
sensors

Article

Correlating Time Series Signals and Event Logs in
Embedded Systems

Kazimierz Krosman and Janusz Sosnowski *

����������
�������

Citation: Krosman, K.; Sosnowski, J.

Correlating Time Series Signals and

Event Logs in Embedded Systems.

Sensors 2021, 21, 7128. https://

doi.org/10.3390/s21217128

Academic Editor: Geoff Merrett

Received: 29 September 2021

Accepted: 25 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland;
krosman.kazimierz@gmail.com
* Correspondence: janusz.sosnowski@pw.edu.pl

Abstract: In many embedded systems, we face the problem of correlating signals characterising
device operation (e.g., performance parameters, anomalies) with events describing internal device
activities. This leads to the investigation of two types of data: time series, representing signal periodic
samples in a background of noise, and sporadic event logs. The correlation process must take into
account clock inconsistencies between the data acquisition and monitored devices, which provide
time series signals and event logs, respectively. The idea of the presented solution is to classify event
logs based on the introduced similarity metric and deriving their distribution in time. The identified
event log sequences are matched with time intervals corresponding to specified sample patterns
(objects) in the registered signal time series. The matching (correlation) process involves iterative
time offset adjustment. The paper presents original algorithms to investigate correlation problems
using the object-oriented data models corresponding to two monitoring sources. The effectiveness of
this approach has been verified in power consumption analysis using real data collected from the
developed Holter device. It is quite universal and can be easily adapted to other device optimisation
problems.

Keywords: signal processing; embedded systems; data synchronisation issues; device monitoring;
time series analysis

1. Introduction

Various sensors are widely used in diverse domains and the collected data need quite
sophisticated processing for cognitive or reactive activities. This triggered the development
of tiny and low-cost devices installed in the field. They are based on microcontrollers
including a system on chip with memory and communication circuitry (embedded sys-
tems, IoT—Internet of Things devices, SCADA—supervisory control and data acquisition
nodes). The available functional block resources are limited, which is opposed to increasing
demands of advanced data processing and interaction with the environment. Hence, in de-
veloping practical application systems, we face the problem of optimizing data processing
algorithms, device resource usage, dependability, performance, and power consumption.
An important issue is testing and validation of relevant device prototypes in simulation
or production environments. In practice, this process needs efficient real-time monitoring
of the device’s operation. It involves observation of selected physical signals and device
and environment states ([1,2] and references therein). From an analytical point of view, this
leads to correlation analysis of time series depicting considered signal states and relevant
device state/event logs.

Most research papers on signal monitoring and analysis deal with time series de-
composition, classification, prediction, and characteristic features; some publications are
commented on and referred to in Section 2 (e.g., [3–5]). More advanced analysis of prac-
tical problems (e.g., device optimisation, anomaly detection) involves the need for also
considering other data sources, e.g., event logs ([6,7] and references therein). In the case

Sensors 2021, 21, 7128. https://doi.org/10.3390/s21217128 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4279-3294
https://orcid.org/0000-0001-6640-1585
https://doi.org/10.3390/s21217128
https://doi.org/10.3390/s21217128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217128
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217128?type=check_update&version=2

Sensors 2021, 21, 7128 2 of 18

of external monitoring of signals (typically, with special data acquisition equipment), we
face the problem of time correlation of the derived time series (collected data samples) and
other logs generated by the monitored system, usually not synchronised. This problem
is neglected in the literature, and we showed its practical importance [2] while analysing
time series features at a higher observation level involving data sample aggregation into
time series objects (e.g., pulses, characteristic sample sequences).

As shown in Section 2, classical correlation and synchronisation schemes are not
satisfactory due to the limited capabilities of interactions between data acquisition and
embedded monitored devices. Hence, we have developed an original solution which
matches device logs with pointed object instances in time series. It takes into account clock
offset fluctuation and log contextual factors. The introduced object-oriented data models
for time series and event logs facilitated constructing efficient algorithms adapted to their
features. This approach has been verified while developing commercial Holter devices. It
can be used in a wide scope of other problems, especially those within embedded and IoT
frameworks.

The rest of the paper is organised as follows. Section 2 gives a background of the
considered problem in the context of the related literature. Section 3 outlines data models
and the concept of the proposed analysis. Section 4 presents developed algorithms used to
correlate time series data with event logs. A practical example of the analysis is presented
in Section 5. Sections 6 and 7 discuss and conclude our research, respectively.

2. Problem Statement and Related Works

Many electronic devices are used to interact with real physical processes and an
external environment. They involve effective data processing resources and signal sensors.
Analysing the operation of such devices needs tracing various signals and events. For this
purpose, special external data acquisition tools and internal device monitoring mechanisms
are needed. They provide two classes of data: time series (TS) related to diverse observed
signals and events correlated with internal or external state/behaviour changes. In the
literature, there are a lot of studies focused on either time series or event logs separately.

Within time series analysis, we distinguish four research goals: (i) TS decomposi-
tion [3,8], which it involves deriving trend, season, noise and other specified components;
(ii) TS classification [9–11], based on comparing time series with each other and finding sim-
ilarities using diverse metrics; (iii) deriving characteristic and anomalous features [12–14];
and (iv) predicting future behaviour [3,4,15] by finding data patterns for the near future
based on the previous/historical ones. They are considered as general or application-
targeted problems. Quite sophisticated time series coherence studies, based on LSCWA
(Least-Squares Cross-Wavelet Analyses) and XWT (Cross-Wavelet Transform), are pre-
sented in [16,17], respectively. These decomposition methods provide time lag information
between components (used in satellite image and geological time series studies). In [18],
the authors give a comprehensive survey of the main time series decomposition strategies
(including deterministic and stochastic features) and their relative performances in different
application domains. A multichannel signal decomposition approach is presented in [19]
and illustrated in the analysis of real-life EEG and vibration signals. Event log analyses
are mostly targeted at classification problems and detection of anomalous situations, e.g.,
the appearance of suspicious events or their sequences ([7,20] and references therein),
grouping logs into event sequences (workflows) and log reduction (compression) [21]. This
is supported with log parsing algorithms [6,22].

Typically, sensors generate data samples at regular intervals, and they can be treated
as time series (TS). TS represent some variable values of observed device or environment
behaviour, e.g., temperature and memory and processor usage. Logged events carry useful
information on the device activities, their context, device state changes, etc. In practice, TS
and events are collected separately for different purposes, which creates some difficulty in
the correlation analysis. Correlating time series with event logs provides the additional
context of the underlying device activities and anomalies.

Sensors 2021, 21, 7128 3 of 18

The multitude of collected data in monitoring processes arises the problem of their
correlation ranges. This can be studied from global or local perspectives with fine- or
coarse-grained views considering diverse individual or aggregated features, respectively.
For example, we can trace factors impacting the total power consumption of the device
or its relevant functional blocks, respectively. In many papers, authors study correlations
between diverse signals described by relevant TS [23,24]. In classical approaches, Pearson
correlation metrics are used. This is also extended for time series classification, e.g.,
based on extracting mean and trend features of TS and finding similarity metrics for
classification [11]. Whole-series and feature-based algorithms are used here. The latter
transforms TS into the representation of feature vectors. The problem of aligning several
TS in a common time scale is presented in [25]. Abrupt signal change correlations in
multivariate TS are studied in [26]. Time scale-dependent correlations and decomposition
of TS are considered in [27]. Event log correlation is focused on finding co-occurrences of
different types of events or alert reports [20,28]. In [24], faults are identified by a sequence
of events, based only on their temporal arrival pattern. The problem of correlating TS with
collected events is rarely encountered in the literature.

