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Abstract: The COVID-19 pandemic has significantly threatened the health and well-being of human-
ity. Contact tracing (CT) as an important non-pharmaceutical intervention is essential to containing
the spread of such an infectious disease. However, current CT solutions are fragmented with limited
use of sensing and computing technologies in a scalable framework. These issues can be well ad-
dressed with the use of the Internet of Things (IoT) technologies. Therefore, we need to overview the
principle, motivation, and architecture for a generic IoT-based CT system (IoT-CTS). A novel archi-
tecture for IoT-CTS solutions is proposed with the consideration of peer-to-peer and object-to-peer
contact events, as well as the discussion on key topics, such as an overview of applicable sensors
for CT needs arising from the COVID-19 transmission methods. The proposed IoT-CTS architec-
ture aims to holistically utilize essential sensing mechanisms with the analysis of widely adopted
privacy-preserving techniques. With the use of generic peer-to-peer and object-to-peer sensors based
on proximity and environment sensing mechanisms, the infectious cases with self-directed strategies
can be effectively reduced. Some open research directions are presented in the end.

Keywords: contact tracing; Internet of Things; privacy; proximity sensing; environment sensing;
SARS-CoV-2; COVID-19; peer to peer; object to peer; transmission methods

1. Introduction

The recent COVID-19 pandemic has caused extensive interruptions to the world and
threatened human health and well-being. In search of ways to combat it and its new
variants, with the absence of effective vaccination and treatments, non-pharmaceutical
interventions (NPIs) [1] aiming to reduce contact rates and tracking suspected exposure to
an infectious disease are essential to the containment of emerging epidemics [2]. Contact
tracing (CT) and Internet-based systems have provided important information for the
previous influenza pandemics [3] and for the current COVID-19 pandemic. Internet of
Things (IoT) technologies have provided great promises for enabling advanced sensing,
communication, and computation for CT solutions, but there are still many challenges
to overcome.

Prior to COVID-19 pandemic, CT solutions have been centered on influenza-like
diseases, where peer-to-peer (P2P) event data collected from sensors and Internet-based
social networking tools on mobile devices [4,5] are employed to study the outbreaks of
infectious diseases based on physical interactions between individuals. Many current
smartphone-based CT apps for COVID-19 using one or more built-in sensing capabilities,
such as GPS, cellular, and Bluetooth, have been available from public health agencies [6]
and 3rd-party providers [7,8]. Statistical evaluation using a smartphone for CT has shown
its effectiveness in [9], where a stochastic model was developed considering the CT options
on a smartphones with the analysis of quarantine measures. Extending the sensing options
to the IoT context following an IoT-CTS architecture [10] provides a more generic scope
of CT applications. The state-of-the-art in the literature has validated the effectiveness
and modeling of an CT application, there are still challenges to be resolved. However, the
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current CT solutions primarily focus on the proximity and positioning sensing for P2P
contact events between individuals, where these sensing technologies are assumed to be
used by individuals. A wide scope of sensing technologies that can not only detect the P2P
contact events but also detect contact events between objects and peers, i.e., object-to-peer
(O2P), have hardly been addressed. Furthermore, the use range of sensing technologies
and their uses for CT, heterogeneity, and system dynamics bring many challenges to design,
analysis, and evaluation for an IoT-CTS solution.

This paper aims to answer the fundamental question on “what and how IoT sensors
can be used in an IoT-CTS?” based on the IoT-CTS solutions. We envision a generic
architecture for IoT-CTS design, evaluation, and deployment. This paper also investigates
the important aspects of privacy preservation and P2P/O2P sensing within the IoT-CTS
architecture, where the real-world factors that are related to the actual performance of an CT
solution but difficult to analyze in a theoretical model. In summary, the main contributions
of this paper are as follows:

• A detailed design of an IoT-CTS system and the operational models for supporting
privacy preservation is discussed;

• The applicable sensors based on proximity and environment sensing are discussed in
our agent-based simulations;

• Based on our case study, the measure options using an IoT-CTS for disease contain-
ment are suggested.

The remainder of the article is structured as follows. In Section 2, we examine the
principles and enabling technologies behind the IoT-CTS and address challenges. By
overviewing the key topics, such as sensing technologies, data, architecture, protocol stack,
and privacy, an IoT-CTS architecture is proposed in Section 3. Section 4 discusses the
privacy considerations for the proposed IoT-CTS architecture. Section 5 represents the case
study supported with agent-based simulations. Finally, in Section 6 we pinpoint the open
research directions regarding an IoT-CTS.

