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Abstract: COVID-19 frequently provokes pneumonia, which can be diagnosed using imaging exams.
Chest X-ray (CXR) is often useful because it is cheap, fast, widespread, and uses less radiation. Here,
we demonstrate the impact of lung segmentation in COVID-19 identification using CXR images and
evaluate which contents of the image influenced the most. Semantic segmentation was performed
using a U-Net CNN architecture, and the classification using three CNN architectures (VGG, ResNet,
and Inception). Explainable Artificial Intelligence techniques were employed to estimate the impact
of segmentation. A three-classes database was composed: lung opacity (pneumonia), COVID-19, and
normal. We assessed the impact of creating a CXR image database from different sources, and the
COVID-19 generalization from one source to another. The segmentation achieved a Jaccard distance of
0.034 and a Dice coefficient of 0.982. The classification using segmented images achieved an F1-Score
of 0.88 for the multi-class setup, and 0.83 for COVID-19 identification. In the cross-dataset scenario,
we obtained an F1-Score of 0.74 and an area under the ROC curve of 0.9 for COVID-19 identification
using segmented images. Experiments support the conclusion that even after segmentation, there is
a strong bias introduced by underlying factors from different sources.

Keywords: COVID-19; chest X-ray; semantic segmentation; explainable artificial intelligence

1. Introduction

The Coronavirus disease 2019 (COVID-19) pandemic, caused by the virus named
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has become the most
significant public health crisis our society has faced recently (https://covid19.who.int/,
accessed on 10 May 2021). COVID-19 affects mainly the respiratory system and, in extreme
cases, causes a massive inflammatory response that reduces the total lung capacity [1].
COVID-19 high transmissibility, lack of general population immunization, and high incu-
bation period [2] makes it a dangerous and lethal disease. In these circumstances, artificial
intelligence (AI) based solutions are being used in various contexts, from diagnostic support
to vaccine development [3].

The standard imaging tests for pneumonia, and consequently COVID-19, are chest
X-ray (CXR) and computed tomography or computerized X-ray imaging (CT) scan. The
CT scan is the gold standard for lung disease diagnosis since it generates very detailed
images. However, CXR is still very useful in particular scenarios, since they are cheaper,
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generate the resulting images faster, expose the patient to much less radiation, and it is
more widespread in the emergency care units [4].

After the COVID-19 outbreak, several studies were proposed to investigate its diagnos-
tic based on the use of images taken from the lungs [5,6]. Despite the impressive advances,
there is a lack of more critical analysis regarding the content captured in those images that
contribute to consistent results [7–9]. The results reported by [7] were one of the main
reasons we decided to evaluate the impact of lung segmentation in COVID-19 identification.
A proper lung segmentation might mitigate the bias introduced by composing multiple
databases and provides a more realistic performance.

Our main objective is to evaluate the impact of lung segmentation in identifying
pneumonia caused by different microorganisms using CXR images obtained from various
sources (i.e., Cohen, RSNA pneumonia detection challenge, among others). We have
primarily focused on CXR images due to their smaller cost and high availability in the
emergency care units, especially those located in less economically developed regions.
Moreover, we emphasize COVID-19, aiming to provide solutions that can be useful in the
current pandemic context. To support that objective, we used an U-Net Convolutional
Neural Network (CNN) for lung segmentation, and three popular CNN models for COVID-
19 identification: VGG16 [10], ResNet50V2 [11] and InceptionV3 [12]. Since our main goal
is to highlight the importance of lung segmentation and not claim state-of-art COVID-
19 identification, we preferred to use popular, consolidated, and well-established CNN
architectures. Furthermore, to provide a more complete and realistic overview, we also
evaluated specific scenarios to assess the database bias, i.e., the importance of the image
source for the classification model and COVID-19 generalization, i.e., the usage of COVID-
19 images from one database to train a classification model to identify COVID-19 cases in a
different database, which represents the less biased scenario evaluated in this paper.

We first improved our previously created COVID-19 database (i.e., RYDLS-20 [5]), now
called RYDLS-20-v2, adding more image sources. Then, we set up the problem as a multi-
class classification problem with three classes: lung opacity, COVID-19, and normal lungs
(i.e., no-pneumonia), in which lung opacity means pneumonia caused by any previously
known pathogen. We decided to use three classes because there is a considerable difference
between COVID-19 and healthy patients, and a binary classification problem might not be
challenging enough; hence we added a confounding class containing pneumonia caused
by any other pathogen, except COVID-19. To segment lung images, we applied a deep
learning approach using a U-Net CNN architecture [13].

Over the last few years, the area known as Explainable Artificial Intelligence (XAI)
has attracted many researchers in the artificial intelligence (AI) field. The main interest of
XAI is to research and develop approaches to explain the individual predictions of modern
machine learning (ML) based solutions. In medical applications based on images, we
understand that a proper explanation regarding the obtained decision is fundamental. In
an ideal scenario, the decision support system should be able to suggest the diagnosis and
justify, as better as possible, which contents of the image have decisively contributed to
achieving a particular decision.

To assess the impact of lung segmentation on the identification of COVID-19, we used
two XAI approaches: Local Interpretable Model-agnostic Explanations (LIME) [14] and
Gradient-weighted Class Activation Mapping (Grad-CAM) [15]. LIME works by finding
features, superpixels (i.e., particular zones of the image), that increases the probability of the
predicted class, i.e., regions that support the current model prediction. Such regions can be
seen as important regions because the model actively uses them to make predictions. Grad-
CAM focuses on the gradients flowing into the last convolutional layer of a given CNN
for a specific input image and label. We can then visually inspect the activation mapping
(AM) to verify if the model is focusing on the appropriate portion of the input image. Both
techniques are somewhat complementary, and by exploring them, we can provide a more
complete report of the lung segmentation impact on COVID-19 identification.
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Our results indicated that when the whole image is considered, the model may learn
to use other features besides lung opacities, or even from outside the lungs region. In
such cases, the model is not learning to identify pneumonia or COVID-19, but something
else. Thus, we can infer that the model is not reliable even though it achieves a good
classification performance. Using lung segmentation, we would supposedly remove a
meaningful part of noise and background information, forcing the model to take into
account only data from the lung area, i.e., desired information in this specific context. Thus,
the classification performance in models using segmented CXR images tends to be more
realistic, closer to human performance, and better reasoned.