In [29], correlation between an event sequence and time series is targeted at incident
diagnosis in the system. Temporal order and monotonic effect of dependencies are exam-
ined here. This results in tracing event occurrence corresponding to a significant value
change in a time series. In [30], the authors present an interactive graphical tool facilitating
finding correlated events with specified points in time series plots. They focus on a single
event correlation and assume a consistent time scale for both types of data. Simultaneous
exploration of event and time series data is performed in an interactive way by deriving
events related to a marked point on time series sample plot. This is cumbersome in case of
long time series, moreover, it lacks an aggregated view of the collected data. The problem
of discovering correlations of TS changes with single events is outlined in [31], as it assumes
consistent time scales. In [32], time series specifying meteorological parameters (humidity,
temperature, bulb, wind direction, etc.) recorded in hourly intervals are correlated with
critical events (heavy rains, flooding, hurricanes, etc.). The dynamics of these data is
relatively low as compared with monitoring capabilities; moreover, the set of considered
events is limited, so timing problems do not appear here. In the case of many embedded
systems, we face the problem of fine-grained time series and rich event logs needing fre-
quent observations. Here, data acquisition and device time scale consistency/fluctuation
problems must be considered in the analysis, which is neglected in the literature.

The interpretation of acquired TS data from the monitoring system needs referring to
event logs registered by the monitored device. Dealing with data provided by different
sources requires a common notion of time. Hence, the problem of data synchronisation
arises. In the literature, various synchronisation algorithms have been proposed, especially
for distributed and IoT systems. They are based on exchanging synchronisation mes-
sages [33] or on time compensation schemes [34]. Unfortunately, using these approaches in
external device monitoring is not satisfactory due to limited capabilities of accurate data
acquisition systems. We faced this problem while developing some embedded and IoT de-
vices [2]. The monitored embedded devices quite often do not provide hardware/software
synchronisation capabilities or do not accept the impact of additional synchronisation
processes on their operation. Moreover, time fluctuations in event log registration may
appear due to device software interacting processes. In this situation, we rely on combined
time and context-oriented correlations.

As opposed to classical approaches dealing with TS at sample level, we consider
TS objects aggregating samples, e.g., pulses, series of pulses, snippets, states, and state
sequences. We showed the usefulness of aggregating TS samples into objects in [2,28]
while analysing operations of embedded and complex computer systems, respectively.
The presented studies in subsequent sections of this paper correlate not individual events
but event sequences. In the case of similar TS object instances (e.g., similar pulses), the
correlated sequences of events may differ; therefore, it is important to detect the most

Sensors 2021, 21, 7128 4 of 18

crucial events with high correlation probability. This results in a quite complex algorithm,
integrating the following problems:

• Adapting time scales of TS and event logs.
• Correlating event logs with specified TS objects, including their sequences (instances).
• Selecting dominating events over the studied object instance series.

The developed correlation approach has been verified on real data collected from
Holter device. Nevertheless, it can be easily adapted to other projects consistent with the
quite universal data model presented in Section 3.

3. Data Models

The developed correlation analysis targets time series (TS) and event log (EL) data sets.
Time series TS = {s1, s2, . . . , sr} is composed of data sample values (si, 1 ≤ I ≤ r) collected
with sampling time T defined by the local clock of the monitoring (data acquisition)
device. Within TS, we can distinguish objects defined as subsets of samples with specified
properties, e.g., higher average values within a predefined window time and pulses of
specified shapes. Decomposing TS into objects can be performed manually or using special
algorithms targeted at pulses or more complex object features, as illustrated in our previous
papers [2,28], respectively. Subsequent object instances can appear in diverse moments of
the TS time scale. In the correlation analysis, we focus only on the time intervals relevant
to subsequent instances of the considered objects, defined as the set of time intervals
OI = {(t1, t2), (t3, t4), . . . , (tk, tk+1)}. Each element zi of the set OI is a pair of timestamps ti,
ti+1 specifying time range of the i-th object; we also use notations zi(1) and zi(2) for these
initial and closing timestamps of the zi interval, respectively.

Event logs are collected within the monitored device and are stored as a set of log
records EL = {E1, E2, Ev}. Each event record comprises a relevant timestamp
and a textual message composed of words and terminated by the new line character.
The timestamp is generated in relevance to the local clock of the monitored device—
it is independent (not synchronised) from the monitoring device clock; however, the
accuracy and fluctuation ranges of these clocks are known. Some specific data fields can be
distinguished within the textual message depending on the assumed logging scheme, e.g.,
we may have the tag/service/module of the program that generated the log event.

The considered correlation problem is the optimal matching of the TS object intervals
OI with relevant events within the EL set. This process is based on deriving relations of OI
and EL elements within time scales linked with TS and EL data repositories. Developing
correlation algorithms, we introduce some data entities and notations. Most of them specify
EL record properties. The data model specifications use classical logical and mathematical
notations: (a) ∪xYx′ union of sets Yx specified by index condition x; (b) ∑x Y(x), algebraic
sum of elements Y(x) specified by index condition x; (c) ∀x, Y(x), universal quantifier,
denotes that property Y(x) is satisfied for every x; and (d) ∃x, Y(x), existential quantifier,
denotes that there is x for which property Y(x) is satisfied. Operation A ∩ B denotes the
conjunction of sets A and B. Relation aj ∈ A denotes that element aj is included in set A.

The basic entity in logs is word wi ∈ W defined as a sequence of characters (e.g.,
in ASCI code) separated with specific symbols, e.g., space _, −, [,], (,), +. For the per-
formed analysis, it is reasonable to classify words. Based on the experience with embedded
system logs, we introduce the following word types: (1) l-word, any sequence of char-
acters starting with a letter character; (2) d-word, composed only of digital characters
0–9 but different from types 3 and 4; (3) PID, specifies the instance of the process gen-
erating the relevant log; (4) source, program service or module responsible for the log
generation; and (5) tL, log timestamp. This classification is supported with log parsing.
The classified word is defined as a pair cw =

(
wi, mj

)
, where wi ∈ W and mj ∈ M,

M = {l − word, d− word, pid, source, timestamp}. We use also notations cw(1) and cw(2)
to denote the word and its type (category), respectively.

Each log record/entry L can be represented as a bag of words BL defined as the set
of classified words. Function TS(BL) gives the timestamp of this log. Function BW(cwi)

Sensors 2021, 21, 7128 5 of 18

assigns a numerical value (weight) to the classified word (cwi) depending on its type, i.e.,
cwi(2) value. For types l-word, d-word, pid, source, and timestamp we assumed these values
as: 1.0, 0, 3.0, 2.0, and 0.0, respectively. Comparing two bags of words, Ba and Bb, we use
the similarity function defined as follows:

SIMILARITY(Ba, Bb) =
∑cwi∈Ba∩Bb

BW(cwi)

max
{

∑cwj∈Ba BW
(
cwj
)
, ∑cwk∈Bb

BW(cwk)
}

We introduce a set of similar bags of words (SBSx) which is derived with a special
algorithm specified in Section 4. For each pair of bags of words Ba and Bb in SBSx, we have
SIMILARITY(Ba, Bb) ≥ eps_s, where eps_s is the assumed minimal similarity threshold.
SBSx comprises all similar bags of words derived for the whole log set EL. Each bag of
words in EL is assigned to a single similarity set SBSx.

Event sequence S is defined as an ordered (according to timestamps) set of similar bags
of words satisfying the following condition:

S ⊆ SBSx, ∀ Bj ∈ SBSx/S, ∀ Bk ∈ S,
∣∣TS

(
Bj
)
− TS(Bk)

∣∣> eps_tolerance

where eps_tolerance is the parameter partitioning set SBSx. Elements of event sequence
satisfy relation: TS(S(1)) ≤ TS(S(2)) ≤ TS(S(3)) ≤ . . . ≤ TS(S(N)), where N is the
cardinality of sequence S and TS(Si) is the relevant timestamp of the last element of
sequence Si. In this way, we can partition set SBSx into subsequent sequences constituting
an ordered set Dx = {S1, S2, . . . , SMx}, which creates a series. We denote the set of all
sequences of SBSx as S(SBSx). The intuition of this partitioning is to derive similar event
groups close in time (potentially possible to correlate with TS object time intervals) and
separated from other groups by a longer time distance > eps_tolerance, possibly related to
another TS object instantiation.

