for
the MAC layer in LEO satellite IoT networks, both in terms of simplicity of implementation
and delay [20]. Indeed, they have been used for satellite communications for a long time
and are even used in modern terrestrial networks, such as LoRaWAN [3] and SigFox [4],
and are becoming attractive alternatives for some future 6G use cases [22]. However,
for a large number of transmitters, the system’s performance can be severely affected by
collisions. One solutions for this issue is the introduction of diversity in Aloha. Modern RA
schemes [23] based on Aloha often apply SIC for interference cancellation, while allowing
devices to transmit multiple copies of their messages [24–28]. For instance, in Contention
Resolution Diversity Slotted Aloha (CRDSA), devices transmit fixed numbers of replicas of
their messages while successive interference cancellation (SIC) is applied at the receiver
for removing all copies once one of the messages is successfully decoded, considerably
improving performance [26]. In Irregular Repetition Slotted Aloha (IRSA), devices may
transmit different numbers of replicas, improving even more the network throughput [27].
An application of IRSA in the context of satellite communications, where the number of
replications per user is optimized, is exploited in [28].

However, methods such as CRDSA and IRSA produce time diversity by means of
replication, which may lead to considerable increases in complexity and power consump-
tion at the transmitters, while also demanding substantially in terms of memory and
computational complexity at the receiver for the SIC operations. Therefore, in the context
of LEO satellites with limited computational resources, time diversity techniques such as
CRDSA and IRSA may still be prohibitive. Another alternative is the use of spatial diver-
sity at the receiver [29,30]. Nowadays, even the use of massive Multiple Input Multiple
Output (MIMO) antenna systems at the receiver has been considered in the context of
machine-type communications using Aloha [31,32]. Although promising, a small LEO
satellite with several receive antennas may still not be a very practical option.

Spatial diversity can also be exploited with Aloha by having multiple single antenna
receivers [33,34]. This idea fits well in a scenario where several satellites cover a given
region, which should be more and more common with the predicted launch of hundreds of
satellites in the next years [35]. For instance, the links between devices and the multiple
relays (e.g., LEO satellites) in coverage have been modeled considering on–off fading (i.e.,
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erasure probabilities at the satellites) in [15,36], where different analysis and optimizations
were carried out. In [15] critical and non-critical devices coexisted in a slotted Aloha based
communication system with multiple satellites. Then, the satellites forwarded the received
data to a sink over another shared backhaul link. Orthogonal and non-orthogonal strategies
for allocating resources among critical and non-critical services were investigated. The
multiple relays can be seen as a constellation of LEO satellites, and the common sink can
be an Earth station.

Recently, in [36], a two-phase communication system was proposed and analyzed. The
system model in [36] is similar to that in [15], so that in the first phase, a group of clustered
devices transmit their packets to multiple relays or multiple satellites using a simple slotted
Aloha protocol. Then, in the second phase the relays forward the decoded information to
a common sink. The channel is modeled considering on–off fading, while expressions are
provided for calculating the first phase throughput, in addition to the packet loss rate for a
number of relays, considering equal erasure probabilities at all relays. However, in the case of
a LEO satellite constellation, it is very likely that the erasure probabilities are not all the same,
since some of the satellites may be at different elevation angles from the point of view of
the devices. The same is true even for other alternative constellation designs, as the GeoSurf
constellation [37], since satellites entering or leaving the service are subject to an additional
loss compared to the satellite currently servicing the devices.

1.2. Novelty and Contribution

In this work, we build on the model proposed in [36], with a focus on the first phase,
in which the devices communicate with the satellites. However, differently from [36], here
we consider that the erasure probabilities at the different satellites are not necessarily the
same. Then, we reformulate the throughput and the packet loss rate to take into account
the different erasure probabilities at the satellites. Next, using the novel throughput
formulation, we exploit non-uniform traffic load distribution as a function of the number
and position (which implicates in the erasure probabilities) of the multiple satellites. We
show that adequately allocating the traffic intensity according to the number and positions
of the satellites brings considerable benefits, and for that sake the modeling proposed in
this work is fundamental.

The rest of this work is organized as follows. In Section 2 we present the system model.
In Section 3 we derive expressions for the throughput and packet loss rate considering
different erasure probabilities at the satellites. An algorithm for traffic load optimization
is introduced in Section 4. Numerical results are discussed in Sections 5, and Section 6
concludes the paper.