The remaining of this paper is organized as follows: Section 2 presents current studies
about COVID-19 identification and discusses about the state-of-art. Section 3 introduces
our proposed methodology and experimental setup. Section 4 presents the obtained results.
Later, Section 5 discusses the obtained results. Finally, Section 6 presents our conclusions
and possibilities for future works.

2. Related Works

This section discusses some influential papers in the literature related to one of the
following topics: model inspection and explainability in lung segmentation or COVID-19
identification in CXR/CT images. Moreover, we also discuss potential limitations, biases,
and problems of COVID-19 identification given the current state of available databases.

It is important to observe that as the identification of COVID-19 in CXR/CT images is
a hot topic nowadays due to the growing pandemic, it is unfeasible to represent the actual
state-of-the-art for this task since new works are emerging every day. Nevertheless, we
may observe that most of those works aim to investigate configurations for Deep Neural
Networks, which is already different from our proposal.

In order to show how fast is growing the research content around the topic of Machine
Learning applications on COVID-19, we can briefly present some surveys and reviews
published in the literature. Still, in April 2020, Shi et al. [16] already presented one of
the firsts reviews of techniques to perform COVID-19 detection in X-ray and CT-Scan
images, aiming at tasks such as screening process and severity assessment. Recently,
Bhattacharya et al. [17] and Islam et al. [18] presented surveys focused on challenges, is-
sues and future research directions related to deep learning implementations for COVID-19
detection. Moreover, Roberts et al. [19] and Santa Cruz et al. [20] presented critical system-
atic reviews of COVID-19 automatic detection focused on the potential clinical use of the
proposed techniques.

In this field of investigation, the works are typically accomplished using deep learning
models. Deep learning models usually tend to produce results that cannot be naturally
explained by themselves. It happens due to the high complexity of these models. Aiming
to overcome this issue and trying to open the “black-box” characterized by these models,
XAI techniques have been more used to search for more convincing shreds of evidence that
could help to understand why an AI system gave a particular response. By analyzing the
literature, we noticed some works somehow related to this one because they evaluated
deep models using lung images for COVID-19 detection in an XAI perspective.

In this sense, Ye et al. [21] used CAM, LIME, and SHAP as XAI techniques to provide
more granular information to support clinician’s decision making in the context of COVID-
19 classification starting from chest CT scanned images. For this purpose, the authors
trained the models using private databases composed of images taken from four Chinese
hospitals and tested them on the open-access CC-CCII dataset [22], a publicly available
dataset. The authors concluded that the XAI enhanced classifier was able to provide robust
classification results and also a convincing explanation about them.

Brunese et al. [23] proposed a method composed of three steps aiming to detect lung
diseases and to provide a kind of explanation regarding the decision obtained. Experiments
were conducted on two datasets with a total of 6523 CXR images. The steps which compose
the proposal can be summarized as follows: (i) in the first step, the method performs
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the discrimination between a healthy and a chest X-ray related to pulmonary diseases in
general; (ii) in the second step, the method performs the discrimination between COVID-19
pneumonia and pneumonia provoked by other diseases; (iii) in the third and last step, the
method tries to present some explanation about the decision taken. For this, samples of
chest X-rays highlighting the fundamental regions in the X-ray for COVID-19 prediction
are provided.

From this point, we focus on works devoted to COVID-19 identification using chest
images that somehow dealt with the identification of regions of interest. Wang et al. [24]
proposed a joint deep learning model of 3D lesion segmentation and classification for
diagnosing COVID-19. For this purpose, they created a large-scale CT database containing
1805 3D CT scans with fine-grained lesion annotations. The authors’ main idea was to
explore the inherent correlation between the 3D lesion segmentation and disease classifica-
tion. The authors concluded that the joint learning framework proposed could significantly
improve both the performance of 3D segmentation and disease classification in terms of
efficiency and efficacy.

Wang et al. [25] created a deep learning pipeline for the diagnosis and discrimination
of viral, non-viral, and COVID-19 pneumonia, composed of a CXR standardization module
followed by a thoracic disease detection module. The first module (i.e., standardization)
was based on anatomical landmark detection. The landmark detection module was trained
using 676 CXR images with 12 anatomical landmarks labeled. Three different deep learning
models were implemented and compared (i.e., U-Net, fully convolutional networks, and
DeepLabv3). The system was evaluated in an independent set of 440 CXR images, and the
performance was comparable to senior radiologists.

In Chen et al. [26], the authors proposed an automatic segmentation approach using
deep learning (i.e., U-Net) for multiple regions of COVID-19 infection. In this work, a
public CT image dataset was used with 110 axial CT images collected from 60 patients.
The authors describe the use of Aggregated Residual Transformations and a soft attention
mechanism in order to improve the feature representation and increase the robustness of
the model by distinguishing a greater variety of symptoms from the COVID-19. Finally,
an excellent performance on COVID-19 chest CT image segmentation was reported in the
experimental results.

In DeGrave et al. [27] the authors investigate if the high rates presented in COVID-
19 detection systems from chest radiographs using deep learning may be due to some
bias related to shortcut learning. Using explainable artificial intelligence (AI) techniques
and generative adversarial networks (GANs), it was possible to observe that systems
that presented high performance end up employing undesired shortcuts in many cases.
The authors evaluate techniques in order to alleviate the problem of shortcut learning.
DeGrave et al. [27] demonstrates the importance of using explainable AI in clinical deploy-
ment of machine-learning healthcare models to generate more robust and valuable models.