We define the set IS(SBSi) of intersequence gaps, i.e., sets of timestamp differences
between subsequent elements of Di series. We denote the timestamp of the first bag of
words of the j-th sequence in Di as TSDB(Di(j)) and the last one as SDE(Di(j)). Hence, we
have:

IS(SBSi) = {TSDB(Di(2))− TSDE(Di(1)); TSDB(Di(3))− TSDE(Di(2)); . . . ; TSDB(Di(N))− TSDE(Di(N − 1))}

Taking into account that in many embedded or IoT systems, we can observe a back-
ground of diverse secondary events usually performed in a periodic way, we define noise
set of bags of words ZWi satisfying the following condition:

|avg(IS(SBSi))−med(IS(SBSi))|
avg(IS(SBSi))

< noise_0 AND
std(IS(SBSi))

avg(IS(SBSi))
< noise_1

where noise_0 and noise_1 are predefined parameters of the developed algorithm, and
avg, med, and std denote average, median, and standard deviation values calculated over
intersequence gap sets, respectively. The correlation analysis involves the target bag of
words which satisfies the same conditions with replaced < relations into ≥ (described in
Section 4).

In the correlation analysis, we search for the set of matched object intervals (OI) with
event sequences denoted as RES set, which is generated with a set of algorithms specified in
Section 4. Set RES is defined as follows (z(1) and z(2) denote initial and closing timestamps
of the interval z, respectively):

Sensors 2021, 21, x FOR PEER REVIEW 6 of 18

𝑅𝐸𝑆(𝑆𝐵𝑆௫, 𝑘) = {𝑆 ⊆ 𝑆(𝑆𝐵𝑆௫): ∀𝑧 ∈ 𝑂𝐼, ∃𝐵 ∈ 𝑆, 𝑇𝑆(𝐵(1)) + 𝑘≥ 𝑧(1) 𝐴𝑁𝐷 𝑇𝑆(𝐵(𝑁)) + 𝑘 ≤ 𝑧(2)} 𝑅𝐸𝑆(𝑘) = ራ 𝑅𝐸𝑆(𝑆𝐵𝑆௫, 𝑘)ௌௌೣ∈ௌௌ

For the given set of similar bags of words SBSx and the offset value k, we create a set
that contains only selected sequences from the set SBSx. The sequence initial and final
timestamps with the added offset k must not exceed time limits defined by the considered
interval z in OI. Iterating through all the sets of similar bags of words and joining all
RES(SBSx, k) sets, we create set RES(k). RES(k) is the set of all sequences that can fit inside
the instances of time series object intervals by adding the k value to their timestamps. The
searched matching offset value k generates the RES(k) set with the greatest cardinality.

The developed algorithms (Section 4) closely relate to the introduced data models.
For better understanding, data models and their analysis are illustrated in Section 5 in
relevance to time series objects and event logs. The included Appendix A summarises
used acronyms to facilitate tracing the presented considerations.

4. Specification of Algorithms
In the developed correlation analysis, we distinguish two phases: (1) extracting sub-

sequences of event logs that can correspond to the object intervals (see Section 3), and (2)
finding time offset assuring best matching of the object and event log timing. The general
idea of the correlation scheme is presented in Algorithm 1, which uses various functions
defined subsequently in the text. Algorithms and functions are specified in a pseudocode
partially based on object-oriented programming. It is consistent with the introduced data
model (Section 3) and it was also used in our previous paper [2] targeted at time series
decomposition.

The configuration parameters of the algorithms are: (1) word_weights, (2) eps_s, (3)
eps_time, (4) noise parameters: noise_0 and noise_1, (5) time_increment, and (6) eps_tolerance.
The values of parameters (1) and (2) are crucial for bags of words clustering into sets of
similar bags. The word_weights influence the similarity metrics results. The weights for
word types such as PID or source should be greater because it is common that similar logs
or even identical logs are generated by a single service. Moreover, if the specific log format
is known, adjusting weight values can increase the accuracy of detecting similar bags.
Parameter (2) allows us to discriminate similar bags from others. It can take values be-
tween 0.0 and 1.0. The lower it is, the more false positive cases it generates. The specific
value depends on a variety of logs and can be selected experimentally by analysing similar
bags of words sets. Parameter (3) impacts the number and all statistical features of gener-
ated sequences. For higher values, the single sequence can be potentially longer (in time
and the number of bags). If the value is too high, the algorithm generates one sequence
for each similar set of bags. The proper value is related to the time characteristics of the
interval objects, especially the average time of the single object instance and the maximal
or minimal time interval between consecutive instances. The noise parameters are used to
detect periodical sequences. The value for both noise_0 and noise_1 is set to 0.2 but can be
increased for periodic sequences with some jitter. Parameter (5), time_increment value, in-
fluences the number of matching candidates and should be dependent on event log den-
sity. Reducing this value increases the accuracy of the algorithm up to some level. For
example, if the shortest time interval between two event logs is 5 s, setting time_increment
to 5 s and parameter (6) eps_tolerance to about 2.5 s will generate the best results in the
context of accuracy. Moreover, for lower values of parameter (5), the algorithm execution
time increases. Increasing or decreasing parameter (6) can increase or decrease the number
of the final set of candidates. The assumed values should not exceed the value of param-
eter (5). Most of parameters can be set experimentally once for specified event logs and

Sensors 2021, 21, 7128 6 of 18

For the given set of similar bags of words SBSx and the offset value k, we create a set
that contains only selected sequences from the set SBSx. The sequence initial and final
timestamps with the added offset k must not exceed time limits defined by the considered
interval z in OI. Iterating through all the sets of similar bags of words and joining all
RES(SBSx, k) sets, we create set RES(k). RES(k) is the set of all sequences that can fit inside
the instances of time series object intervals by adding the k value to their timestamps. The
searched matching offset value k generates the RES(k) set with the greatest cardinality.

The developed algorithms (Section 4) closely relate to the introduced data models.
For better understanding, data models and their analysis are illustrated in Section 5 in
relevance to time series objects and event logs. The included Appendix A summarises used
acronyms to facilitate tracing the presented considerations.

4. Specification of Algorithms

In the developed correlation analysis, we distinguish two phases: (1) extracting sub-
sequences of event logs that can correspond to the object intervals (see Section 3), and (2)
finding time offset assuring best matching of the object and event log timing. The general
idea of the correlation scheme is presented in Algorithm 1, which uses various functions
defined subsequently in the text. Algorithms and functions are specified in a pseudocode
partially based on object-oriented programming. It is consistent with the introduced data
model (Section 3) and it was also used in our previous paper [2] targeted at time series
decomposition.