2. System Model

We consider that a very large number of clustered devices are under the coverage
of K LEO satellites, then, following the related literature, we focus on the uplink, where
most of the data traffic is concentrated and where contention can be very high. Devices
transmit data packets to the satellites following a simple slotted Aloha policy [20]. Al-
though this is out of the scope of this work, the LEO satellites can forward the data to
an Earth station in a following phase. Moreover, we assume that there is minimum, if
any, coordination among satellites, so that they do not exchange information among them
regarding the received messages. The channel between the devices and the satellites is
modelled considering on–off fading [36,38], so that the satellites perceive a given erasure
probability εk, k ∈ {1, 2, ..., K}. The erasure probabilities ε1, ε2, ..., εK depend on the position
of the satellite with respect to the cluster of IoT devices. Note that the on–off fading model
has been extensively used in the analysis of Aloha-based multiple access schemes, as for
instance in [15,23,25,33,36]. Such model describes well the behavior of channels whose
losses are mainly dominated by fading and short-term blocking due to the presence of ob-
stacles [33,36], as in the case of IoT applications supported by end-devices transferring data
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via LEO satellites. Moreover, the on–off fading model brings the bonus of mathematical
tractability, without loss of generality.

We use the term position to refer to the continuous segment within the satellite’s trajectory
where the erasure probability does not vary significantly, while we call iteration the time it
takes for a LEO satellite to transit from one position to the next. Then, the positions associated
with a satellite constellation with respect to a cluster of IoT devices are the set of all those in
which at least one satellite of said constellation is visible to the cluster. Thus, the first position
is that in which the first satellite is seen, and the last position is the one in which the last
satellite is seen before disappearing from the cluster range. Moreover, every passing of the
satellite constellation over the IoT cluster is termed a lap.

Since the satellites may be in different positions with respect to the IoT cluster, it is
natural to assume that the erasure probabilities may be different at the different satellites.
For the sake of simplicity, we assume that there is a finite number n of different erasure
probabilities experienced by the satellites, such that εk ∈ {ε1, ε2, · · · , εn}. Moreover, also for
the sake of simplicity, we assume that every segment associated with the different positions
has the same length and then all iterations are of equal duration. Each iteration is associated
with a fixed angular variation ∆θ, such that the number of positions located around the
Earth is equal to 360◦

∆θ . Finally, note that the lowest erasure probability happens at the
position associated with the zenith, and the highest erasure probabilities are associated
with positions close to the horizon.

Unlike [36], where all satellites perceive the same erasure probability (which would
only happen if orbiting together or very close to each other), in this paper we exploit a
model where the erasure probability depends on the satellite’s orbital position with respect
to the cluster of IoT devices. In order to determine the impact of the satellite constellation
design on the system performance, we consider different topologies, given according to a
fixed spacing s ∈ {0, 1, 2 · · · 9}, in number of positions, between consecutive satellites.

Example 1. Table 1 lists the positions and the erasure probabilities in a topology with K = 2
satellites, when either s = 0 (both satellites orbit together) or s = 1 (both satellites are separated
by a single position; i.e., in the next iteration the second satellite occupies the current position
of the first satellite). Moreover, we consider a set of n = 10 different erasure probabilities, ε ∈
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. These erasure probabilities could be biunivocally
related to the elevation angle of the satellite with respect to the cluster, from the zenith (90◦) to
the horizon (close to 0◦) with intervals of ∆θ = 10◦, as the severity of fading and shadowing is a
function of the elevation angle [39–41]. Note that with s = 0 there are in total 19 positions, and
when s = 1 there is one more position with at least one satellite being visible by the IoT cluster.

It is easy to check that in the general case the number of positions in each lap is given by

M = 2n− 1 + (K− 1)s. (1)

Note that this interpretation of M is valid as long as M ≤ 360◦
∆θ , but in constellations

with too many satellites or where the satellites are too far apart from each other, such that
M > 360◦

∆θ , M still coincides with the number of iterations associated with each lap of the
satellite constellation.