Bassi and Attux [28] present segmentation and classification methods using deep
neural networks (DNNs) to classify chest X-rays as COVID-19, normal, or pneumonia.
U-Net architecture was used for the segmentation and DenseNet201 for classification. The
authors employ a small database with samples from different locations. The main goal
is to evaluate the generalization of the generated models. Using Layer-wise Relevance
Propagation (LRP) and the Brixia score, it was possible to observe that the heat maps
generated by LRP show that areas indicated by radiologists as potentially important for
symptoms of COVID-19 were also relevant for the stacked DNN classification. Finally, the
authors observed that there is a database bias, as experiments demonstrated differences
between internal and external validation.

Following this context, after Cohen et al. [29] started putting together a repository
containing COVID-19 CXR and CT images, many researchers started experimenting with
automatic identification of COVID-19 using only chest images. Many of them developed
protocols that included the combination of multiple chest X-rays database and achieved
very high classification rates, much higher than human performance [30]. Moreover,
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there have been multiple reports in the literature that supports the fact that many pub-
lished papers might have used biased testing protocols, which resulted in unrealistic
results [7–9,31,32].

Although the literature on the subject addressed here is very recent, we notice an
increasing concernment regarding the explainability of the results obtained, thanks to the
seriousness and urgency of this matter. Even though there are other works exploring XAI
on COVID-19 detection using CXR images, as far as we know, at the time of this publication
none of them explored exactly the same protocol we explore here, considering both the
segmentation of the regions of interest followed by classification supported by XAI.

3. Material and Methods

We focused on exploring data from CXR images for reliable identification of COVID-
19 among pneumonia caused by other micro-organisms. Hence, we proposed a specific
method that allowed us to assess lung segmentation’s impact on COVID-19 identification.

To better understand the proposal of this work, Figure 1 shows a general overview of
the classification approach adopted, containing: lung segmentation (Phase 1), classification
(Phase 2), and XAI (Phase 3). Phase 1 is skipped entirely for the classification of non-
segmented CXR images. Although simple, this can be considered as a kind of ablation study
since we isolate the lung segmentation phase and evaluate its impact. In order to allow
the reproduction of our exact experiments, we made all our code and database available
in a GitHub repository (https://github.com/lucasxteixeira/covid19-segmentation-paper,
accessed on 9 June 2021).

Figure 1. Proposed methodology.

3.1. Lung Segmentation (Phase 1)

The first phase in our method is the lung segmentation, aiming to remove all back-
ground and retain only the lung area. We expect it to reduce noise that can interfere with
the model prediction. Figure 2 presents an example of lung segmentation.

(a) (b) (c)

Figure 2. Lungs segmentation on CXR image. (a) CXR image. (b) Binary mask. (c) Segmented lungs.

Specifically, in deep models, any extra information can lead to model overfitting. This
is especially important in CXR since many images contain burned-in annotations about the

https://github.com/lucasxteixeira/covid19-segmentation-paper
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machine, operator, hospital, or patient. Figure 3 presents an example of CXR images with
burned-in information.

(a) (b)
Figure 3. CXR with burned-in annotations. (a) Example 1. (b) Example 2.

We expect that the models using segmented images rely on information in the lung
area rather than background information, i.e., an increase in the model reliability and
prediction quality in a real-world scenario. For example, if a model is trained to predict
lung opacity, it must use lung area information. Otherwise, it is not identifying opacity but
something else.

In order to perform lung segmentation, we applied a CNN approach using the U-Net
architecture [13]. The U-Net input is the CXR image, and the output is a binary mask
that indicates the region of interest (ROI). Thus, the training requires a previously set of
binary masks.

The COVID-19 dataset used does not have manually created binary masks for all
images. Thus, we adopted a semi-automated approach to creating binary masks for all
CXR images. First, we used three additional CXR datasets with binary masks to increase
the training sample size and some binary masks provided by v7labs (https://github.com/
v7labs/COVID-19-xray-dataset, accessed on 20 April 2021). We then trained the U-Net
model and used it to predict the binary masks for all images in our dataset. After that, we
reviewed all predicted binary masks and manually created masks for those CXR images
that the model was unable to generalize well. We repeated this process until we judged the
result satisfactory and achieved a good intersection between target and obtained regions.

3.1.1. Lung Segmentation Database

Table 1 presents the main characteristics of the database used to perform experimen-
tation on lung segmentation. It comprises 1645 CXR images, with a 95/5 percentage
train/test split. In addition, we also created a third set for training evaluation, called
validation set, containing 5 percent of the training data. Lung segmentation is trying to
predict a binary mask indicating the lung region, irrespective of the input class (COVID-19,
lung opacity, or healthy patients). Therefore, the class distribution has little impact on the
outcome. Thus, we decided to use a random holdout split for validation.

Table 1. Lung segmentation database.

Characteristic Samples

Train 1483
Validation 79
Test 83

Total 1645

https://github.com/v7labs/COVID-19-xray-dataset
https://github.com/v7labs/COVID-19-xray-dataset
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Table 2 presents the samples distribution for each source.

Table 2. Lung segmentation database composition.

Source Samples

Cohen v7labs 489
Montgomery 138
Shenzhen 566
JSRT 247
Manually created 205

3.1.2. U-Net

The U-Net CNN architecture is a fully convolutional network (FCN) that has two main
components: a contraction path, also called an encoder, which captures the image informa-
tion; and the expansion path, also called decoder, which uses the encoded information to
create the segmentation output [13].

We used the U-Net CNN architecture with some small changes: we included dropout
and batch normalization layers in each contracting and expanding block. These additions
aim to improve training time and reduce overfitting. Figure 4 presents our adapted U-
Net architecture.

Figure 4. Custom U-Net architecture

Furthermore, since our dataset is not standardized, the first step was to resize all
images to 400 px × 400 px, because it presented a good balance between computational
requirements and classification performance. We also experimented with smaller and
larger dimensions with no significant improvement.