The configuration parameters of the algorithms are: (1) word_weights, (2) eps_s, (3)
eps_time, (4) noise parameters: noise_0 and noise_1, (5) time_increment, and (6) eps_tolerance.
The values of parameters (1) and (2) are crucial for bags of words clustering into sets of
similar bags. The word_weights influence the similarity metrics results. The weights for
word types such as PID or source should be greater because it is common that similar logs
or even identical logs are generated by a single service. Moreover, if the specific log format
is known, adjusting weight values can increase the accuracy of detecting similar bags.
Parameter (2) allows us to discriminate similar bags from others. It can take values between
0.0 and 1.0. The lower it is, the more false positive cases it generates. The specific value
depends on a variety of logs and can be selected experimentally by analysing similar bags
of words sets. Parameter (3) impacts the number and all statistical features of generated
sequences. For higher values, the single sequence can be potentially longer (in time and
the number of bags). If the value is too high, the algorithm generates one sequence for
each similar set of bags. The proper value is related to the time characteristics of the
interval objects, especially the average time of the single object instance and the maximal
or minimal time interval between consecutive instances. The noise parameters are used
to detect periodical sequences. The value for both noise_0 and noise_1 is set to 0.2 but can
be increased for periodic sequences with some jitter. Parameter (5), time_increment value,
influences the number of matching candidates and should be dependent on event log
density. Reducing this value increases the accuracy of the algorithm up to some level. For
example, if the shortest time interval between two event logs is 5 s, setting time_increment
to 5 s and parameter (6) eps_tolerance to about 2.5 s will generate the best results in the
context of accuracy. Moreover, for lower values of parameter (5), the algorithm execution
time increases. Increasing or decreasing parameter (6) can increase or decrease the number
of the final set of candidates. The assumed values should not exceed the value of parameter
(5). Most of parameters can be set experimentally once for specified event logs and then
the algorithm can process other input data with similar format and timing characteristics.

The presented algorithms use pseudocodes based on C/C++/Pascal notation with
bolded keywords. The function keyword starts the function definition that can be identified
as a single procedure of the algorithm. The foreach logic structure is used to create loops.
The foreach loop iterates through all elements in the collection. The collection name is
inside the foreach parameter section specified in brackets. Instructions inside the loop
(between keywords do and end) are executed the same number of times as the number of

Sensors 2021, 21, 7128 7 of 18

elements in the container. Instructions executed in successive iterations can use successive
elements of the container. The conditional instructions are consistent with classical If
statements. All presented algorithms use an object-oriented approach. Complex data
structures such as lists or objects that aggregate other data types are presented as objects of
the specified class, and object instances are created with the new operation. The objects
provide properties and methods (functions). The property can refer to an object internal
collection. Referencing to object properties and methods is denoted with dot operator (.).
Construction object.method(arguments) invokes some method (function) on the object that
can return some data type of the object or change internal state of the object. Most used
names of objects and methods are self-explanatory, others are additionally commented. For
example, filtered_sequences.add_sequence(s) denotes adding sequence s (with the specified
method/function) to the object filtered_sequences.

The inputs to Algorithm 1 are two sets: log_text and intervals equivalent to specifi-
cations EL and OI in Section 3, respectively. Function create_bags_of_logs returns a list of
a bag of words corresponding to considered logs. It partitions log records into words
and generates objects of a bag of words as classified words (i.e., pairs word and its type—
Section 3). For example, log: “R11-08 07:05:38.657 D/AT (134): AT > AT + CCWA = 1” is
transformed into the equivalent bag of words: <08 07:05:38.657, timestamp>, <AT, source>,
<134, pid>, <AT, l-word>, <CCWA, l-word >, < 1, d-word> (R11 and D/ denote real time
clock and debug level of logging, respectively). The created bag of words list is used by
function cluster_into_ssb which provides a classified similar bag of words (using similarity
metric specified in Section 3). Each cluster comprising similar bags of words (SBSx) is
partitioned into sequences. A single sequences object is composed of one or more consec-
utive (in time) sequences. Objects sequences and intervals are the arguments of procedure
candidates_from_one_sequences. It returns candidates for matching object intervals with a
single object of sequences. This is performed via the iterative checking of the matching
result or subsequent time corrections with offset value. Candidates are aggregated in the
list candidates. This list is used by the find_best_matching procedure, which returns the
candidates list of candidates with a common offset (with tolerance defined by eps_tolerance
parameter) that assures the maximal number of matched candidates. This list and the
adjusted offset value are the result of the algorithm, which allows us to investigate and filter
text logs matched with TS objects (corresponding to RES(SBSx,k) set defined in Section 3).

Algorithm 1: Data correlation.

Input: log_text- the log records in text format, objects- the list of TS object intervals
Output: logs in format bags of words matched with intervals
1: function match_events_with_logs (log_text, intervals)
2: logs_as_bags = create_bags_of_logs(log_text)
3: ssb = cluster_into_ssb(logs_as_bags)
4: candidates = new list
5: foreach (similar_bags in ssb) do
6: sequences = create_sequences(similar_bags)
7: candidates.add(candidates_from_one_sequences(sequences, objects))
8: end foreach
9: matched_logs = find_best_matching(candidates)
10: return matched_logs
11: end function

Function create_bags_of_logs(log_text) invoked in line 2 of Algorithm 1 is relatively sim-
ple, so we skip the relevant pseudocode. It analyses log entry texts, performs tokenisation
to identify words, and attributes appropriate word class (l-word, d-word, PID, source, times-
tamp) taking into account word contents and context resulting from assumed log formats.
The result of this processing is the list bags with elements corresponding to subsequent log
records. Each element comprises a relevant bag of words and the normalised timestamp.
Timestamp normalisation is calculated by taking the timestamp of the first bag of words

Sensors 2021, 21, 7128 8 of 18

(corresponding to the first log record) and subtracting it from the timestamps of subsequent
bags of words.

Algorithm 2 partitions bags of words into sets of similar bags of words (compare SBS
in Section 3). In the first step, the list of bags of words is copied to a supplementary object
unmatched_bags. In the while loop (line 4), a new element of the object (bag of words) is taken
with the take_first method. It is used as a seed for the new cluster created with procedure
create_similar_bags_list (Algorithm 3). This procedure searches the list unmatched_bags to
find bags of words similar to at least one cluster element. Two bags of words a and b are
similar if the similarity metric (defined in Section 3 and provided by function similarity(b,
a)) is higher than the specified threshold by parameter eps_s. The added new element to the
created cluster similar_bags is removed from the collection unmatched_bags. After finding all
bags of words similar to the currently created cluster, this cluster is added as a list to the set
ssb. Having assigned all bags of words to appropriate clusters, Algorithm 2 returns set ssb.

Algorithm 2: Clustering bags into sets of similar bags.

Input: bags – the list of the bags of words
Output: list of clustered bags into sets of similar bags
1: function cluster_into_ssb(bags)
2: ssb = new set
3: unmatched_bags = bags.copy()
4: while (not unmatched_bags.empty()) do
5: seed = unmatched_bags.take_first()
6: ssb.add (create_similar_bags_list(seed, unmatched_bags))
7: end while
8: return ssb
9: end function

Algorithm 3: Creating one set containing bags classified as similar.

Input: seed – first bag of the list, unmatched_bags- container with uncompared bags
Output: list of bags that are classified as similar
1: function create_similar_bags_list(seed, unmatched_bags)
2: similar_bags = new list
3: similar_bags.add(seed)
4: umatched_bags.remove(seed)
5: foreach (b in similar_bags) do
6: foreach (a in umatched_bags) do
7: if (similarity(b, a) > eps_s)
8: similar_bags.add(a)
9: unmatched_bags.remove(a)
10: end if
11: end foreach
12: end foreach
13: return similar_bags
14: end function

Algorithm 4 creates sequences from the list of similar bags of words. For this purpose,
the considered list is sorted in ascending order according to the timestamps of bags of
words. Subsequent bags of words are processed in foreach loop (line 6). The created object,
current_sequence, represents the currently created sequence. The sequence is composed of
subsequent bags of words within the time interval equal to or lower than eps_time. Subse-
quent bags of words are compared; in the case of timestamp difference (between the last and
the current bag of words) higher than eps_time, the currently created sequence is terminated
and added to the object sequences (line 8). Moreover, the time interval causing sequence
termination is added to this sequence (add_interval—line 10; the term current_sequence[0].
timestamp denotes the timestamp of the first element of the sequence object). In the other

Sensors 2021, 21, 7128 9 of 18

case, the processed bag of words is added to current_sequences. Finally, operation calcu-
late_satistics_from_intervals() provides statistical parameters (average, median, standard
deviation—line 16) of the created sequences using time intervals derived during their
creation.