Table 1. Erasure probabilities at each position (P1, P2, P3, ..., P20) considering a constellation with K = 2 LEO satellites
(Sat1, Sat2), where the satellite spacing is either s = 0 or s = 1, and the erasure probabilities ε ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9}.

s SAT P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 · · · P18 P19 P20

0 Sat1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01 0.1 0.2 · · · 0.8 0.9 x
Sat2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01 0.1 0.2 · · · 0.8 0.9 x

1 Sat1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01 0.1 0.2 · · · 0.8 0.9 x
Sat2 x 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01 0.1 0.2 · · · 0.8 0.9
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Example 2. To facilitate the understanding of the system model, we present in Figure 1 a snapshot
of the 17th positions of the first satellite in a constellation of K = 5 satellites, with a fixed satellite
spacing of s = 4 positions, and assuming that ε ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
Some aspects of interest that should be noted: (i) each satellite only has 19 visible positions from
the point of view of the cluster and experiences the erasure probability values in decreasing order
ε1 ∈ {0.9, 0.8, · · · , 0.01} until it is just above the cluster, where it experiences the smallest value
ε1 = 0.01, and from this point on it begins to experience the erasure probability values in increasing
order ε1 ∈ {0.01, 0.1, · · · , 0.9}; (ii) however, this topology has M = 35—that is, when the first
satellite is still visible to the cluster in another 16 iterations, some of the remaining satellites are
visible, the first being only visible in the 19 first positions and the last satellite only being visible
in the last 19 positions; (iii) this means that when s increases, the number of iterations in which a
satellite is visible to the cluster increases, but at the same time the number of positions in which
the K satellites of the constellation are visible decreases; (iv) even for some topologies it would
not be possible to have the K satellites in the same iteration (e.g., K = 4 and s = 9)—in such
circumstances the non-visible satellites can be considered in the analysis with εk = 1.

       Cluster    

   P1    

       P5    

       P19    

       5    

       P9           P13    
       P17    

       ε1=0.7    
       ε5=0.9    

       ε3=0.1    
       4    

       3           2    
       1    

Figure 1. System model topology: K = 5 satellites with different erasure probabilities ε for a spacing of
s = 4 positions between consecutive satellites. The snapshot corresponds to the 17th position of Sat1.

Moreover, in the considered model neither retransmission policies nor communication
between satellites are considered. Having in mind that low cost satellites may have limited
computational capabilities, it is also assumed that collisions are destructive; i.e., we do not
consider multiuser detection or successive interference cancellation at the LEO satellites.
Following [36], the average number of packets transmitted per slot is defined as G, and
the number of users accessing the channel at the same time-slot is modeled as a Poisson
random variable U, so that the probability that u users transmit in the same time-slot is

P[U = u] =
Gue−G

u!
. (2)

3. System Throughput and Packet Loss Rate

In this section we derive expressions for the system throughput and the packet loss
rate considering the system model in Section 2.
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3.1. Throughput

A packet is only successfully received at the kth satellite if it has not been erased
by the channel fading realization and if there is no collision of other non-erased packets
transmitted by other users at the same time-slot. Thus, given that u packets were simul-
taneously transmitted by different users in a given time slot, the event of a successful
packet reception at the kth satellite occurs with probability qk = u(1− εk)ε

u−1
k . Then, the

throughput, defined as the number of packets successfully received per time slot, at the kth
satellite, is:

Tk(G) =
∞

∑
u=0

qk P[U = u]

=
∞

∑
u=0

[
u(1− εk)ε

(u−1)
k

Gue−G

u!

]
= G(1− εk)e−G(1−εk). (3)

The system throughput (T ) is defined as the number of packets successfully received
by at least one of the satellites per time slot. Therefore, multiplicities must be discarded,
so that the system throughput is not only the sum of the throughput experienced by each
of the satellites. For that sake, the inclusion–exclusion principle [42] can be utilized to
determine the cardinality of the union of the sets of packets successfully received by each
satellite, thereby discounting for the intersections.

For instance, for the case of three sets D1, D2, and D3 (in our case each set would
contain the data packets successfully received by a different satellite) via the principle
of the inclusion-exclusion we can determine the number of different received packets as:
|D1 ∪D2 ∪D3| = |D1|+ |D2|+ |D3| − |D1 ∩D2| − |D1 ∩D3| − |D2 ∩D3|+ |D1 ∩D2 ∩D3|.
The elements within the D1, D2, and D3 sets that are double-counted are removed. This
can be generalized to the case of K sets as [42,43]∣∣∣∣∣ K⋃

k=1

Dk

∣∣∣∣∣ = ∑
J 6=∅, J⊆{1,...,K}

(−1)|J|+1

∣∣∣∣∣∣⋂j∈J Dj

∣∣∣∣∣∣, (4)

where J is a set with indexes of the subsets whose intersection must be evaluated. Note that
the above expression does not admit a simplification step applied in [36], which requires
the setup to be symmetrical. In our particular case, as the erasure probabilities are different,
the ordering (or numbering) of the satellites is relevant.

