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Abstract: Lane and road marker segmentation is crucial in autonomous driving, and many related
methods have been proposed in this field. However, most of them are based on single-frame
prediction, which causes unstable results between frames. Some semantic multi-frame segmentation
methods produce error accumulation and are not fast enough. Therefore, we propose a deep learning
algorithm that takes into account the continuity information of adjacent image frames, including
image sequence processing and an end-to-end trainable multi-input single-output network to jointly
process the segmentation of lanes and road markers. In order to emphasize the location of the target
with high probability in the adjacent frames and to refine the segmentation result of the current
frame, we explicitly consider the time consistency between frames, expand the segmentation region
of the previous frame, and use the optical flow of the adjacent frames to reverse the past prediction,
then use it as an additional input of the network in training and reasoning, thereby improving the
network’s attention to the target area of the past frame. We segmented lanes and road markers on the
Baidu Apolloscape lanemark segmentation dataset and CULane dataset, and present benchmarks for
different networks. The experimental results show that this method accelerates the segmentation
speed of video lanes and road markers by 2.5 times, increases accuracy by 1.4%, and reduces temporal
consistency by only 2.2% at most.

Keywords: lane and road marker segmentation; mask cropping; optical flow estimation; semantic
video segmentation; temporal consistency

1. Introduction

Unmanned driving technology or auxiliary driving technology has broad develop-
ment prospects. The sensing module and the control unit constitute an unmanned driving
system [1]. The precondition of stable operation of unmanned driving systems is the under-
standing and recognition of high performance environments, which depends on the sensing
module composed of multiple sensors [2]. The lanes and road markers on the highway
do not have special three-dimensional shapes, and collecting the geometric contour of the
surrounding environment only by relying on radar is not enough [3]. Therefore, in addition
to radar, visual sensors and computer vision technology are important links in the whole
sensing module [4]. Moreover, only algorithms that can maintain robustness and achieve
high-quality real-time performance under different circumstances and environments are
suitable for unmanned driving systems [5].

In recent years, increasing numbers of studies have been conducted on semantic image
segmentation based on on-board RGB cameras in academia and industry. With the power-
ful abstract ability of deep learning to learn image features, segmentation of lanes and road
markers has achieved good results, and has gradually become a mainstream technology
in today’s research [6]. However, most of the research on the segmentation of lanes and
road markers is limited to the segmentation of a single image, which produces unstable
segmentation results in the segmentation of continuous video sequences. Although previ-
ous methods presented state-of-the-art results in a single frame of an image, they produced
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crude extrapolations and had efficiency and robustness issues [7]. In particular, the human
eye is able to identify lanes and road markers that are hard to see, allowing drivers to
drive safely [8]. The reason why the driver can drive in this situation is that the human
eye not only analyzes the pictures at every moment they see, but also makes full use of
the effective spatio-temporal information between the sequence of pictures in successive
moments [9]. In other words, the current judgment is highly related to past information [10].
Some common semantic video segmentation methods consider the correlation of video
sequences, for example, the method based on key frames: in every few frames in sequence,
it selects a frame as a key frame. This method can make full use of repeated sequences of
frame information, but increasing distance from the current frame and the key frames may
lead to the accumulated error of semantic segmentation becoming more serious.

In order to consider how to make full use of sequence information, we thought that
the position of the target in adjacent frames in a video sequence does not mutate. Inspired
by this, we intended to contribute to autonomous driving research by:

• Providing two forms of network prior information. One is image preprocessing
using dilation and erosion. Before the image is input into the network, we use the
pre-frame segmentation as a mask to crop the image, and the cropped image is used
as one of the inputs of the network. The purpose is to identify the location of the
target in the picture with high probability. In the other one, the optical flow between
adjacent frames is calculated. Considering the validity of adjacent information, the
segmentation result of the previous frame warps to the current frame position as
another input of the network.

• Designing an end-to-end trainable multi-input single-output network that uses multi-
ple prior information to jointly process the segmentation of lanes and road markers.
Additionally, no post-processing is introduced to avoid the extra computation cost
caused by post-processing, and real-time segmentation without frame delay can
be achieved.

• Evaluating our network in detail in benchmarks on the Apolloscape dataset and the
CUlane dataset, and the experimental results show that our algorithm can output
smoother results in video sequences, and has better robustness than other algorithms,
as well as better real-time performance. In particular, the lane and road marker targets
that are difficult to observe in the images can also be segmented by our algorithm.

The remainder of this paper is structured as follows: Section 2 describes the research
on processing lane and road marker problems in recent years as well as the research on
general video semantic segmentation. The third section describes our proposed model in
detail. Section 4 presents the experimental content and results. Finally, we summarize the
work of this paper in the final section.