In this model, we achieve a much better result without using transfer learning
and training the network weights from scratch. Table 3 reports the parameters used
in U-Net training.

Table 3. U-Net parameters.

Parameter Value

Epochs 100
Batch size 16
Learning rate 0.001

After the segmentation, we applied a morphological opening with 5 pixels to remove
small brights spots, which usually happened outside the lung region. We also applied a
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morphological dilation with 5 pixels to increase and smooth the predicted mask boundary.
Finally, we also cropped all images to keep only the ROI indicated by the mask. After crop
the images were also resized to 300 px × 300 px. Figure 2 shows an example of this process.

Besides, we also applied data augmentation techniques extensively to further ex-
pand our training data. Details regarding the usage and parameters will be discussed in
Section 3.2.4.

3.2. Classification (Phase 2)

We chose a simple and straightforward approach with three of the most popular CNN
architectures: VGG16, ResNet50V2 InceptionV3. For all, we applied transfer learning by
loading pre-trained weights from ImageNet only for the convolutional layers [33]. We
then added three fully-connected (FC) layers together, followed by dropout and batch
normalization layers containing 1024, 1024, and 512 units. We performed the classification
using full and segmented CXR images independently.

Furthermore, we also evaluated two specific scenarios to assess any bias in our pro-
posed classification schema. First, we built a specific validation approach to assess the
COVID-19 generalization from different sources, i.e., we want to answer the following
question: is it possible to use COVID-19 CXR images from one database to identify COVID-
19 in another different database? This scenario is one of our main contributions since it
represent the least database biased scenario.

Then, we also evaluated a database classification scenario, in which we used the
database source as the final label, and used full and segmented CXR images to verify if
lung segmentation reduces the database bias. We want to answer the following question:
does lung segmentation reduces the underlying differences from different databases which
might bias a COVID-19 classification model?

In the literature, many papers employ complex classification approaches. However,
a complex model does not necessarily mean better performance whatsoever. Even very
simple deep architectures tend to overfit very quickly [34]. There must be a solid argument
to justify applying a complicated approach to a low sample size problem. Addition-
ally, CXR images are not the gold standard for pneumonia diagnosis because it has low
sensitivity [4,35]. Thus, human performance in this problem is usually not very high [36].
That makes us wonder how realistic are some approaches presented in the literature, in
which they achieve a very high classification accuracy.

Table 4 reports the parameters used in the CNN training. We also used a Keras callback
to reduce the learning rate by half once learning stagnates for three consecutive epochs.

Table 4. CNN parameters.

Parameter Value

Warm-up epochs 50
Fine-tuning epochs 100
Batch size 40
Warm-up learning rate 0.001
Fine-tuning learning rate 0.0001

3.2.1. COVID-19 Database (RYDLS-20-v2)

Table 5 presents some details of the proposed database, which was named RYDLS-20-
v2. The database comprises 2678 CXR images, with an 80/20 percentage train/test split
following a holdout validation split.

Therefore, we performed the split considering some crucial aspects: (i) multiple CXR
images from the same patient are always kept in the same fold, (ii) images from the same
source are evenly distributed in the train and test split, and (iii) each class is balanced as
much as possible while complying with the two previous restrictions. We also created a
third set for training evaluation, called validation set, containing 20 percent of the training
data randomly.
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In this context, given the considerations mentioned above, simple random cross-
validation would not suffice since it might not correctly separate the train and test split to
avoid data leakage, and it could reduce robustness instead of increasing it. In this context,
the holdout validation is a more comfortable option to ensure a fair and proper separation
of train and test data. The test set was created to represent an independent test set in which
we can validate our classification performance and evaluate the segmentation impact in a
less biased context.

Table 5. RYDLS-20-v2 main characteristics.

Class Train Validation Test

Lung opacity (other than COVID-19) 739 189 231
COVID-19 315 93 95
Normal 673 150 193

Total 1727 432 519

We built our database by further expanding our previous work RYDLS-20 [5] and
adopting some guidelines and images provided by the COVIDx dataset [6]. Moreover, we
set up the problem with three classes: lung opacity (pneumonia other than COVID-19),
COVID-19, and normal. We also experimented with expanding the number of classes to
represent a more specific pathogen, such as bacteria, fungi, viruses, COVID-19, and normal.
However, in all cases, the trained models did not differentiate between bacteria, fungi, and
viruses very well, possibly due to the reduced sample size. Thus, we decided to take a
more general approach to create a more reliable classification schema while retaining the
focus on developing a more realistic approach.

The CXR images were obtained from eight different sources. Table 6 presents the
samples distribution for each source.

Table 6. Sources used in RYDLS-20-v2 database.

Source Lung Opacity COVID-19 Normal

Dr. Joseph Cohen GitHub Repository [29] 140 418 16
Kaggle RSNA Pneumonia Detection Challenge (https://www.
kaggle.com/c/rsna-pneumonia-detection-challenge, accessed on
20 April 2021)

1000 - 1000

Actualmed COVID-19 Chest X-ray Dataset Initiative (https://
github.com/agchung/Actualmed-COVID-chestxray-dataset, ac-
cessed on 20 April 2021)

- 51 -

Figure 1 COVID-19 Chest X-ray Dataset Initiative (https://github.
com/agchung/Figure1-COVID-chestxray-dataset, accessed on
20 April 2021)

- 34 -

Radiopedia encyclopedia (https://radiopaedia.org/articles/
pneumonia, accessed on 20 April 2021)

7 - -

Euroad (https://www.eurorad.org/, accessed on 20 April 2021) 1 - -
Hamimi’s Dataset [37] 7 - -
Bontrager and Lampignano’s Dataset [38] 4 - -

We considered posteroanterior (PA) and anteroposterior (AP) projections with the
patient erect, sitting, or supine on the bed. We disregarded CXR with a lateral view
because they are usually used only to complement a PA or AP view [39]. Additionally,
we also considered CXR taken from portable machines, which usually happens when the
patient cannot move (e.g., ICU admitted patients). This is an essential detail since there
are differences between regular X-ray machines and portable X-ray machines regarding
the image quality; we found most portable CXR images in the classes COVID-19 and lung
opacity. We removed images with low resolution and overall low quality to avoid any
issues when resizing the images.