2. Related Work
2.1. Theoretical Grounds in Epidemiology

The classical SIR model provides a general explanation of why an IoT-CTS can work.
The typical reproduction number derived from the SIR model is proportional to the effective
contact rate while the recovery rate is kept the same. An IoT-CTS can intervene in the
transmissions of an infectious disease based on at least two factors: (a) the time required
to transition from the susceptible state (S) to the infectious state (I) is shortened, as the
individual risk of exposure to infection through the effective CT is promptly handled by
IoT-CTS; (b) responsive self-directed strategies can be taken as soon as the exposure risks to
the potential infections are available. The strategies can result in actions, such as reduced
interactions between individuals.

2.2. Interacting Networks and CT Modeling

Some recent related work in epidemiological modeling has been focused on interacting
networks. Farrahi et al. [11] studied an approach to reconstructing physical interactions
from text messages, Bluetooth module activities, and communication logs on a mobile
phone. In [11], the communication networks and physical interaction networks are modeled
in a dual network setting, where the communication networks are viewed as proxies of
the physical interaction networks. Zuzek et al. [12] discussed the isolation effect based on
the SIR model following a two-layer network, where one layer is in the work environment
and the other layer is in the social environment. Salathé et al. [3] suggested employing
Internet-based systems for surveillance can provide “important early epidemic intelligence”
for past pandemics, such as the 2003 SARS and 2009 H1N1. Using non-public health data
for epidemiological research has emerged under the umbrella of digital epidemiology. The
theoretical modeling for agent-based CT based on the susceptible, exposed, infected,
and recovered (SEIR) epidemiological model was recently proposed in [13], where the
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trajectories are modeled as a stochastic process. However, such a model only considers
a few parameters in addition to the SEIR model, such as the CT rate, success rate of CT,
and average daily contacts. The susceptible–exposed–infectious–confirmed–recovered
(SEICR) model is adopted in [14] to the agent-based modeling (ABM) as an alternative
to the theoretical modeling to deal with the complexity of the related factors. However,
the agent-based modeling or simulation for applicable sensing mechanisms arising from
COVID-19 with an IoT architecture has not been studied in the literature.

2.3. Existing CT Applications with Partial Sensing Capability

CT applications have been used in the COVID-19 and past pandemics, where sensing
mechanisms play a key role in generating proximity data required on user devices. QR
code scanning is assisted with a manual process, so its speed is considered slow. Detecting
a touch event for O2P can be through touch or proximity sensing, based on radio-signal
strength (RSS), inductive, capacitive, ultrasonic, or photoelectric mechanisms. Proximity
sensing can be derived from RSS values with the use of existing wireless networking
technologies, such as radio-frequency identification (RFID), including near-field commu-
nication (NFC), and a wireless personal-area networking (WPAN) technology, including
Bluetooth/BLE and IEEE 802.15.4 [5,11]. Bluetooth/BLE proximity sensing has been
adopted by the COVID-19 CT apps in most countries [15]. RFID sensors can detect touch
and proximity events in a fast and high-precision manner. The biosensor [16] based on
plasmonic sensing represents a range of biosensors that can detect the novel coronavirus
(SARS-CoV-2) in an ambient environment. Such a biosensor has a higher speed than the
clinical tests but usually slower than non-biosensors. In general, a sensor may need extra
modules for broadcasting or exchanging identifiers or messages with IoT-CTS entities.

Some sensing-based CTS have emerged in the recent decade. The spatial-proximity interac-
tion data have been studied in determining the spread of infectious diseases. Génois et al. [17]
used different proximity data of individuals, such as face-to-face proximity and workplace
interaction data with high-resolution time-resolved datasets. Jeong et al. [4] suggested
a solution using magnetometers on smartphones based on magnetic induction, where
magnetometer readings on smartphones are used to determine proximity between the
users. A P2P CT app called “TrackCOVID” has been developed [7] with privacy preserva-
tion. The spatial-proximity information can infer the influenza infection pattern based on
sumptuous data with the Bluetooth scanning and Wi-Fi in the PocketCare mobile app [5].
A new Bluetooth low-power (BLE) specification for contact detection services enabled by
Apple and Google has become available in mobile devices with Bluetooth modules during
the COVID-19 pandemic. The PrivateKit mobile app developed by MIT uses Bluetooth
and GPS trails for CT with some privacy considerations. These CT apps are implemented
without following a management architecture and sufficient modeling for evaluating the
performance. However, due to the prevalent uses of the BLE-based COVID CT apps in most
countries [15], we will adopt the proximity sensing mechanism as a benchmark scenario in
our evaluation.