Then, it is fundamental to know
∣∣∣⋂j∈J Dj

∣∣∣, the cardinality of the intersection of the
sets of packets successfully received by a subset J ⊆ {1, . . . , K} of satellites with cardinality
|J|. Consequently, considering the traffic model described in Section 2, given that u packets
were simultaneously transmitted by different users in a given time slot, the event that the
same packet is successfully received by the |J| satellites occurs with probability

qJ = u ∏
k∈J

(1− εk)ε
(u−1)
k . (5)

After the realization of many time-slots N, the average number of packets jointly
received by |J| satellites, for all u, is

∣∣∣⋂j∈J Dj

∣∣∣ = N ∑∞
u=0 qJP[U = u]. Thus, the system

throughput T (G), with different erasure probabilities at the satellites, is
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T (G) = lim
N→∞

1
N ∑

J 6=∅, J⊆{1,...,K}
(−1)|J|+1

∣∣∣∣∣∣⋂j∈J Dj

∣∣∣∣∣∣
= ∑

J 6=∅, J⊆{1,...,K}
(−1)|J|+1

∞

∑
u=0

[
Gue−G

u!
u ∏

k∈J
(1− εk)ε

u−1
k

]

= ∑
J 6=∅, J⊆{1,...,K}

(−1)|J|+1e−G ∏
k∈J

(1− εk)
∞

∑
u=0

uGu

u!

(
∏
k∈J

εk

)u−1


= ∑
J 6=∅, J⊆{1,...,K}

(−1)|J|+1 G ∏
k∈J

(1− εk) e−G(1−∏k∈J εk). (6)

For instance, in the particular and practical case of K = 2, we have that J =
{
{1}, {2}, {1, 2}

}
and T2(G) = G(1− ε1)e−G(1−ε1) + G(1− ε2)e−G(1−ε2) − G(1− ε1)(1− ε2)e−G(1−ε1ε2), but
when ε1 = ε2 = ε the system throughput becomes T2(G) = 2G(1− ε)e−G(1−ε) − G(1−
ε)2e−G(1−ε2), the same as in ([36], Equation (6)). Finally, it is important to remark that in the
case of equal erasure probabilities, εk = ε, ∀k, the cardinality of the union in (4) becomes

∑K
k=1 (

K
k)(−1)k−1

∣∣∣⋂j∈J Dj

∣∣∣ as in ([36], Equation (5)). Then, after some manipulations, the
throughput in (6) can be written as in ([36], Equation (2)), and therefore the model of equal
erasure probabilities is a particular case of the formulation presented in this subsection.

3.2. Packet Loss Rate

A packet is lost if none of the K satellites are able to correctly receive it. In order to
estimate the packet loss rate, we assume that a target user always transmits, and then we
determine the probability that its packets cannot be successfully decoded.

Assuming that u packets were simultaneously transmitted by other users in the same
given time slot, the event of the successful reception of the target packet (from the target
user) at the kth satellite occurs with probability pk = (1− εk)ε

u
k . Then, the packet loss rate,

i.e., the packet loss probability from the target user, at the kth satellite, is:

Pk = 1−
∞

∑
u=0

pk P[U = u]

= 1−
∞

∑
u=0

[
(1− εk)ε

u
k

Gue−G

u!

]
= 1− (1− εk)e−G(1−εk). (7)

From (3) and (7), we can verify that Pk(G) = 1− Tk(G)
G , which is consistent with the

fact that the maximum throughput achievable by a user (target user) is 1 and the maximum
traffic load generated by a single user is one packet per time slot.

Then, the event that specifically the target packet is successfully received by |J|
satellites, of the subset J ⊆ {1, . . . , K}, occurs with probability

pJ = ∏
k∈J

(1− εk)ε
u
k . (8)

After the realization of many time-slots N, which implies the transmission of N
packets from the target user, the average number of target packets jointly received by |J|
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satellites, for all u, is
∣∣∣⋂j∈J Dj

∣∣∣ = N ∑∞
u=0 pJP[U = u]. Thus, the system packet loss rate

P(G) is

P(G) = lim
N→∞

1
N

N − ∑
J 6=∅, J⊆{1,...,K}

(−1)|J|+1

∣∣∣∣∣∣⋂j∈J Dj

∣∣∣∣∣∣


= 1− ∑
J 6=∅, J⊆{1,...,K}

(−1)|J|+1
∞

∑
u=0

[
Gue−G

u! ∏
k∈J

(1− εk)ε
u
k

]

= 1− ∑
J 6=∅, J⊆{1,...,K}

(−1)|J|+1e−G ∏
k∈J

(1− εk)
∞

∑
u=0

[
Gu

u!