Finally, we have no further details about the X-ray machines, protocols, hospitals,
or operators, and these details impact the resulting CXR image. All CXR images are de-

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://radiopaedia.org/articles/pneumonia
https://radiopaedia.org/articles/pneumonia
https://www.eurorad.org/
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identified (Aiming at attending to data privacy policies.), and for some of them, there is
demographic information available, such as age, gender, and comorbidities.

Figure 5 presents image examples for each class retrieved from the RYDLS-20-v2 database.

(a) (b) (c)
Figure 5. RYDLS-20-v2 image samples. (a) Lung opacity. (b) COVID-19. (c) Normal.

3.2.2. COVID-19 Generalization

The COVID-19 generalization intents to demonstrate that our classification schema
can identify COVID-19 in different CXR databases. To do so, we set up a binary problem
with COVID-19 as the relevant class with a 2-fold validation using only segmented CXR
images. The first fold contains all COVID-19 images from the Cohen database and a portion
of the RSNA Kaggle database and the second fold contains the remaining RSNA Kaggle
database and the other sources. Table 7 shows the samples distribution by source for this
experiment. The primary purpose is to evaluate if the CXR images in the Cohen database
allows the training of a non-random CNN classifier for the remaining COVID-19 source
images and vice versa.

Table 7. COVID-19 generalization database composition.

Source
Fold 1 Fold 2

Negative COVID-19 Negative COVID-19

Dr. Joseph Cohen GitHub Repository 156 418 - -
Kaggle RSNA Pneumonia Detection Challenge 1000 - 1000 -
Actualmed COVID-19 Chest X-ray Dataset Ini-
tiative

- - - 51

Figure 1 COVID-19 Chest X-ray Dataset Initia-
tive

- - - 34

Radiopedia encyclopedia - - 7 -
Euroad - - 1 -
Hamimi’s Dataset - - 7 -
Bontrager and Lampignano’s Dataset - - 4 -

Total 1156 418 1019 85

We must highlight that, despite this scenario being our least biased experiment, Kaggle
RSNA is used in both folds, so it is not completely bias-free.

3.2.3. Database Bias

Moreover, we also evaluated a dataset classification to assess if a CNN can identify
the CXR image source using segmented and full CXR images. To do so, we set up a multi-
class classification problem with three classes, one for each relevant image source: Cohen,
RSNA, and Other (the remaining images from other sources combined). The database
comprises 2678 CXR images, with an 80/20 percentage of train/test split following a
random holdout validation split. For training evaluation, we also created a validation set
containing 20 percent of the training data randomly. The number of samples distributed
among these sets for each data source is presented in Table 8.
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Table 8. Database bias evaluation composition.

Class Train Validation Test

Cohen 364 89 121
RSNA 1288 326 386
Other 61 14 29

Total 1713 429 536

The rationale is to assess if the database bias is reduced when we use segmented CXR
images instead of full CXR images. Such evaluation is of great importance to ensure that
the model classifies the relevant class, in this case, COVID-19, and not the image source.

3.2.4. Data Augmentation

We extensively used data augmentation during training in segmentation and classifica-
tion to virtually increase our training sample size [40]. Table 9 presents the transformations
used during training along with their parameters. The probability of applying each transfor-
mation was kept at the default value of 50%. We used the library albumentations to perform
all transformations [41]. Figure 6 displays some examples of the transformations applied.

Table 9. Data augmentation parameters.

Transformation Segmentation Classification

Horizontal flip – –

Shift scale rotate
Shift limit = 0.0625 Shift limit = 0.05
Scale limit = 0.1 Scale limit = 0.05
Rotate limit = 45 Rotate limit = 15

Elastic transform
Alpha = 1 Alpha = 1
Sigma = 50 Sigma = 20
Alpha affine = 50 Alpha affine = 20

Random brightness Limit = 0.2 Limit = 0.2

Random contrast Limit = 0.2 Limit = 0.2

Random gamma Limit = (80, 120) Limit = (80, 120)

Figure 6. Data augmentation examples.

3.3. XAI (Phase 3)

Depending on the perspective, most machine learning models can be seen as a black-
box classifier, it receives input and somehow computes an output [42]. It might happen both
with deep and shallow learning, with some exceptions like decision trees. Even though
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we can measure our model’s performance using a set of metrics, it is nearly impossible to
make sure that the model focuses on the correct portion of the test image for prediction.

Specifically, in our use case, we want the model to focus exclusively on the lung area
and not somewhere else. If the model uses information from other regions, even if very
high accuracy is achieved, there can be some limitations to its application, since it is not
learning to identify COVID-19 but something else.

Here, we aim to demonstrate that by using segmented images, the model prediction
uses primarily the lung area, which is not often the case when we use full CXR images.
To do so, we applied two XAI approaches: LIME and Grad-CAM. Despite having the
same main objective, they differ in how they find the important regions. Figures 7 and 8
shows examples of important regions highlighted by LIME and Grad-CAM, respectively.
In Section 4, we will show that models trained using segmented lungs focus primarily on
the lung area, while models trained using full CXR images frequently focus elsewhere.

(a) (b)
Figure 7. LIME example. (a) Full CXR image. (b) Segmented CXR image.

(a) (b)
Figure 8. Grad-CAM example. (a) Full CXR image. (b) Segmented CXR image.

The reason for not using handcrafted feature extraction algorithms here is that it is
usually not straightforward to rebuild the reverse path, i.e., from prediction to the raw
image. Sometimes, the handcrafted algorithm creates global features, eliminating the
possibility of identifying the image regions that resulted in a specific feature.