3. Proposed Solutions to IoT-CTS

In this section, we will propose the IoT-CTS architecture as shown in Figure 1. We will
analyze the categories of applicable sensing technologies, followed by their integration into
the architectural elements into the proposed protocol stack. The conceptual layers where
different elements function, as well as the interaction models, will be discussed.

3.1. Sensing Technologies for IoT-CTS

Effective use of sensing technologies in an IoT-CTS requires us to understand the
applicable sensors and essential features for detecting contact-related events. For COVID-
19, it is currently known [18] that close contacts between individuals (collectively referred
to as P2P) through respiratory droplets and contacts events between individuals and
contaminated objects or surfaces (collectively referred to as O2P) are the main transmission
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methods. The object here is defined to include an object, an object surface, or a surrounding
environment with coronavirus aerosols or particles in the air. The sensing technologies for
IoT-CTS are therefore required to detect contact events from P2P/O2P interactions.

A list of sensors categorized in various types is shown in Table 1, where their basic
characteristics are presented, including their detection capability for P2P/O2P events and
other factors, where “Automatic” indicates whether a sensor can be operated automatically
or manually; “Speed” means the time it takes for a sensor to obtain the required data
for CT; “Precision” means the precision quality for detecting an event. Location-based
sensors can provide proximity data between individuals. The distance sensors can provide
high-precision ranging capability between individuals or objects. Computer-vision sensors,
such as cameras can infer proximity, gesture, or interactions between individuals or objects,
together with additional information, such as body temperatures. At the same time, they
normally take more compute power and time than other sensors.

Table 1. Types of sensing technologies for IoT-CTS.

Type Example Devices P2P O2P Automatic Speed Precision

Location-based GPS, Mobile [5,7,11] X × X Medium,
High

Medium, High

Distance Ultrasonic, Magnetometer [4] X X X High Medium, High

Vision Camera X X X High Medium, High

Vision QR code reader X X × Low High

Touch Inductive/capacitive sensors × X X High High

Proximity Bluetooth/BLE [5,11,15] X X X High High

Touch, Proximity NFC, RFID X X X High Low, Medium

Environment Biosensor [16] × X X Low,
Medium

Low, Medium

Figure 1. An IoT-CTS architecture.

A sensing system for IoT-CTS may use multiple types of sensors. For example, a
sensing system deployed on an entrance may include multiple sensors, such as a biosensor
for monitoring coronavirus in the ambient environment, a capacitive sensor for monitoring
touch events and triggering the sanitization procedures, and a BLE device for proximity
sensing and networking.



Sensors 2021, 21, 7124 5 of 18

The sensing technologies discussed here are mainly based on the transmission meth-
ods of the infectious disease arising from the COVID-19 pandemic and similar influenza
pandemics, such as the H1N1 pandemic in the past and its possible variants in the future.
Furthermore, as sensing technologies are expected to keep evolving in terms of sensing
accuracy and capability to detect additional viruses, we need a stable infrastructure for
operating and managing all applicable sensors for such pandemics. One way of resolving
this challenge is to design an IoT-CTS architecture that can provide a holistic architecture
for existing and future sensors operations. The design of such an IoT-CTS is discussed in
the subsequent section.

3.2. Sensing Data

There are various kinds of data that can be obtained from various sources, such as
sensors, IoT devices, and social media. The generation and use of these data is mainly
dependent on the sensing technologies employed. The essential features of the sensing
data, such as identifier , location, and timestamp, are important to IoT-CTS solutions. The
identifier feature is the unique index of a user/object, which should be anonymized. The
location feature represents coordinates of a user/object in a geographic coordinate system.
Additional features can be used, such as an S/I/R state of a user/object, indicating the
basic attributes from the SIR model.

The availability of spatial-temporal sensing data collected for each entity allows us
to log the exposure risks, study the transmission patterns over time, and take actions on
the contaminated environments or objects. Furthermore, the granularity of sensing data is
determined by the application requirements. For example, if we deploy an IoT-CTS in a
public facility (as illustrated in Figure 1), where contact events can be tracked in an area.
Once the risk of exposure to the coronavirus is detected, users can be notified quickly.

3.3. An IoT-CTS Architecture

An IoT-CTS architecture [10] can deal with heterogeneity and complexity, and well
integrate sensing components, sensing data, connectivity options, and computation meth-
ods. This is one distinctive characteristic compared to the existing CTS solutions.