Algorithm 4: Divides a similar bags list into sequences of bags.

Input: sbags - the list of similar bags
Output: sequences object that contains bag sequences list with interval time
between successive sequences
1: function create_sequences (sbags)
2: sequences = new sequences
3: sbags.sort()
4: current_sequence = new list
5: last = sbags.first_bag()
6: foreach (b in s_bags) do
7: if (b.timestamp – last.timestamp > eps_time)
8: sequences.add(current_sequence)
9: sequences.add_timeRange(current_sequence[0].timestamp, last.timestamp)
10: sequences.add_interval(b.timestamp – current_sequence[0].timestamp)
11: current_sequence = new list
12: end if
13: current_sequence.add(b)
14: last = b
15: end foreach
16: sequences.calculate_satistics_from_intervals()
17: return sequences
18: end function

Algorithm 5 describes the method of candidates’ creation based on the object sequences
and ts_intervals. In the first step, objects qualified as noise (Section 3) are filtered out from
lists of sequences. This qualification is carried out in line 3 using the parameters noise_0
and noise_1 (compare Section 3). The noise relates to single periodical sequences. Such
periodical logs do not indicate any anomaly or a single event that is pointed out by an
interval object. Moreover, matching periodical logs leads to the generation of multiple
offset values that could match OI. An infinite periodical signal shifted by a period is equal to
the base signal. The algorithm drops noise sequences because they do not allow matching
to the OI. In the while loop (line 7), the sequence matches are tested for each offset within
the range: < sequences.first_sequence().timestamp (i.e., initial timestamp of the sequence object),
sequences.last_sequence().timestamp (i.e., last timestamp of the sequence object)>. The offset
value is incremented by time_increment. For each offset value procedure, create_candidate is
invoked (line 8). If it returns a result different from NONE, then the generated candidate
is added to the list candidates (lines 9 and 10). Procedure create_candidate is specified in
Algorithm 6. It generates a candidate for matching using offset and sequence objects. In the
first step, a new evs object is created as a copy of the original ts_intervals but with appended
offset value. This is performed with the copy_and_add_time_offset method (line 2) applied
to ts.objects. In line 6, foreach loop checks matching of the single sequence with a single
interval in ts_intervals. If for every interval (element of ts_intervals), it is possible to match
at least one sequence from the object sequences, then such a sequence object is treated as a
candidate. Matching is verified by checking the inclusion of time ranges of the considered
sequence and interval. Time ranges comprising initial and final timestamps are represented
by timeRanges objects. The inclusion relation is tested with the procedure includes() (line
7). Non-matched sequences are returned via the object filtered_sequences (line 9) using the
add_sequence(s) method. In the case of unsuccessful matching, the algorithm returns the
value NONE.

Sensors 2021, 21, 7128 10 of 18

Algorithm 5: Creates candidates list from one sequences object instance.

Input: sequences- the sequences object, events- the object container that contains event
object (each event is defined by start and end timestamps).
Output: a list of candidates. Each candidate contains offset value and a sequences instance
1: function candidates_from_one_sequences (sequences, events)
2: candidates = new list
3: if (abs(s.avg – s.med)/s.avg < noise_0 and s.std/s.avg < noise_1)
4: return candidates
5: end if
6: offset = sequences.first_sequence().timestamp
7: while (offset < sequences.last_sequence().timestamp) do
8: matched_sequences = create_candidate(sequences, events, offset)
9: if (matched_sequences != NONE)
10: candidates.add(new candidate(offset, matched_sequences))
11: end if
12: offset = offset + time_increment
13: end while
14: return candidates
15: end function

Algorithm 6: Creates a candidate for matching with TS object with a given offset value, basing on
the timestamp ranges of the sequences.

Input: i_sequences- the set of sequences object, ts_objects- the object container that contains
events object (each event is defined by start and end timestamps), offset- the time value
in seconds
Output: sequences object with sequence items that match with ets_intervals
1: function create_candidate (i_sequences, ts_objects, offset)
2: evs = ts_objects.copy_and_add_time_offset(offset)
3: current_interval = evs[0]
4: last_match = false
5: filtered_sequences = new sequences
6: foreach (s in i_sequences) do
7: if (current_event.timeRanges.includes(s.timeRanges))
8: last_match = true
9: filtered_sequences.add_sequence(s)
10: else
11: if (last_match)
12: current_interval = current_interval.next()
13: last_match = false
14: if (current_interval != NONE)
15: break
16: end if
17: end if
18: if (current_interval == NONE or (current_interval == evs.last_interval and last_match))
19: return filtered_sequences
20: end if
21: end foreach
22: return NONE
23: end function

Algorithm 7 takes as the input the list of candidates in the form <offset, matched
sequences>. It searches for an offset value with tolerance eps_tolerance to maximise the
number of sequence objects with intervals in events. For each candidate c from the list
candidates, the algorithm creates a list of candidates, for which the offset is in the range
<offset c, offset c + eps_tolerance>. The length of this list is used to verify whether the new
list is longer than the previous maximum value (line 11). In the case of satisfying this

Sensors 2021, 21, 7128 11 of 18

condition, the maximum value is updated, and the considered list is stored as the best list of
candidates (line 12). The derived maximal list is returned by the algorithm. It corresponds
to the RES(SBSx,k) set defined in Section 3.

Algorithm 7: Finds the best offset value (the offset value that generates the greatest number of
matching candidates).

Input: candidates - the list of candidate object (defined by an offset and sequences)
Output: a list of candidates with similar offset value creates the best matching with events
1: function find_best_matching (candidates)
2: max_matched_candidates = new list
3: foreach (c in candidates) do
4: matched_candidates = new list
5: matched_candidates.add(c)
6: foreach (d in candidates) do
7: if (d.offset >= c.offset and d.offset < c.offset + eps_tolerance and d is not in
matched_candidates)
8: matched_candidates.add(d)
9: end if
10: end foreach
11: if (matched_candidates.count() > max_matched_candidates.count())
12: max_matched_candidates = matched_candidates
13: end if
14: end foreach
15: return max_matched_candidates
16: end function

The developed algorithms have been used in practical analysis of some embedded
devices. Section 5 presents illustrative results which give insight into data models and
facilitate comprehension of algorithm operations.

5. Practical Examples

For better understanding of the proposed analysis and algorithms, we present practical
examples. The developed methodology is targeted at embedded and IoT devices. Various
operation features of such devices typically comprise some short periods of high activities
on a background of less important processing or idle periods. This is illustrated in the time
series of Figure 1 with 11 marked intervals (in red) corresponding to device high activity
and background (considered as noise) in blue. The y-axis shows the percentage of CPU
usage. The presented plot includes 1000 samples, and the x-axis corresponds to timestamps
(minutes:seconds) which cover a period of 2000 s. A more detailed view of the plot needs a
fine-grained time scale, and an excerpt of power consumption (in A) plot for the developed
Holter device is presented in Figure 2. Here, three classes of time series intervals (red, blue,
green) are presented; they relate to increased power consumption (current value) and can
be interpreted by correlating them with matched event logs. Time series patterns denoted
with red colour relate to two instances of the same TS object.

The event correlation process is illustrated for an excerpt of event logs presented in
Table 1. We deal with a set of event logs listed in the first column of Table 1 (timestamps
presented in <> brackets). In the first step of Algorithm 1, each element of event logs is trans-
formed into a bag of words, e.g., log 1 “<2> [PER] checking it” results in the bag of words:
[2, timestamp], [PER, source], [checking, l-word], [it, l-word]. Algorithm 2 combines logs into
sets of similar bags of words. This algorithm uses the function create_similar_bags_list ()
specified in Algorithm 3. The lists of created similar bags of words are given in the second
column of the Table 1. For simplicity, in this table, we skip specification of word classes, and
log sources are denoted in capital letters: PER—performance checking, DHCP—Dynamic
Host Communication Protocol, and MANAGER—task manager.