(
∏
k∈J

εk

)u]

= 1− ∑
J 6=∅, J⊆{1,...,K}

(−1)|J|+1 ∏
k∈J

(1− εk) e−G(1−∏k∈J εk). (9)

Now, from (6) and (9) we can verify that P(G) = 1− T (G)
G . Again, we give an example

for the case of K = 2,

P2(G) =
∞

∑
u=0

[
Gue−G

u!

][
1− (1− ε1)ε

u
1

]
[1− (1− ε2)ε

u
2]

= e−G
∞

∑
u=0

[
Gu

u!

][
1− (1− ε1)ε

u
1 − (1− ε2)ε

u
2 + (1− ε1)(1− ε2)(ε1ε2)

u
]

= 1− (1− ε1)e−G(1−ε1) − (1− ε2)e−G(1−ε2) + (1− ε1)(1− ε2)e−G(1−ε1ε2). (10)

Notice that, similarly to the previous subsection when ε1 = ε2 = ε, the system packet
loss rate becomes in P2(G) = 1− 2(1− ε)e−G(1−ε) + (1− ε)2e−G(1−ε2), exactly the result
of ([36], Equation (7)) for K = 2, showing that the model of equal erasure probabilities is a
particular case of the formulation presented in this subsection too.

4. Intelligent Traffic Load Distribution

From the analysis in Section 3, we can conclude that the system throughput and the
packet loss rate depend on the traffic load offered by the IoT devices and on the uplink
erasure probabilities at the satellites. Moreover, from the system model definitions in
Section 2, we know that the erasure probabilities at the satellites in each iteration depend
on the position of the satellites within the constellation. Consequently, we can deduce that
the optimal traffic loads (in terms of system throughput) for each position of the satellite
constellation are not the same. Based on this fact, we can predict that a non-uniform
traffic load distribution should outperform uniform traffic load distribution in terms of the
average system throughput. Note that the cluster of IoT devices can only communicate
while some of the satellites within the constellation are visible to the cluster.

Assuming a uniform load distribution, the total traffic load, GT , to be offered during a
complete lap of the satellite constellation, considering (1), can be written as

G(u)
i =

GT
M

, (11)

where G(u)
i , i ∈ {1, ..., M}, is the traffic load uniformly distributed per position.

With the uniform load distribution in (11), considering both fixed total traffic load GT
and number of satellites in the constellation, topologies with larger numbers of positions
M allocate lower traffic loads in each position; and topologies with less positions have to
allocate a higher traffic load to each position. However, such a uniform distribution does
not take into consideration the location of the satellites, nor the number of satellites visible
to the cluster at each position in the satellite constellation, and therefore limits performance,
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as in some positions the offered load may be too optimistic or too pessimistic depending
on the particular erasure probabilities.

In order to increase the average system throughput, we propose an intelligent traffic
load distribution (ITLD) strategy, where the system is aware of the overall throughput
achievable by the uniform distribution and by a given non-uniform distribution for that
total traffic load. In this proposed non-uniform distribution the traffic load offered in each
position of the satellite constellation is proportional to the normalized system throughput
that would be achieved in the same position with uniform load distribution. The total
traffic load in a complete lap is the sum of the traffic load of all the IoT devices. So, in order
to achieve a specific traffic load distribution according to the constellation positions, we
estimate the load factor Qi in each position i of the satellite constellation as

Qi =
Ti
(
G(u)

i
)

∑M
i=1 Ti

(
G(u)

i
) , (12)

which represents in what proportion each position of the satellite constellation contributes
to the overall system throughput, when the traffic load is uniformly distributed. Following
the hypothesis that higher performing positions can successfully take on higher traffic load,
we propose to use this load factor as the appropriate weight to conveniently distribute
the traffic load in a simple and effective manner. Then, the non-uniform traffic load, per
position, is defined as follows:

G(nu)
i = Qi GT . (13)

Finally, to establish a fair comparison between both traffic load distribution strategies,
we use the overall system throughput, which is computed as

T (x) =
M

∑
i=1
Ti
(
G(x)

i
)
, (14)

where x = {u, nu} in the case of uniform or non-uniform distribution strategy, respectively.
The implementation and comparison of both uniform and non-uniform distributions are
described in Algorithm 1. The erasure probabilities of all the satellite positions visible from
the IoT devices cluster are assumed to be known, along with the simultaneous positions
visited by the K satellites of the constellation. At the end of the second lap of the satellite
constellation, ITLD selects the traffic load distribution that allows to achieve the highest
throughput:

G(ITLD)
i =

{
G(nu)

i if T (nu) > T (u)

G(u)
i if T (nu) < T (u)

(15)

Consequently, ITLD throughput is

T (ITLD) = max (T (u), T (nu)). (16)

Note that this intelligent distribution does not guarantee the maximum overall system
throughput per lap. However, the proposed strategy is a feasible and a simple solution
to increase the overall system throughput, considering the implementation limitations of
typical IoT device hardware, and the energy consumption constraints associated with the
on-board satellite signal processing.
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Algorithm 1 ITLD—intelligent traffic load distribution.
1: According to the satellite spacing s, obtain the number of positions M using (1);
2: Evaluating (11), compute the uniform traffic load distribution per position G(u)

i ;

3: For G(u)
i , calculate the throughput per position Ti with (6);

4: Determine the overall throughput with uniform load distribution, T (u) = ∑M
i=1 Ti

(
G(u)

i
)
;

5: Find the load factor Qi in each position using (12);
6: Following (13), compute the non-uniform traffic load distribution per position G(nu)

i ;

7: Repeat step 4 now to find Ti with G(nu)
i for the proposed strategy;

8: Determine the overall throughput with non-uniform load distribution
T (nu) = ∑M

i=1 Ti
(
G(nu)

i
)
;

9: If T (nu)
i > T (u)

i , then Gi = G(nu)
i . Else, Gi = G(u)

i . Thus, T = max(T (nu), T (u)).

5. Numerical Results

In this section we present results for the throughput and the packet loss rate, using the
formulation derived in Section 3, while considering the model given in Section 2. Moreover,
we also investigate the performance of the proposed traffic load distribution algorithm
introduced in Section 4.

5.1. Throughput

Figure 2 shows the throughput versus the channel load, for the cases of a single
satellite with different erasure probabilities (ε = 0.01 and ε = 0.9), and for the cases of
K = 2 satellites with erasure probabilities ε1 = 0.01 and ε2 = 0.9. Moreover, in the figure
we also show the sums of the individual throughputs seen by each of the K = 2 satellites,
as well as the intersections of their throughputs. Recall that the actual throughputs are the
differences between the sums of the individual throughputs and their intersections (recall
the inclusion-exclusion principle discussed in Section 3). First, considering the case of a
single satellite, we can see from Figure 2 that a low erasure probability leads to a larger
throughput at low channel loads, and a higher erasure probability is favorable at high
channel loads. That is because a high erasure probability limits the collisions, which is
desirable at high loads. However, a high erasure probability also leads to an inefficient
utilization of the resources of the IoT devices. Interestingly, when we considered K = 2
satellites, one with a low and another with a high erasure probability, the benefits were
quite large, especially at low to moderate channel loads. Moreover, in the figure we also
show simulation results for the case of K = 2, validating the analysis in Section 3. Finally,
the curves representing the sums and the intersections of the individual throughputs of
the two satellites highlight the importance of removing multiplicities when deriving the
throughput in Section 3, as the intersection is non-negligible.

We extended the analysis for the case of K = 2 satellites in Figure 3, in which we fixed
the erasure probability ε1 at the first satellite for each of the subfigures, and we considered
different erasure probabilities ε2 at the second satellite. Thus, we could evaluate the system
throughput for a large number of [ε1, ε2] pairs. Several interesting conclusions can be
drawn from these results. First, having low erasure probabilities at both satellites is good
only at very low channel loads. Moderate erasure probabilities at one of the satellites,
or even at both, are beneficial at low to high channel loads, as they limit the impact of
packet collisions. Another important outcome from the results in Figure 3 is that there is
an optimum [ε1, ε2] pair for a given channel load. Finally, it is noteworthy that simulation
results agree very well with the theoretical analysis in Section 3.
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Figure 2. Throughput T vs. channel load G, for K = 1 with erasure probabilities ε ∈ {0.01, 0.9} and
K = 2 with erasure probabilities ε1 = 0.01 and ε1 = 0.9 (analytical and simulation results). Moreover,
we show the sum and intersection of the individual throughputs seen at each satellite.
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Figure 3. Throughput T vs. channel load G for the case of K = 2 satellites. We fix the erasure
probability ε1 at the first satellite at a different value for each of the subfigures, and we consider a set
of different erasure probabilities ε2 at the second satellite in each subfigure.