A layered view is shown in Figure 1, where we can see the architecture contains the
geographical layer, object endpoint (OE) layer, user endpoint (OE) layer, facility endpoint
(FE) layer, and IoT-CTS application layer. With the layered view, use cases of detecting risks
of exposure to COVID-19 based on different sensing mechanisms for P2P/O2P contact
events can be handled. A geographical layer refers to a geographical area where an IoT-CTS
is deployed for CT tasks. The proposed architecture has three basic entities: UE, OE, and
FE. An OE is an IoT-CTS endpoint on for monitoring an object or in an environment, and
OE is able to connect to various sensors through sensors interfaces, as shown in the protocol
stack model of Figure 1. The object refers to an object or an object surface being monitored,
while the environment refers to a space being monitoring. A UE is the IoT-CTS endpoint
on a user device interfacing with applicable sensing devices, as shown in Table 1. An FE is
an endpoint FE is located at a local or remote facility that can interact with UEs or OEs.

The block diagram of a generic protocol stack model for an IoT-CTS is depicted in
Figure 1 which includes several key modules. To make the IoT-CTS application endpoints
be able to interface with various sensor hardware components, a sensors interface is needed.
The data logging, processing and reporting module handles the monitoring, processing, and
reporting of sensing data, while the data management module tackles data queries, adminis-
tration, and storage, in compliance with the settings in the security and privacy module. The
data transport module deals with data transfers and interactions with an external endpoint
securely and effectively. The underlying digital infrastructure can provide security services,
transmission services, and computing services, provided by edge computing nodes, local
networks, etc.

An IoT-CTS user needs to run UE on the user device, which can interact with UE or
FE, depending on an interaction model. All entities are connected to a data storage for
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the key functional blocks shown in the protocol stack model. An FE can be deployed in a
building or facility through communication networks managed by a data center or public
health authority to handle the data compliance with security and privacy considerations. In
addition, FEs can be implemented in a centralized or distributed manner. In a centralized
implementation, an FE can be a public health agency that usually manages reported cases
and CT data. In a distributed implementation, a local FE entity deployed at a public facility,
such as a plaza, museum, or library, can be implemented, where local computation, data
transfer and storage, and decisions can be made. All distributed FEs can be hierarchically
federated into a centralized entity, and parent FE entity can be public health agency
managing the data from distributed FEs.

The proposed architecture can operating at the application layer, independent of the
existing transport protocols, such as cellular, Wi-Fi, and low-power wide-area (LPWA)
networks. This ensures minimum changes to the underlying digital infrastructure and
maximum compatibility and scalability.

3.4. Interactions between UEs, OEs, and FEs

The communication interactions between architectural entities, FE, UE, and OE are
depicted in Figure 1, where the interfaces named “OU”, “UU”, “FU”, and “FO” refer to
the interactions of OE-UE, UE-UE, FE-UE, and FE-OE, respectively. Each interface can be
operated in a uni- or bi-directional manner. It is worth noting that these interfaces can be
optionally used and how much they are used is dependent on the application requirements.
The interfaces may be used for device or data management purposes.

Let us discuss generic interaction models following the P2P and O2P CT tasks. In-
teractions between UEs and FEs can be performed in three basic models: centralized,
user-centered, and distributed. In a centralized model, two UEs can detect the proximity
events between each other and report the event data to an FE over a communication
network. In this model, an FE has the full information and it is responsible for handling
data access requests from UEs, and enable them to retrieve data that are authorized for the
user to view through an authentication process. Example data access requests authorized
for a user include retrieval of exposure risk of infection at a certain time period and area,
management of infection self-reports, individualized public health guidelines, etc. In a
user-centered model, a UE can detect and log contact events with other UEs, and to retrieve
information from an FE. UEs can exchange data in a distributed model and assess user’s
infection risks locally, while a UE may transmit data to the FE and retrieve data from it. The
data storage used on the entities can be any standard relational database system supporting
data encryption.

Due to the frequent interactions between a UE and an OE, it is necessary to further
analyze the interaction models between them. Interactions between a UE and an OE can be
performed in two models: direct and indirect. The direct model means the contact event
data are stored in both UE and OE. To save computing resources, the OE can choose to
transmit these data to an FE. The indirect model means the contact event data between
a user and an object are stored via a UE, which can opt to transfer data to the FE. The
interaction models can lead to variants of IoT-CTS setups. For example, in a lightweight
IoT-CTS application, a UE may run on a mobile device equipped with sensing devices, and
an OE involves no processing and storage of data and only transfers data to an FE or a UE.

3.5. Design Decisions

The proposed IoT-CTS architecture can be used to design an IoT-CTS application,
including the application endpoints of UE, OE, and FE. The scalability is one of the major
design considerations, where the IoT-CTS application can support different scenarios at
scale. In a small-scale CT scenario, the IoT-CTS application can be deployed to monitor
a local area, and the FE is running at an on-site central server to manage data transfer,
storage, processing, logging, and reporting from UE and OE endpoints. The transport of
the underlying digital infrastructure in this scenario is likely to be a local-area network
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where all architectural entities are connected. In a large-scale CT scenario, the IoT-CTS
application is deployed to monitor multiple geographical areas. Each area can follow the
aforementioned small-scale setup with one local FE. Multiple local FEs will be federated
into a central FE managed by a public health authority, where the FF interface is used to
exchange messages between local and central FEs. The transport networks as underlying
infrastructures can vary as long as they support the Internet protocol suite.