For each image in the test set, we used LIME and Grad-CAM to find the most important
regions used for the predicted class, i.e., regions that support the given prediction. We
then summarized all those regions in a heatmap to show the most common regions that
the model uses for prediction. Thus, we have one heatmap per classifier per class per
XAI approach.
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Table 10 presents the parameters used in LIME. Grad-CAM has a single configurable
parameter, which is the convolutional layer to be used, and, in our case, we used the
standard approach.

Table 10. LIME parameters.

Parameter Value

Superpixels identification Quickshift segmentation
Quickshift kernel size 4
Distance metric Cosine
Number of samples per image 1000
Number of superpixels in explanation per image 5
Filter only positive superpixels True

4. Results

This section presents an overview of our experimental findings and a preliminary
analysis of each contribution individually.

4.1. Lung Segmentation Results

Table 11 shows the overall U-Net segmentation performance for the test set for each
source we used to compose the lung segmentation database considering the Jaccard dis-
tance and the Dice coefficient metrics.

Table 11. Lung segmentation results.

Database Jaccard Distance Dice Coefficient

Cohen v7labs 0.041 ± 0.027 0.979 ± 0.014
Montgomery 0.019 ± 0.007 0.991 ± 0.003
Shenzhen 0.017 ± 0.008 0.991 ± 0.004
JSRT 0.018 ± 0.011 0.991 ± 0.006
Manually created masks 0.071 ± 0.021 0.964 ± 0.011

Test set 0.035 ± 0.027 0.982 ± 0.014

As we expected, our manually created masks underperformed when compared to
the other sources’ results, this may have happened because our masks were not made by
professional radiologists. Following that, the Cohen v7labs set also presented a somewhat
lower performance. Our manual inspection showed that the model did not include the over-
lapping region between the lung and heart, and the masks in Cohen v7labs included that
region, hence the difference. The performance of the remaining databases is outstanding.

4.2. Multi-Class Classification

Table 12 presents F1-Score results for our multi-class scenario. The models using
non-segmented CXR images presented better results than the models that used segmented
images when we consider raw performance for COVID-19 and lung opacity. Both settings
were on par in the normal class.

In all cases, the results indicated that the models obtained using the entire image
uniformly performed better when compared to the models that used the segmented images.
That result alone might discourage the usage of segmentation in practice. However, in
the following sections we will further discuss that it is still worth taking into account the
segmentation strategy. Even though the use of segmentation does not lead to improvements
in the F1-Score rates, the resulting models may present a more realistic performance.
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Table 12. F1-Score results.

Class COVID-19 Lung Opacity Normal Macro-Avg

Segmented-VGG16 0.83 0.88 0.9 0.87
Segmented-ResNet50V2 0.78 0.87 0.91 0.85
Segmented-InceptionV3 0.83 0.89 0.92 0.88

Non-segmented-VGG16 0.94 0.91 0.91 0.92
Non-segmented-ResNet50V2 0.91 0.9 0.92 0.91
Non-segmented-InceptionV3 0.86 0.9 0.91 0.9

4.3. COVID-19 Generalization

Table 13 shows the F1-Score results for the COVID-19 generalization. The classification
was set up as a binary problem with COVID-19 as the positive class in this problem. The
folds were separated in a way that the COVID-19 CXR images from the Cohen database
would not be in the same fold of COVID-19 CXR images from the two other databases
that contain COVID-19 cases (Actualmed and Figure 1 GitHub repositories). The results
are auspicious and indeed show that classification, in this case, is far from random. We
achieved an F1-Score of 0.77 and 0.7 in the first and second folds, respectively. The lower
performance in the second fold was somewhat expected since it contains few COVID-19
examples for training. Figure 9 presents the ROC curve for this scenario.

Table 13. F1-Score COVID-19 generalization results.

Model Fold 1 Fold 2 Macro-Avg

VGG16 0.76 0.65 0.71
ResNet50V2 0.77 0.68 0.73
InceptionV3 0.77 0.70 0.74

Figure 9. COVID-19 Generalization ROC Curve.

4.4. Database Bias

Table 14 shows the F1-Score results for the database bias evaluation. In this prob-
lem, the classification was set up as a multi-class problem with database source as the
corresponding label for full and segmented CXR images. The results show that overall
the lung segmentation reduces the differences between databases. However, even after
segmentation, it is possible to identify the source with fair confidence. Such a result may be
because the majority of some classes are extracted from the same databases. For instance,
most COVID-19 CXR images are from Cohen, and most normal CXR images are from
RSNA. Hence in this situation, it is hard to isolate and measure both effects. Furthermore,
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the class Other contains six different sources, so it is unfair to compare it to Cohen or RSNA.
Thus the macro-averaged F1-Score presented does not take it into account. In conclusion,
this highlights the need for a bigger and more comprehensive COVID-19 CXR database.

Table 14. F1-Score database bias results.

Scenario Cohen RSNA Other Macro-Avg *

Segmented-VGG16 0.65 0.91 0 0.78
Segmented-ResNet50V2 0.62 0.9 0.07 0.76
Segmented-InceptionV3 0.61 0.89 0.24 0.75

Non-segmented-VGG16 0.89 0.98 0.61 0.93
Non-segmented-ResNet50V2 0.85 0.97 0 0.91
Non-segmented-InceptionV3 0.88 0.98 0.53 0.93
* Macro-averaged F1-Score for Cohen and RSNA.

4.5. XAI Results

Figures 10 and 11 present the LIME and Grad-CAM heatmaps for our multi-class
scenario. We can notice that the models created using segmented CXR images focused
primarily in the lung area. The lung shape is discernible in all heatmaps. The only small
exception is the VGG16 Lung Opacity class. Despite having the visible lung shape, it also
focused a lot in other regions. In contrast, the models that used full CXR images are more
chaotic. We can see, for instance, that for both InceptionV3 and VGG16, the Lung Opacity
and Normal class heatmaps almost did not focus on the lung area at all.