Figure 4 shows the throughput surface as a function of the erasure probabilities ε1
and ε2 at the satellites, for the case of G = 12 packets per time slot. First, corroborating
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one of the conclusions from Figure 3, there was an optimum pair of erasure probabilities
that led to the maximum throughput. Since in this example the channel load was very
high, the maximum throughput was obtained when the erasure probabilities were also
very high (ε1 = ε2 = 0.92). However, note that such high erasure probabilities, although
favorable in terms of throughput at such high channel load, also led to large packet loss
rates. The relation of the packet loss rate with the channel load and the erasure probabilities
is discussed in more detail in the next subsection.
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Z: 0.09842

Figure 4. Throughput surface versus ε1, ε2, for the case of K = 2 satellites and a high channel load of
G = 12 packets per time slot.

5.2. Packet Loss Rate

In Figure 5 we investigate the packet loss rate for different pairs of erasure probabilities
[ε1, ε2] in the case of K = 2 satellites. In each subfigure, similarly to what was done for the
throughput in Figure 3, we fixed the erasure probability ε1 at the first satellite, while we
considered different erasure probabilities ε2 at the second satellite. Pairs of low erasure
probabilities led to low packet loss rates only in the case of relatively low channel load, and
in the case of high channel loads, any pair of erasure probabilities led to a high packet loss
rate. Moreover, it is very interesting to analyze Figure 5 in conjunction with Figure 3. Note
that pairs of erasure probability that led to high throughput in the case of high channel
load, such as [ε1 = 0.01, ε2 = 0.9] in Figure 3, led to high packet loss rates. Therefore, it is
important to note that high erasure probabilities, although favorable in terms of throughput
at high channel loads, may lead to inefficient usage of the available resources. Another
look at the packet loss rate as a function of the erasure probabilities can be seen in Figure 6,
where we assumed a low channel load. In this case, the error floor effect of the on–off
fading is apparent—i.e., the erasure probabilities. Very low packet loss rates are only
achievable with very low erasure probabilities and reduced channel loads.
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Figure 5. Packet loss rate P vs. channel load G for the case of K = 2 satellites. We fixed the erasure
probability ε1 at the first satellite to a different value for each of the subfigures, and we consider a set
of different erasure probabilities ε2 at the second satellite in each subfigure.

Figure 6. Packet Loss Rate P vs. channel load G for K = 2 satellites and different pairs of erasure
probabilities [ε1, ε2], in the case of low channel load.

5.3. Traffic Load Distribution

Figure 7 shows the overall throughput in (14) versus the satellite spacing s for dif-
ferent total channel loads GT , considering both the uniform and the non-uniform traffic
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load distributions in (11) and (13), respectively. As we can see, the non-uniform always
outperformed the uniform distribution when the channel load was high, but the uniform
distribution led to a larger throughput for all or several satellite spacings when the channel
load was relatively low. The non-uniform distribution performed better in high channel
loads because, as the traffic load increased, it ensured that the number of potential simulta-
neous transmissions was greater (less) in positions with greater (less) throughput. Uniform
traffic load distribution became very competitive in the case of very low total traffic load, as
in this case there was an excess of resources for attending such small load, which allows us
to conclude that the uniform distribution limits the system’s scalability. Figure 7 also shows
that, for both uniform and non-uniform distributions, the topologies with greater spacing
s between satellites tended to achieve better performances, since they could distribute
the traffic load among a greater number of positions M, thereby reducing the collision
probability. On the other hand, in those concentrated topologies (where the satellites are
very close to each other or even practically together) with large channel loads, the benefit of
using non-uniform instead of uniform distribution is greater, since the number of positions
where both satellites are visible is larger in these topologies, and therefore the influence
of load allocation increases. All in all, since non-uniform and uniform load distribution
are not the best option in every case, the proposed ITLD algorithm is able to leverage the
benefits of both.

0 1 2 3 4 5 6 7 8 9
4

5

6

7

8

9

10

11

...the spacing between satellites favors the performance       
  

of both distributions, but in low-spaced topologies, the       
  

non-uniform distribution performance is much better than uniform.

Figure 7. Overall throughput achieved by uniform and non-uniform traffic load distributions versus
the spacing s between K = 2 satellites, with total traffic load of GT ∈ {36, 72, 108, 144} packets per lap.