The IoT-CTS entities can operate with fault-tolerant consideration where service
downtown should be minimized. First, all endpoints need to back up the latest state of the
operation, and the frequency of such a backup operation is up to application configuration.
The data on the device need to be stored in a secure environment with encryption which
is managed through the security and privacy module. When application errors happen, all
endpoints can load the saved operation state and resume operation. Additional generic
fail-safe deployment strategies using redundant sensors and applicant instances can be
considered on FE and OE to ensure continued operations. When using computing resources
for IoT-CTS application development, fault-tolerant capabilities can be achieved at the
platform level, where instance replacement, load balancing, and high availability strategy
can be utilized.

Although the IoT-CTS architecture can enable sensing, data management, connectivity,
and computation for various CT tasks, there are various factors related to a solution design.
As privacy is an important consideration for CTS solutions, we will analyze this topic
following the proposed architecture-centered interaction models in the next section. In
addition, configuration parameters that may affect the performance will be discussed in
the case study.

4. Privacy Considerations for IoT-CTS

CT and privacy may have different goals, nevertheless many systems have been
proposed to facilitate digital CT, while ensuring that the users’ privacy is preserved as
much as possible. In this section, we present the main privacy goals for CT systems, how
the most widely adopted proposals for protecting privacy in CT systems operate, and how
they can fit in an IoT setting.

The privacy goals of CTS are:

• Location Privacy. The CTS should not leak information on the location history of
its users;

• Social Privacy. The CTS should not leak information on the social graph of its users;
• Anonymity/Pseudonymity. It should not be possible to determine if a user was

diagnosed positively.

Most of the widely discussed CT solutions employ a similar concept. For example,
the DP-3T, ROBERT, PEPP-PT and NTK CT frameworks, and the joint Apple/Google CT
technology all follow this approach. Each device broadcasts an ephemeral identifier that it
updates at specific time intervals (usually 15 min). Each device also listens to other devices’
identifiers and stores them under some conditions (e.g., minimal duration and strength of
signal). Each device thus maintains two lists of identifiers: its own broadcast identifiers
and its received identifiers (i.e., registered contacts). Old identifiers are routinely removed
from both lists. Once a user is diagnosed positive, it is granted the permission to upload
information to a server and any contacts are alerted of the potential risk.

• In centralized CT, the server provides the identifiers for each user. When a user is
diagnosed, it uploads its list of registered contacts to the server. Transmission risk is
computed by the server: it alerts each user that has a broadcast identifier that was
captured by the diagnosed user;

• In decentralized CT, the diagnosed user uploads the list of its own broadcast identifiers
to the server. Transmission risk is computed by the users: they download the list from
the server and compare it against their own list of received identifiers.
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For a comprehensive overview of centralized versus decentralized CTS, we refer the
reader to [19].

There are many ways such O2P contacts can be recorded, we present them below and
summarize them in Figure 2.

4.1. Ephemeral Identifiers in IoT-CTS

We now describe how the above framework may be adapted with the introduction
of IoT devices. We only consider O2P contacts since P2P contacts can be traced in the
same way as described above. In the IoT-CTS setting, the list of contacts between UEs is
augmented by the second-degree contacts through OEs. Such O2P contacts must account
for the duration that the virus stays active in the air or on surfaces. Two UE that had a
contact with the same OE in close proximity in time will possibly have recorded different
identifiers. The entity that computes risk (the UE in the decentralized model and the FE in
the centralized model) must account for this possibility.
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4.1.1. Case 1: The Direct Model

In the direct model, both UEs and OEs store incoming and outgoing identifiers. The
OE can be alerted of transmission risk by the FEs just as a UE would and forward this alert
to other UE it was in contact with through the FE.

In the centralized architecture, the FE can link ephemeral identifiers to OE or UE
devices. (1) To report a contact, a diagnosed user uploads its list of received identifiers to
the FE. (2) The FE then alerts each OE that was in contact with the diagnosed user. (3) The
OE helps forward the risk status by reporting its own list of received identifiers. (4) Based
on this list, the FE alerts UEs that were in contact with the OE of their risk.