Sensors 2021, 21, 7128 12 of 18

Figure 1. Example of time series for IoT device.

Figure 2. Excerpt of power supply plot for Holter device.

Table 1. Excerpt of event logs.

Primary Event Logs Lists of Similar Bags of Words

1: <2> [PER] checking it
2: <5> [DHCP] activity one
3: <6> [DHCP] activity two
4: <9> [MANAGER] task one
5: <10> [PER] checking it
6: <18> [PER] checking it
7: <23> [MANAGER] task two
8: <24> [MANAGER] task three
9: <25> [DHCP] activity three
10: <26> [PER] checking it
11: <27> [MANAGER] task four
12: <34> [PER] checking it
13: <42> [PER] checking it
14: <50> [PER] checking it
15: <51> [DHCP] activity four
16: <52> [MANAGER] task five
17: <53> [DHCP] activity five
18: <54> [MANAGER] task six
19: <58> [PER] checking it

List 1
<2> [PER] checking it
<10> [PER] checking it
<18> [PER] checking it
<26> [PER] checking it
<34> [PER] checking it
<42> [PER] checking it
<50> [PER] checking it
<58> [PER] checking it
List 2
<5> [DHCP] activity one
<6> [DHCP] activity two
<25> [DHCP] activity three
<51> [DHCP] activity four
<53> [DHCP] activity five
List 3
<9> [MANAGER] task one
<23> [MANAGER] task two
<24> [MANAGER] task three
<27> [MANAGER] task four
<52> [MANAGER] task five
<54> [MANAGER] task six

Sensors 2021, 21, 7128 13 of 18

Assuming parameter eps_time = 7 in Algorithm 4, we create object sequences from
each list, which comprises single sequences denoted as sequence_0, sequence_2, etc. The
created three objects of sequences (sequences1, sequences2, and sequences3) are specified
as follows:

for list 1-> object sequences1:

sequence_0 = {<2> [PER] checking it}
interval_0 = 8

sequence_1 = {<10> [PER] checking it}
interval_1 = 8
sequence_2 = {<18> [PER] checking it}
interval_2 = 8
sequence_3 = {<26> [PER] checking it}
interval_3 = 8
sequence_4 = {<34> [PER] checking it}
interval_4 = 8
sequence_5 = {<42> [PER] checking it}
interval_5 = 8
sequence_6 = {<50> [PER] checking it}
interval_6 = 8

sequence_7 = {<58> [PER] checking it}

For list 2-> object sequences2:

sequence_0 = {<5> [DHCP] activity one, <6> [DHCP] activity two}
interval_0 = 20
sequence_1 = {<25> [DHCP] activity three}
interval_1 = 26
sequence_2 = {<51> [DHCP] activity four,<53> [DHCP] activity five}
For list 3-> object sequences3:
sequence_0 = {<9> [MANAGER] task one}
interval_0 = 14
sequence_1 = {<23> [MANAGER] task two, <24> [MANAGER] task three,
<27> [MANAGER] task four}
interval_1 = 29
sequence_3 = {<52> [MANAGER] task five, <54> [MANAGER] task six}

Most derived sequences comprise single bags of words; three involve two bags of
words (lists 2 and 3) and one involves three bags of words (list 3). For example, bags of
words “<2> [PER] checking it” and “<10> [PER] checking it” from list 1 create two separate
sequences because the relevant timestamp difference is 8 s (>eps_time = 7). For list 3, the
algorithm provides three sequences. The time difference between bags of words 4 and 7 is
14 s > eps_time. The difference between bags 7 and 8 is lower than the assumed eps_time.
This results in two sequences: {<9> [MANAGER] task one} and {<23> [MANAGER] task
two, <24> [MANAGER] task three, <27> [MANAGER] task four}.

For the created sequences, Algorithm 5 appends values of time differences (specified
as interval_x) between sequences. These values are needed to calculate relevant median,
average, and standard deviation metrics, which are used (Algorithm 7) to select a list of
bags of words representing periodic (considered as noise in Section 3) and irregular log
appearance. The latter most probably can match with the analysed time series objects. The
standard deviation, the difference between median and average values for list 1, is equal
to 0, which indicates periodical logs. Thus, this list is skipped in further processing (as
opposed to Lists 2 and 3).

Having processed event logs, we have to correlate them with relevant time series. In
the considered time series (TS), we consider three object instances specified by time intervals
(pairs of timestamps): {<7,13>, <25,28>, <53,58>}. Further processing needs timestamp
normalisation in bags of words and TS intervals in reference to the first elements. For

Sensors 2021, 21, 7128 14 of 18

each bag of words, we have to subtract value 2 (the first timestamp in bags of words—
compare Table 1) from subsequent timestamps. A similar operation for TS objects results
in normalised intervals: {<0,7>, <18,21>, <46, 52>}. In the subsequent iterative steps
(Algorithm 6), candidate objects are created for selected lists 2 and 3. The offset is the value
which is added to each object’s timestamp during verification of the matching process. In
this way, Algorithm 7 generates at least two candidates: <offset = 4, list_2> and <offset = 4,
list_3>. Candidates with offset 4 are the unique ones with possible matching, which match
the maximal number of candidates to TS objects. The result of matching is presented in
Figure 3; here, the normalised time scale is replaced by the original one. Events related
to lists 1, 2, and 3 are marked in green, blue, and red colours, respectively. The coloured
boxes comprise the identification numbers of the relevant log records from the first column
of Table 1. The highlighted objects (1–3) show the correlated events. It can be noticed
that list_1 (green) is a periodic event and most of its instances are not correlated with the
considered object occurrences. On the other hand, almost all elements of list_2 (blue) and
list_3 (red) can be matched with the objects (taking into account the offset value equal to 2).
In Figure 3, the orange box presents the offset value (relative to the timestamp of the first log
record, this value is equal to 2 s). The offset value generates the first best matching result.

Figure 3. Matching event logs with time series objects.

Optimizing power consumption of developed commercial Holter devices, we anal-
ysed time series related to the battery power supply current covering a longer period of
typical device operation. It was provided by KeysigtData Acquisition Instrument (external
monitoring with 2 ms sampling period defined by the local clock). Within the collected
time series (covering time period of 2 h and 30 min), we identified several object instances
(specified by time intervals—compare OI in Section 3) pointing to excessive power con-
sumption device behaviour. The registered event logs comprised about 20,000 records.
Time series intervals were identified using algorithms from our previous publication [2].
These intervals have been correlated with the collected event logs within the monitored
Holter device (referred to its local clock). For this purpose, we used Algorithms 1–7 from
Section 3. For an analysed TS sequence composed of three intervals—117 s, 120 s, and 119 s
separated by 22 min 25 s and 27 min and 21 s, respectively—we found only 11 sets of similar
bags of words that matched with these intervals. The presented approach is quite effective
in selecting the correlated events from a bulk of recorded ones. In the analysed example,
11 event classes (sets of similar bags of words) contained almost 1600 log records in total.
Most of them repeated in the consecutive three intervals, resulting in about 550 diverse
records per interval; in fact, they constituted 550/11 = 50 event classes, which needed
further investigation. They were generated by six software modules (specified as source
type in the event record). Analysing these modules, we identified some deficiency in one
of them, which caused power problems and needed correction. The correlation analysis
significantly reduced the number of event logs needed for interpretation. This facilitated
the tracing for problem sources in the monitored device.