Another look at the performance of the proposed intelligent traffic load distribution
method proposed in Section 4, and detailed in Algorithm 1, is given in Figure 8, which
shows the throughput versus the total channel load for different spacings between K = 2
satellites. Again, in the case of low channel load, the uniform distribution outperformed the
non-uniform (except when both satellites are together), but with the increase of the channel
load we had the opposite (for all satellite spacing considered), showing again the impact of
choosing the best load distribution in each case. Moreover, we can see that in the case of
smaller spacings between satellites, the advantage of non-uniform distribution tended to
be greater. Once more, we can see the importance of the proposed ITLD method, which
allocated the traffic load according to the system condition (total channel load, satellite
spacing, and positions).
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Finally, Figure 9 shows the throughput versus the number of satellites in the constella-
tion for a relatively high channel load and different spacings between consecutive satellites.
The non-uniform load distribution clearly outperformed the uniform one for all satellite
spacings, but this advantage decreased with the number of satellites. Moreover, for the
two traffic load distributions under study, the throughput increased with the increase in
the satellite spacing, as this generated more visible positions, allowing the system to better
allocate the total channel load, thereby reducing collisions.

36 54 72 90 108 126 144 162 180
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7

8

9

10
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Figure 8. Overall throughput achieved with uniform and non-uniform traffic load distributions
versus the total channel load GT for different spacing between K = 2 satellites.
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Figure 9. Overall throughput achieved with uniform and non-uniform traffic load distribution
GT = 180 versus K satellites in the system.
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6. Conclusions

In this work we analyzed the throughput and the packet loss rate when multiple
satellites cover a cluster of devices, in a direct-to-satellite IoT network. The uplink channel
was modeled considering on–off fading, with potentially different erasure probabilities at
each satellite. Then, we proposed an intelligent traffic load distribution algorithm, which
assigns non-uniform traffic loads per position of the satellites within the constellation
lap. Numerical results demonstrate that both the throughput and the packet loss rate
vary considerably with the set of erasure probabilities, confirming the importance of the
proposed mathematical analysis. Moreover, while also demonstrating the convenience
of ITLD in terms of performance and algorithmic simplicity, the impact of the proposed
non-uniform traffic load distribution was also assessed, where it became clear that in cases
of high total channel load, the advantage of non-uniform distribution over the uniform
one is quite large. In addition, we showed the positive impact of increasing the number of
satellites within the constellation and the spacing between them.

As future works, we intend to investigate the optimum overall throughput in the case
of a constellation with different sets of erasure probabilities and satellite spacing. Moreover,
we also intend to design a simple (low-complexity) traffic load allocation algorithm that
may approach the performance of the proposed ITLD method or even the optimum overall
throughput, while adhering to the low computational and memory capabilities of IoT
devices and nanosatellites. Finally, another focus will be on the exploitation of inter satellite
links for providing a high level of coordination and cooperation among the satellites.
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Acronyms and Symbols
CDMA Code Division Multiple Access
CRDSA Contention Resolution Diversity Slotted Aloha
DtS-IoT Direct to Satellite IoT
GEO Geostationary Orbit
HSTN Hybrid Land-Satellite Network
IoT Internet of Things
IRSA Irregular Repetition Slotted Aloha
ITLD Intelligent Traffic Load Distribution
LEO Low Earth Orbit
LPWAN Low Power Wide Area Network
MAC Media Access Control
MIMO Multiple Input Multiple Output
RA Random Access
SAT Satellite
SIC Successive Interference Cancellation
TDMA Time Division Multiple Access
5G Fifth Generation of Wireless Communication Systems
6G Sixth Generation of Wireless Communication Systems
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∅ Empty set
ε Erasure probability
εk Erasure probability at the kth satellite
∆θ Angular variation
Dk Set of data packets successfully received by a different satellite
G Channel load
GT Total traffic load

G(u)
i Uniform traffic load distribution, per position

G(nu)
i Non-uniform traffic load distribution, per position

J Set with indexes of the subsets whose intersection must be evaluated
K Number of satellites in the constellation
k k-th Satellite in orbit
M Positions in each lap
N Number of time-slots
n Number of erasure probabilities
Pk Position of the kth satellite
P Probability that users transmit in the same time-slot
P Packet loss rate
Pk Packet loss rate at the kth satellite
pJ Probability of successful reception, of a given packet, by |J| satellites
Qi Load factor
qJ Probability of successful reception of the same packet by by |J| satellites,

given that u packets were transmitted
qk Probability of successful packet reception at the kth satellite
Sat1 First LEO satellite
Sat2 Second LEO satellite
s Satellite spacing
T System throughput
Ti Throughput per position
Tk Throughput at the kth satellite
T (ITLD) Throughput for Intelligent Traffic Load Distribution
T (nu) Throughput for non-uniform distribution
T (u) Throughput for uniform distribution
U Poisson random variable
u Number of users transmitting in the same time-slot
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