(a) (b) (c)
Figure 10. LIME heatmaps. (a) VGG16. (b) ResNet50V2. (c) InceptionV3.

(a) (b) (c)
Figure 11. Grad-CAM heatmaps. (a) VGG16. (b) ResNet50V2. (c) InceptionV3.
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Even though the models that used full CXR images performed better, considering the
F1-Score, they used information outside the lung area to predict the output class. Thus,
they did not necessarily learn to identify lung opacity or COVID-19, but something else.
Hence, we can say that even though they perform better, considering the classification
metric, they are worse and not reliable for real-world applications.

5. Discussions

This section discusses the importance and significance of the results obtained. Given
that we have multiple experiments, we decided to create subsections to drive the discus-
sion better.

5.1. Multi-Class Classification

To evaluate the segmentation impact on classification, we applied a Wilcoxon signed-
rank test, which indicated that the models using segmented CXR images have a significantly
lower F1-Score than the models using non-segmented CXR images (p = 0.019). Addi-
tionally, a Bayesian t-test also indicated that using segmented CXR images reduces the
F1-Score with a Bayes Factor of 2.1. The Bayesian framework for hypothesis testing is very
robust even for a low sample size [43]. Figure 12 presents a visual representation of our
classification results stratified by lung segmentation with a boxplot.

Figure 12. F1-Score results boxplot stratified by segmentation.

In general, models using full CXR images performed significantly better, which is an
exciting result since we expected otherwise. This result was the main reason we decided
to apply XAI techniques to explain individual predictions. Our rationale is that a CXR
image contains a lot of noise and background data, which might trick the classification
model into focusing on the wrong portions of the image during training. Figure 13 presents
some examples of the Grad-CAM explanation showing that the model is actively using
burned-in annotations for the prediction. The LIME heatmaps presented in Figure 10
show that exactly behavior for the classes Lung opacity and Normal in the non-segmented
models, i.e., the model learned to identify the annotations and not lung opacities. The
Grad-CAM heatmaps in Figure 11 also show the focus on the annotations for all classes in
the non-segmented models.

The most affected class by lung segmentation is the COVID-19, followed by Lung
opacity. The Normal class had a minimal impact. The best F1-Scores for COVID-19
and Lung opacity using full CXR images are 0.94 and 0.91, respectively, and after the
segmentation, they are 0.83 and 0.89, respectively. We conjecture that such impact comes
from the fact that many CXR images are from patients with severe clinical conditions who
cannot walk or stand. Thus the medical practitioners must use a portable X-ray machine
that produces images with the “AP Portable” annotation and that some models might be
focusing on the burned-in annotation as a shortcut for the classification. That impact also
means that the classification models had trouble identifying COVID-19.
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(a) (b)
Figure 13. Grad-CAM showing a large gradient on CXR annotations. (a) Example 1. (b) Example 2.

Considering specifically the models using segmented CXR images, InceptionV3 per-
formed better in all classes. Figure 14 provides a visual representation of the F1-Score
achieved in the experimental results stratified by the model used and lung segmentation.
Figure 15 shows the confusion matrix for the InceptionV3 using segmented CXR images.
Overall the classifier presented a remarkable performance in all labels. The largest mis-
classification happened with the class Lung opacity being predicted as Normal, followed
by the class COVID-19 being predicted as Lung opacity. However, there are reasonable
explanations for both: (i) Most examples from the classes Lung opacity and Normal came
from the RSNA database; thus, we believe that the data source biased the classification
marginally; (ii) pneumonia caused by COVID-19 could have been confused with pneu-
monia caused by another pathogen. A solution for both issues would be to increase the
number of images in the database, including more data sources.

Figure 14. F1-Score results boxplot stratified by segmentation and model.

Figure 15. Segmented InceptionV3 Confusion Matrix.
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5.2. XAI

In this paper, we applied two XAI techniques: LIME and Grad-CAM. The reason for
applying both is to evaluate the classification models thoroughly since they work differently.
They have some significant differences and highlights: (i) LIME is model-agnostic, and
Grad-CAM is model-specific; (ii) in LIME, the granularity of important regions is correlated
to the granularity of the superpixel identification algorithm; (iii) Grad-CAM produces a
very smoothed output because the dimension of the last convolution layer is much smaller
than the dimension of the original input. Keep in mind that such techniques are not
definitive. They can complement and corroborate with each other. Thus, we can increase
the model reliability in a real-world context by using a more comprehensive approach.

Our XAI approach is novel in the sense that we explored a more general explanation
instead of focusing on single examples. In the literature, there are many papers exploring
LIME and Grad-CAM for a couple of handpicked examples. The main problem with such
approaches is that the examples might have been eventually chosen to reach a specific result.
In this paper, we applied the XAI techniques to each image in the test set individually and
created a heatmap aggregating all individual results to represent a broader context, which
indicates which portions of the CXR image the models have focused on for prediction.
Figures 10 and 11 demonstrate that the models using full CXR images are misleading
because they focus a lot on the left and right uppermost regions, which is usually the
location of burned-in annotations.

5.3. COVID-19 Generalization and Database Bias

The multi-class scenario is fascinating to visualize the behavior of individual mod-
els. However, given the strong database bias present in this context, even after lung
segmentation, the multi-class results are not entirely reliable.

In order to evaluate such bias and provide a more realistic result, we crafted two
specific scenarios to ensure that our classification model is not classifying the database
source. First, as we have multiple sources of COVID-19 CXR images, we verified if it
was possible to use CXR images from one database to train a model to recognize COVID-
19 CXR in the other databases. We achieved a macro-averaged F1-Score of 0.74 using
InceptionV3 and an area under the ROC curve of 0.9 using InceptionV3 and ResNet50V2.
The F1-Score was lower than in our multi-class scenario. However, this corroborates that
it is possible to identify COVID-19 cases across databases, i.e., our classification model is
indeed identifying COVID-19 and not the database source. Such a scenario constitutes
one of our main result and contribution, since it represents a less biased and more realistic
performance, given the hurdles that still exist with COVID-19 CXR databases.