Sensors 2021, 21, 7128 15 of 18

6. Discussion

The main objective of the research was to develop efficient algorithms for correlating
event and time series data collected during internal and external monitoring of embedded
devices. The main issue was matching the time scales of two observation perspectives.
This was based on iterative adjusting of time offsets to find the best matching of candidate
event sequences with pointed time series intervals (Algorithms 6 and 7). These intervals
are domain-dependent and can be defined manually or derived using time series decom-
position algorithms, e.g., given in [2] or specified TS snippets, pulses, and other patterns.
This issue is beyond the scope of the paper, since examples can be found in the literature
(compare Section 2). The correlation scheme processes the event log sets, and, based on
the introduced similarity metrics, derives potential events for matching. This results in
adapting time scales defined by independent clocks of the monitored and monitoring
devices. An important issue is that the matching process involves a sequence of instances
related to a specified TS object. Moreover, the introduced event matching process filters out
many events, so the interpretation of the correlation result is simpler (compare the Holter
example in Section 5).

The developed algorithms use specified parameters. They should fit the features of
the time series. It is assumed that the analysed time series include some repetitive activities
with diverse distribution in time and low activity background. Such properties are quite
typical for many signals characterising various operation properties of embedded and IoT
devices. These properties impact selection of the algorithm parameters. They can be also
refined experimentally for a given log format and characteristic class.

Monitoring device signals with independent data acquisition equipment (around its
local clock) assures no impact on device operation, so the results are more accurate, and
no hardware or software instrumentation are needed in the monitored device. This is in
contrast to synchronised monitoring schemes that interact with the monitored device and
can additionally limit the accuracy of monitoring fast processes.

The presented algorithms are consistent with data models specified in Section 3 and
targeted at tracing correlations of time series object instances which appear in an aperiodic
way. Single-instance and periodic objects were beyond our interest. However, some
modifications of the algorithms could be introduced to handle such cases. In the conducted
analysis, we assume that the investigated sequence of object instances corresponds to
similar log records with similar time delays between the occurrence of the event and log
record timestamps. In the case of high time delay jitter and low percentage of similar logs
within subsequent object instances, the algorithm output may be not satisfactory. This can
result from deficiencies in logging schemes (not correlated with the analysed objects) or
lacking correlations. In the first case, some logging improvements can be considered.

The data analysis algorithms derive correlated events with pointed objects in time
series. The effectiveness of this process depends to some extent on the assumed parameters
related to the features of the object (duration, distance between subsequent object instantia-
tions, noise factors) and their properties can be verified by checking the consistency of the
result. Another issue is filtering logs that are not interesting, which depends on the used
similarity function and the threshold parameter, leading to lower or higher levels of reduc-
tion of selected events. This can be trimmed by repeating algorithms for diverse threshold
values and assessing results by the users (analytics). In the performed power consumption
analysis of the Holter device, we correlated event logs correctly for the considered several
object sequences; moreover, log reduction was quite significant.

The usefulness of the presented algorithms has been positively verified for some
devices including developed commercial Holter devices. This allowed us to optimise device
power consumption for longer operation times. The derived correlated logs facilitated
pointing out deficiencies in hardware and software. Here, a question arises about the scope
of application of the presented methodology. It is quite universal due to the object-oriented
specifications. Time series intervals are specified in a natural way, and log event features
can be easily adjusted, including other similarity metrics and noise specification.

Sensors 2021, 21, 7128 16 of 18

7. Conclusions

The presented original algorithms extend the capabilities of analysing embedded and
IoT device operation properties considering time series and event log repositories collected
from internal and external monitoring processes. It is assumed that the time series study
is targeted at specified time intervals (objects) pointed out by the investigator. For this
purpose, other algorithms can be used, including those proposed in [2], or the experience
within the device domain. The presented log processing aims at matching them with time
series objects being investigated (typically comprising several or multiple instances). Here,
an important issue is deriving time correlations between the monitoring and the monitored
devices. This issue was neglected in the literature. The developed algorithms have been
implemented and verified on real data. Their practical significance has been confirmed
while developing commercial Holter devices.

The developed algorithms are specified in object-oriented pseudocode, which is quite
natural for the time series and event log processing. Moreover, this facilitates introducing
some modifications or extensions for better adaptation to diverse studied problems.

In future works, the following issues are worth investigating: (1) testing other sim-
ilarity metrics and including event logs based on diverse log parsing patterns, and (2)
verifying the impact of selecting parameters on algorithm results. Another interesting issue
is to combine the introduced analysis with other time series decomposition and correlation
schemes, e.g., involving deterministic, stochastic, seasonable, and trend components [3,18],
and LSCWA and XWT approaches [16,17].

Author Contributions: Conceptualisation, K.K. and J.S.; methodology, K.K. and J.S.; software, K.K.;
validation, K.K. and J.S.; investigation, K.K.; writing—original draft preparation, K.K. and J.S.;
writing—review and editing, K.K. and J.S.; visualisation, K.K.; supervision, J.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was financed by Warsaw University of Technology in the framework of the
project for the scientific discipline computer science and telecommunications.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In Table A1, we list the most important acronyms which were defined in Section 3.
They facilitate tracing the presented considerations and algorithms.

Table A1. Basic acronyms used in the paper.

Acronym Description

LSCWA Least-Squares Cross-Wavelet Analysis
XWT Cross-Wavelet Transform
TS Set of time series samples
EL Set of event log records
OI Set of specified object intervals in time series
SBSx Similar bags of words
RES(SBSx, k) Set of event sequences within SBSx set
eps_s, Minimal similarity threshold
eps_time, Parameter partitioning set SBSx into sequences
noise_0 Noise discrimination parameter for median
noise_1 Noise discrimination parameter for standard deviation
time_increment, Parameter for matching event candidates (Algorithm 5)
eps_time_tolerance Parameter for time offset tolerance (Algorithm 7)

Sensors 2021, 21, 7128 17 of 18

References
1. Kawashima, H. KRAFT: A Real-Time Active DBMS for Signal Streams. In Proceedings of the Fourth International Conference on

Networked Sensing Systems, Braunschweig, Germany, 6–8 June 2007; pp. 163–166.
2. Krosman, K.; Sosnowski, J.; Gawkowski, P. Object oriented time series exploration: Applied to power consumption analysis of

embedded systems. Expert Syst. Appl. 2021, 184, 1–16. [CrossRef]
3. Bendre, M.; Manthalkar, M. Time series decomposition and predictive analytics using MapReduce framework. Expert Syst. Appl.

2019, 116, 108–120. [CrossRef]
4. Al-Hmouz, R.; Pedrycz, W.; Balamash, A. Description and prediction of time series: A general framework of granular computing.

Expert Syst. Appl. 2015, 42, 4830–4839. [CrossRef]
5. Johnpaul, C.; Munaga, V.N.K.; Savarimuthu, N.; Gangadharan, G.R. Trendlets: A novel probabilistic representational structures

for clustering the time series data. Expert Syst. Appl. 2019, 145, 113119.
6. He, J.; Zhu, J.; He, S.; Li, J.; Lyu, M.R. Towards automated log parsing for large scale log data analysis. IEEE Trans. Dependable

Secur. Comput. 2018, 15, 931–944. [CrossRef]
7. Zhang, B.; Zhang, H.; Moscato, P.; Zhang, P. Anomaly Detection via Mining Numerical Workflow Relations from Logs. TechRxiv

2020. Available online: https://doi.org/10.36227/techrxiv.12570926.v2 (accessed on 20 October 2021).
8. Zhao, J.; Itti, I. Decomposing Time Series with Application to Temporal Segmentation. In Proceedings of the IEEE Winter

Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–18 March 2016; pp. 1–9.
9. Bondu, A.; Gay, D.; Lemaire, V.; Boull’e, M.; Cervenka, E. FEARS: A FEature and Representation Selection Approach for Time

Series Classification. In Proceedings of the Eleventh Asian Conference on Machine Learning, PMLR, Nagoya, Japan, 17–19
November 2019; pp. 379–394.