In the decentralized architecture, the risk status is computed by the UEs. (1) A
diagnosed UE would upload their list of outgoing identifiers to the FE. (2) OEs would
download that list and check for a registered contact. (3) The OEs with positive checks
would then upload the list of outgoing identifiers to the FE. (4) Other UEs can then
download the list of OE identifiers and compute their risk status based on this information.

4.1.2. Case 2: The Indirect Model

In the indirect model, OEs passively emit identifiers, but do not collect UE identifiers.
Since OEs do not store lists of incoming identifiers, the entity that evaluates risk (FE or UE)
must have access to the diagnosed UE’s list of O2P contacts. However, if the OE identifiers
are time-evolving, and since the novel coronavirus can remain in suspension or on surfaces
for some time, potential second-hand contacts will be missed through this approach. This
can be remediated by having OEs broadcast a rolling window of identifiers. For example, at
any time the OE broadcasts the identifiers of the past hour. An indirect contact through the
OE can be identified by checking the intersection of logged OE identifiers. The exact length
of the window can be determined by the lifespan of the virus in the air and on surfaces.

The indirect model is incompatible with the centralized architecture. In this architec-
ture, the diagnosed user would upload its list of incoming UE identifiers and the window
of OE identifiers for each OE contact. The FE could identify which UE and which OE the
diagnosed UE has been in direct contact with, but cannot know which UE has been in
contact with the same OE as the diagnosed UE (indirect contact) since this list is stored
locally on UE devices.

In a decentralized architecture, (1) the diagnosed UE would upload its list of outgoing
identifiers and its list of incoming OE identifiers. (2) Other UEs would download these
lists and compare them with their own incoming OE and UE identifiers to compute their
risk status.

4.2. Privacy Analysis

In classical (non-IoT) CTS, Vaudenay [19] found that centralized systems pose privacy
risks for all users against the central authority and that decentralized systems pose privacy
risk for diagnosed users against anyone. Most privacy issues with CT also apply to IoT-CTS.
We identify additional factors relating to privacy and IoT-CTS: IoT devices have no private
lives to protect; may be under the control of malicious entities; and are immobile or at the
very least their position can be assumed to be known by their operators. We make the
following observations on the privacy of IoT-CTS:

1. The nature of the privacy risk differs. Whereas P2P contacts reveal information on the
social graph, O2P contacts reveal information on the location history of the UE;

2. In the direct model, there is a new privacy risk from diagnosed users against the OEs
in the decentralized architecture: they learn the identifiers of diagnosed UEs. For this
model, the centralized architecture is better at protecting privacy aginst the OEs;

3. The indirect model provides privacy against OEs, but discloses some location infor-
mation of the diagnosed UE to other UEs.

Note that CTS based on ephemeral identifiers presented earlier in this section do not
completely eliminate the privacy risks, but make privacy attacks harder to execute. More
advanced techniques to further improve privacy of CTS solutions can be readily applied to
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IoT-CTS. Private set intersection [20] or homomorphic encryption [21] can be used to identify
contacts by checking if two lists of identifiers share a common element without disclosing
either list. Diffie–Hellman key exchange allows users to generate fresh identifiers at each
contact that are known only to the two users involved [22,23]. Blockchains have been
proposed in several other works to replace trust in a central authority in traditional CTS.
For a review of these proposals, see [24,25]. The application of these techniques to IoT-CTS
could form the basis of future work.

5. Case Study

Let us consider a typical deployment of the proposed IoT-CTS in a public area as
illustrated in the geographical layer in Figure 1, where an IoT-CTS solution is assumed to
be applied to a downtown area in Toronto where typical public facilities are located, such
as bus or subway stations, museums, and shopping malls. Based on the population density
and the area 0.6 km2, the population size of this area is approximated to 5000.

A CTS has been known to “flatten the curve”, where containing the infectious disease
by reducing the infectious cases. An agent-based Python simulation is used to evaluate
such key epidemiological performance. Some main simulation parameters are listed in
Table 2, and in our simulation implementation the physical parameters are mapped to
generic values. For example, geographical area is mapped to 2× 2 plane. UEs and OEs are
assumed randomly distributed in the area as a general scenario. CT data are assumed to
be processed within an FE, and OEs are assumed to have a generic sensing capability of
detecting OE–UE interactions. The basic sensing technology for OEs we consider is based
on proximity sensing, which is a representative sensing mechanism adopted by current CTS
solutions. The benchmark CTS for comparison is, therefore, based on the BLE proximity
sensing, which has been broadly adopted in most countries through 2021 [15]. In our
simulations, each user moves at the 1.8 or 2.35 m/s average speed with the consideration of
other real-world factors, including age risk, healthcare capacity, and mortality rate based on
the recent public health information. The detection range [26] of OEs based on proximity
sensing and environment sensing are 2 m and 20 m, respectively. The first infectious case
is randomly introduced on the third day. The example processes of the simulations are
visualized in Figure 3.