Second, as discussed in the work of [7], there is a strong bias towards the database
source in this context. In our evaluation, we found out that lung segmentation consistently
reduces the ability to differentiate the sources. We achieved a database classification F1-
Score of 0.93 and 0.78 for full and segmented CXR images, respectively. However, the RSNA
database is still well identifiable even after segmentation, and as our negative examples
are extracted from it, our results are not entirely free of bias. A Wilcoxon signed-rank test
and a Bayesian t-test indicated that segmentation reduces the macro-averaged F1-Score
with statistical significance (p = 0.024 and a Bayes Factor of 4.6). Despite that, even
after segmentation, there is a strong bias towards the RSNA Kaggle database, considering
specifically this class, we achieved an F1-Score of 0.91. In summary, the usage of lung
segmentation is outstanding in reducing the database bias in our context. However, it does
remedy the issue entirely.

5.4. Concluding Remarks

In a real-world application, especially in medical practice, we must be cautious and
thorough when designing systems aimed at diagnostic support because they directly affect
people’s lives. A misdiagnosis can have severe consequences for the health and further
treatment of a patient. Furthermore, in the COVID-19 pandemic, such consequences can
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also affect other people since it is a highly infectious disease. Even though the current
pandemic attracted much attention from the research community in general, few works
focused on a more critical evaluation of the solutions proposed.

Ultimately, we demonstrated that lung segmentation is essential for COVID-19 identi-
fication in CXR images through a comprehensive and straightforward application of deep
models coupled with XAI techniques. In fact, in our previous work [5], we have addressed
the task of pneumonia identification as a whole, stating that maybe the patterns of the
injuries caused by the different pathogens (virus, bacteria, and fungus) are different, so we
were able to classify the CXR images with machine learning techniques. Even though the
experimental results of that work have shown that it may be possible, it is challenging to
be sure that other patterns did not bias the results in the images that were not related to
the lungs.

Furthermore, as previously noted, we still believe that even after lung segmentation,
the database bias still marginally influenced the classification model. Thus, more aspects
regarding the CXR images and the classification model must be further evaluated to design
a proper COVID-19 diagnosis system using CXR images.

6. Conclusions

The application of pattern recognition techniques has proven to be very useful in
many situations in the real world. Several papers propose using machine learning methods
to identify pneumonia and COVID-19 in CXR images with encouraging results. However,
very few proposed to use lung segmentation to avoid any data leak or overfitting, and only
focused on the classification performance.

Considering a real-world application, segmentation is an important step since it
removes background information, reduces the chance of data leak, and forces the model to
focus only on important image areas. Segmentation might not improve the classification
performance, but as it forces the model to use only the lung area information, it increases
the model’s reliability and quality.

The classification using segmented lungs achieved an F1-Score of 0.88 for the multi-
class setup and 0.83 for COVID-19 identification. Using non-segmented CXR images, the
classification achieved an F1-Score of 0.92 and 0.94 for the multi-class setup and COVID-19
identification, respectively. The COVID-19 generalization experiment, i.e. using COVID-19
images from one source to predict COVID-19 in a different source, achieved an macro-
averaged F1-Score of 0.74.

It is unfair to make direct comparisons of identification rates from different works, as
they usually use different databases under different circumstances. Nevertheless, to the best
of our knowledge, we achieved the best identification rate of COVID-19 among other types
of pneumonia using segmented CXR images. Additionally, we must highlight our novel
approach to demonstrate the importance of lung segmentation in CXR image classification.

We do not claim state-of-the-art classification results at this time for a couple of reasons:
(i) there are some initiatives to build a comprehensive COVID-19 CXR database still
ongoing; however, we still do not have a reliable database that can be used as a definitive
benchmark; (ii) in clinical practice, a small difference in the classification performance
is hardly noticeable, and the model reliability and quality are more important than the
classification performance [44]; and, (iii) the CXR is not the gold standard for diagnosis,
even experienced medical practitioners sometimes face doubts when examining a CXR
image [4]; thus we should be very cautious at papers claiming very high classification
performance when the human performance is much lower.

Our segmentation approach achieved a Jaccard distance of 0.034 and a Dice coefficient
of 0.982, which represents a robust performance considering two factors: (i) we did not
aim to surpass the state-of-the-art performance of lung segmentation in CXR images;
instead, we focused on creating a general segmentation model capable of producing
binary lung masks for CXR images in our COVID-19 database; (ii) the lung segmentation
database was composed of multiple sources, some masks were even manually created.
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Nevertheless, our approach was on par with current state-of-the-art lung segmentation in
CXR images [45–47].

Furthermore, we applied LIME and Grad-CAM to demonstrate that using segmented
CXR images, the models focused primarily on information in the lung area to classify the
CXR images. Thus, despite lowering the F1-Score, segmentation improves the prediction
quality as it forces the model to use only relevant information.

A potential limitation of this work is the lack of a reliable, definitive COVID-19 CXR
database to be used as the benchmark for comparison with the state-of-the-art. Neverthe-
less, as such, this limitation might also affect the majority of COVID-19 identification works
published. Nevertheless, to the best of our knowledge, we achieved the best identification
rate of COVID-19 among other types of pneumonia using segmented CXR images in a less
biased configuration.

As future work, we aim to keep improving our database to increase our classification
performance and provide more robust estimates by using more CNN architectures for
segmentation and classification. Furthermore, we want to apply more sophisticated seg-
mentation techniques to isolate specific lung opacities caused by COVID-19. Likewise, we
also want to explore more approaches to evaluate the model predictions, such as SHAP [48].
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