10. Li, G.; Yan, W.; Wu, Z. Discovering shapelets with key points in time series classification. Expert Syst. Appl. 2019, 132, 76–86.
[CrossRef]

11. Bai, B.; Li, G.; Wang, S.; Wu, Z.; Yan, W. Time series classification based on multi-feature dictionary representation and ensemble
learning. Expert Syst. Appl. 2021, 169, 114162. [CrossRef]

12. Lubba, C.H.; Sethi, S.S.; Knaute, P.; Schultz, S.R.; Fulcher, B.D.; Jones, N.S. Catch22: Canonical time-series characteristics. Data
Min. Knowl. Discov. 2019, 33, 1821–1852. [CrossRef]

13. Sperl, R.E.; Chung, S.M. Two-step Anomaly Detection for Time Series Data. In Proceedings of the International Conference on
Data and Software Engineering (ICoDSE), Pontianak, Indonesia, 13–14 November 2019; pp. 1–5.

14. Wang, J.; Tang, Y.; He, S.; Zao, C.; Kumar, P. LogEvent2vec, Log event to vector based anomaly detection for large scale logs in
internet of things. Sensors 2020, 20, 2451. [CrossRef]

15. Li, X.; Kang, Y.; Li, F. Forecasting with time series imaging. Expert Syst. Appl. 2020, 160, 113680. [CrossRef]
16. Ghaderpour, E.; Vujadinovic, T. The potential of the Least-Squares Spectral and Cross-Wavelet Analyses for Near-Real-Time

Disturbance Detection within Unequally Spaced Satellite Image Time Series. Remote Sens. 2020, 12, 2446. [CrossRef]
17. Prokoph, A.; El Bilali, H. Cross-Wavelet Analysis: A tool for detection of relationships between Paleoclimate Proxy Records. Math.

Geosci. 2008, 40, 575–586. [CrossRef]
18. Duarte, F.S.L.G.; Rios, R.A.; Hrushka, E.R.; de Melloa, R.F. Decomposing time series into deterministic and stochastic influences:

A survey. Digit. Signal Process. 2019, 95, 102582. [CrossRef]
19. Liu, S.; Yu, K. Successive multivariate variational mode decomposition based on instantaneous linear mixing model. Signal

Process. 2022, 190, 108311. [CrossRef]
20. Kubacki, M.; Sosnowski, J. Holistic Processing and Exploring Event Logs. In Software Engineering for Resilient Systems, Proceedings

of the 9th International Workshop, SERENE 2017, Geneva, Switzerland, 4–5 September 2017; Lecture Notes in Computer Science;
Romanovsky, A., Troubitsyna, E.A., Eds.; Springer: Cham, Switzerland, 2017; Volume 10479, pp. 184–200.

21. Locke, S.; Li, H.; Chen, T.-H.P.; Shang, W.; Liu, W. LogAssist: Assisting log analysis through log summarization. IEEE Trans. Softw.
Eng. 2021, in press. [CrossRef]

22. Zhou, J.; Hey, S.; Liuz, J.; Hex, P.; Xiek, Q.; Zhengz, Z.; Lyu, M.R. Tools and Benchmarks for Automated Log Parsing. In
Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice, Montreal, QC,
Canada, 27 May 2019; pp. 121–130.

23. Misra, S.; Shafi, Z.; Pathak, S. Time series event correlation. PeerJ Prepr. 2019. Available online: https://doi.org/10.7287/peerj.
preprints.27959v1 (accessed on 20 October 2021).

24. Harper, J.; Tee, P. A Method for Temporal Event Correlation. In Proceedings of the IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), Washington, DC, USA, 8–12 April 2019; pp. 1573–1577.

25. Zoé, F.; Faget, P.; Rigaux, P.; Rigaux, D.; Gross-Amblard, D.; Gross-Amblard, V.; Thion, V. Modelling Synchronized Time Series. In
Proceedings of the Fourteenth International Database Engineering and Applications Symposium (IDEAS 2010), Montreal, QC,
Canada, 16–18 August 2010; pp. 82–89.

26. Cabrieto, J.; Tuerlinck, F.; Kuppems, P.; Hunyadi, B.; Ceulemans, E. Testing for the presence of correlation changes in a multivariate
time series: A permutation based approach. Sci. Rep. 2018, 8, 769. [CrossRef]

27. Noemi, N.; Matteo, T.; Aste, T. Dynamic correlations at different time-scales with empirical mode decomposition. Phys. A Stat.
Mech. Appl. 2018, 502, 534–544.

http://doi.org/10.1016/j.eswa.2021.115531
http://doi.org/10.1016/j.eswa.2018.09.017
http://doi.org/10.1016/j.eswa.2015.01.060
http://doi.org/10.1109/TDSC.2017.2762673
https://doi.org/10.36227/techrxiv.12570926.v2
http://doi.org/10.1016/j.eswa.2019.04.062
http://doi.org/10.1016/j.eswa.2020.114162
http://doi.org/10.1007/s10618-019-00647-x
http://doi.org/10.3390/s20092451
http://doi.org/10.1016/j.eswa.2020.113680
http://doi.org/10.3390/rs12152446
http://doi.org/10.1007/s11004-008-9170-8
http://doi.org/10.1016/j.dsp.2019.102582
http://doi.org/10.1016/j.sigpro.2021.108311
http://doi.org/10.1109/TSE.2021.3083715
https://doi.org/10.7287/peerj.preprints.27959v1
https://doi.org/10.7287/peerj.preprints.27959v1
http://doi.org/10.1038/s41598-017-19067-2

Sensors 2021, 21, 7128 18 of 18

28. Kubacki, M.; Sosnowski, J. Exploring operational profiles and anomalies in computer performance logs. Microprocess. Microsyst.
2019, 69, 1–15. [CrossRef]

29. Luo, C.; Lou, J.; Lin, Q.; Fu, Q.; Ding, R.; Zhang, D.; Wang, Z. Correlating Events with Time Series for Incident Diagnosis. In
Proceedings of the 20th ACM SigKDD Conference on Knowledge Discovery and Data Mining (SigKDD), New York, NY, USA,
24–27 August 2014; pp. 1583–1592.

30. Van Dortmont, M.A.M.M.; van den Elzen, S.; van Wijk, J.J. ChronoCorrelator: Enriching events with time series. Comput. Graph.
Forum 2019, 38, 387–399. [CrossRef]

31. Xun, P.; Zhu, P.-D.; Li, C.-L.; Zhu, H.-Y. Discovering Multi-type Correlated Events with Time Series for Exception Detection of
Complex Systems. In Proceedings of the IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona,
Spain, 12–15 December 2016.

32. Minaei, B.; Minaei-Bidgoli, B.; Lajevardi, S.B. Correlation Mining Between Time Series Stream and Event Stream. In Proceedings
of the Fourth IEEE International Conference on Networked Computing and Advanced Information Management, Washington,
DC, USA, 2–4 September 2008; pp. 333–338.

33. Yiğitler, H.; Badihi, B.; Jäntti, R. Overview of time synchronization for IoT deployments: Clock discipline algorithms and protocols.
Sensors 2020, 20, 5928. [CrossRef] [PubMed]

34. Skiadopoulos, K.; Tsipis, A.; Giannakis, K.; Koufoudakis, G.; Christopoulou, E.; Oikonomou, K.; Kormentzas, G.; Stavrakakis,
I. Synchronization of data measurements in wireless sensor networks for IoT applications. Ad. Hoc. Netw. 2019, 89, 47–57.
[CrossRef]

http://doi.org/10.1016/j.micpro.2019.05.007
http://doi.org/10.1111/cgf.13697
http://doi.org/10.3390/s20205928
http://www.ncbi.nlm.nih.gov/pubmed/33092256
http://doi.org/10.1016/j.adhoc.2019.03.002

	Introduction
	Problem Statement and Related Works
	Data Models
	Specification of Algorithms
	Practical Examples
	Discussion
	Conclusions
	
	References