We first evaluate how the proposed IoT-CTS performs compared to the existing
benchmark CTS solutions based on proximity sensing. In Figure 4, the benchmark scenario
represents the current CTS solution. To evaluate our IoT solution in a strict condition, we
use the modified benchmark scenario where population mobility is reduced to 50%. In our
IoT-CTS solutions, users are informed of the risk of exposure to an infectious disease from
proximity (<2 m) to each other and contacts from contaminated surfaces. We use NOE = 50
in the proposed IoT-CTS solutions and experiment with two scenarios: one is individuals
do not practice a relocation strategy (e.g., users go to a confined location with reduced
mobility) when the risk of exposure is detected, marked as 0% compliance, and the other
is 50% of individuals practice relocation strategy, marked as 50% compliance. The results
shown in Figure 4 indicate that our IoT-CTS solution outperforms the benchmark scenarios
as all curves are flattened even if the population mobility is significantly reduced in the
benchmark scenario. We can see that the recovered and fatality population are reduced
with the IoT-CTS solution compared to benchmark scenarios. The infectious population
of our IoT-CTS solutions is slightly over the benchmark scenario with reduced mobility.
However, we should note that contaminated object surfaces are introduced in the IoT-CTS
scenarios, while such objects are not present in the benchmark scenarios.

Now we examine with IoT-CTS how the compliance rate of relocation strategy affects
the performance of infectious cases through contaminated surfaces detected by OE. From
the results shown in Figure 5, the impact of the compliance rate has an impact on the
infectious cases where the number of the infectious population is most when no compliance
is adopted. The increasing compliance rate can positively impact the reduction of the
infectious population in terms of case total and the duration of the transmission.
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Table 2. Simulation parameters.

Parameters Value Unit

Deployment plane size 780 × 780 m2

Population density per km2 8210 –
Infection probability 5% –
Population size 5000 –
Mean population age 45 –
Age risk increase range [55, 75] –
Healthcare capacity 14 beds/1000 ppl.
Infection range between UEs 2 m
Detection range of OEs (proximity sensing) 2 m
Detection range of OEs (environment sensing) 20 m
Average walking speed (s) {1.8, 2.35} m/s
Mortality probability 0.021 –
Max. mortality prob. for older age 0.1 –
Recovery duration [20, 30] days
Number of OEs (NOE) [50, 250] –
Surface sanitizing duration (Td) 1 day

Now, let us see how the use of OEs can impact the O2P scenarios in terms of the
infectious population in an extended IoT-CTS case, where we propose the combined use of
two typical kinds of OEs in this IoT-CTS case. The OEs based on the environment sensing
(as shown in Table 1 and depicted in Figure 1) is proposed to add to the evaluation because
they can directly sense the airborne viruses in a surrounding environment which cannot
be performed with only proximity sensing. We also set a certain ratio of the environment
sensors to 20% based on practical deployment considerations, where bio-sensing-based
environment sensors are relatively more expensive than the proximity sensors and should
be used in a small portion of the total OEs. Additionally, we let Td = 1 for OEs where
contaminated OEs become disinfect every day, which can reflect the real-life cases where
object surfaces are disinfected at a certain frequency. In this setup, the environment sensor-
based OEs and proximity sensor-based OEs are randomly deployed where the total number
of OEs, NOE, ranges from 50 to 250. The simulation results are shown in Figure 6, where
the mean value and error bars based on standard error are plotted as shaded area for each
scenario. From Figure 6, we can see the use of environment sensor-based OEs can help
reduce the number of infectious population. The increasing number of environment sensor-
based OEs can significantly reduce the infectious cases for all OE sizes. From Figure 7, the
proposed IoT-CTS solution with increasing number of environment sensors and proximity
sensors can effectively flatten the curves for the recovered and fatality population as well.

To evaluate the effect of the portion of environment sensor-based OEs, we evaluate
another case where NENV_OE can range from 1% to 20%, while we keep the total number
of OEs to be 200. The results shown in Figure 8 suggest that the increasing number of
environment sensor-based OEs can overall reduce the number of infectious population. We
can notice that the reduction of the infectious cases is marginal when NENV_OE increases
from 1% to 2%, but starts to be significant when NENV_OE changes from 10% to 20%. From
the results in Figure 9, we can see that the increasing percentage of environment sensors in
an IoT-CTS solution can improve the epidemiological performance and flatten the curves
of the infectious, recovered, and fatality population.
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Figure 3. A visualized simulation process, where (a,b) show the benchmark scenario in the initial
and intermediate phases, respectively; and (c,d) shows the users and objects deployed in the initial
and intermediate phases, respectively. User states are indicated in dots with healthy (in gray dots),
infectious (in red dots), recovered (in green dots), and fatality (in black dots) states. UEs are shown in
blue squares.

We have shown the effectiveness based on the typical scenarios of P2P and O2P where
UEs and OEs are used. We can see that the relocation strategy is suggested to be applied
as a self-directed strategy or measure, where individuals can opt to move to the specific
area (such as home or quarantine place) when they are informed of risk of exposure to a
coronavirus, e.g., SARS-CoV-2. Additionally, the case study with our extensive simulations
suggests that the combined use of sensors in IoT-CTS based on environment sensing and
proximity sensing are effective. These scenarios aim to evaluate generic IoT-CTS solutions,
and additional measures based on the adoption of IoT-CTS solutions are expected to
improve the performance further.
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Figure 4. Epidemiological performance between benchmark solutions and IoT-CTS solutions.

Figure 5. Compliance rate of population versus infectious cases through contaminated surfaces
(s = 1.8 m/s, NOE = 50).
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Figure 6. Infectious population vs. NOE (s = 2.35 m/s, NOE = 200).

Figure 7. Epidemiological performance vs. NOE (s = 2.35 m/s, NOE = 200).
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Figure 8. Infectious population vs. the number of environment sensors (NENV_OE) (s = 2.35 m/s,
NOE = 200).

Figure 9. Epidemiological performance vs. the number of environment sensors (NENV_OE)
(s = 2.35 m/s, NOE = 200, Td = 1).

6. Future Directions

Considering the increasing interests and need for additional research efforts based
on CT solutions from the research community to combat current COVID-19 variants and
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future infectious diseases, we would like to discuss some open problems for research
contributions, which are described in the following.

6.1. Simulation Platforms

A simulation platform can help save the cost of post-deployment evaluation efforts
and examine performance metrics and parameters in the design phase. For example, a
discrete-event based simulation package can reveal the system dynamics that cannot be
fully discovered from an epidemiological model. It can incorporate real-world factors into
consideration, such as individual behaviors, user adoption, P2P/O2P interactions, sensing
performance, privacy risks, and protocols.

6.2. Sensing Systems

Sensing systems for IoT-CTS need enhancements to a greater extent. For example, the
usability and miniaturization, and sensing capability on an IoT device with OE/UE entities
can be improved. The precision, speed, and stability for at-scale deployments need to be
enhanced. Intelligent sensing and processing of data from various sources with artificial
intelligence (AI) are another area to be studied.

6.3. Data Management and Privacy

Data management and privacy are key to the IoT-CTS application, which may need
to be deeply integrated with tasks handling regular and sensitive CT data. The integra-
tion models for functional and data privacy requirements still have much room left for
further exploration.

6.4. Integration of Underlying Infrastructures

With the expectation that an IoT-CTS is to be deployed on underlying digital infras-
tructures, how to integrate the IoT-CTS with the IT infrastructures or services, such as
cloud services, software-ized networking, mobile networks, and CDN, need to be resolved.
For example, edge computing may provide infrastructural support for the essential interac-
tions and communication between IoT-CTS entities, facilitating entity interactions, data
processing, and computation offloading with adjacent FEs on a cloudlet. In addition, how
to utilize various data sources also leads to an open issue.

6.5. Hardware and Software Support, Integration, and Optimization

IoT-CTS software support for optimal communication horizontally between entities
and vertically across layers with underlying networks or computing nodes, requires further
development. Additionally, an effective IoT-CTS depends on the seamless integration and
optimization of the hardware and software components. For example, the architectural
entities need to be operated in a platform using low-power and high-precision sensors
integrated with an optimized software framework.

7. Conclusions

An IoT-CTS offers appealing advantages over conventional CT solutions: it works
with essential sensing, networking, and computing technologies in a scalable setup for the
COVID-19 and similar infectious diseases. With the proposed architecture and solution, an
IoT-CTS has shown to be effective with self-directed strategies and with the use of OEs,
which may be applied together with public health measures. The IoT-CTS architecture aims
to provide effective CT solutions with comprehensive coverage of contact events, enable
synergistic system designs, and promote integrated and standardized implementations for
evolution. The introduction of networked IoT devices in CTS adds new privacy challenges.
Decision-makers should weigh the public health benefits of CTS against the privacy risks,
and consider more advanced privacy-protection measures. This article has systematically
explored the combined use of various sensing technologies to help design better CT
solutions to combat current and future infectious diseases.
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