2. Related Work

In this section, we introduce some of the previous studies on lanes and road markers,
as well as general video semantic segmentation.

In recent years, the detection and segmentation of lanes or road markers based on deep
learning technology have considerably developed. Huval et al. [11] and Kim et al. [12] pro-
posed using a convolutional neural network (CNN) to deal with lane detection. Li et al. [13]
used CNN to extract the geometric feature information of lanes in pictures, and then
detected lane boundaries through a recurrent neural network (RNN). Neven et al. [14]
proposed Lanenet, which reduced the lane detection problem to an instance segmentation
problem, in which each lane formed its own instance and could be trained end-to-end.
Qin et al. [15] proposed a new method for lane detection based on CNN. Different from
per-pixel image segmentation, this method directly predicts the position of each lane in
the input image with a small amount of calculation. Pan et al. [16] proposed a new lane
detection network structure. Different from the convolution operation commonly used,
the network convolved the feature map in four directions in order to extract features.
Jie et al. [17] combined lane detection and drivable area detection in one task, and used the
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clear geometric relationship between the two tasks to exchange effective features between
the two subnetworks of the multi-task network. Lee et al. [18] established a new dataset
containing harsh environment image samples and proposed an end-to-end trainable multi-
task network to simultaneously solve the detection and recognition of lanes and ground
indicator arrows. Liao et al. [19] proposed a context aggregation module (CAM) and a
spatial detail module (SDM) to adaptively encode multi-scale context information and
channel context information in a larger receptive field, and improve the transmission effi-
ciency of low-frequency information from a low to a high level. Sediqi et al. [20] proposed
dense upsampling convolution (DUC) and dense local context (DLC) to generate denser
high-resolution feature representations and effectively extract the context information of
objects in the scene.

Although the above deep-learning-based methods can achieve good performance in
the task of segmenting lanes and road markers in single frame image, they do not con-
sider the effective information between frames of video sequences, and produce unstable
segmentation results in the segmentation of continuous video sequences.

Semantic segmentation based on video sequences requires pixel-level classification
of every frame image in a video; that is, each pixel in each image is classified into several
semantic categories. Fayyaz et al. [21] proposed an end-to-end architecture combining
temporal and spatial characteristics, and connected multiple fully convolutional networks
(FCNs) into a spatio-temporal convolutional network using long short-term memory
(LSTM). Nilsson et al. [22] designed a spatio-temporal Transformer Johnson unit to inte-
grate the information contained in regions with large differences between frames (drift
deformation). Jin et al. [23] predicted the current image and segmentation through the
previous four frames, and then predicted the segmentation result of the current frame
by combining the features of the previous four frames and the current frame with the
timing information. Gadde et al. [24] proposed Netwarp, which uses the optical flow
between adjacent frames to warp the feature image in the previous CNN frame and add it
to the CNN of the current frame. This method is applicable to many CNN-based network
architectures. Li et al. [25] proposed an efficient and low-latency semantic video segmenta-
tion algorithm that can adaptively propagate interframe features and schedule key frame
positions. Liu et al. [26] proposed a timing distillation method based on time consistency
and a loss function considering inter-frame consistency. Without the introduction of post-
processing methods, this method can be used for many network models by balancing
accuracy, timing consistency, and efficiency without increasing the original model’s infer-
ence time. Lu et al. [27] used optical flow estimation to optimize the lane segmentation of
consecutive frames, and proposed an adaptive scheduling network (ASN), which can be
used to determine the working module (segmentation network or optical flow tracking
module) based on the downsampling feature map of the optical flow estimation network.

In order to bridge the gap in the field of view and structure distribution between
imaging domains, Yang et al. [28] introduced an efficient concurrent attention network
called efficient concurrent attention networks (ECANets), which include a horizontal
segment attention (HSA) module and a pyramidal space attention (PSA) module, directly
capturing the long-range dependencies inherent in omnidirectional imaging and reducing
the amount of calculation required by the attention mechanism.

In order to overcome the limitations of the CNN system on the receptive field,
Zheng et al. [29] proposed using a transformer to extract global features and added a
decoder for semantic segmentation. The CNN structure is more suitable for low-level
features, and the transformer is more suitable for high-level semantics. The segmentation
task not only requires deep semantic information, but also low-level texture boundary infor-
mation to achieve accurate segmentation of object boundaries. Referring to the research of
Dosovitskiy et al. [30], the transformer needs large-scale data for training so that better deep
semantic information of the image can be obtained, and the transformer needs to perform
multiple self-attention calculations and requires a large amount of computing resources.
Liu et al. [31] proposed CondLaneNet, using ResNet [32] as the backbone network, adding
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the standard FPN [33] as the net, and adding a transformer to the minimum feature map
output by ResNet to capture the information associated with lane lines. In the proposal
head part, CondLaneNet divides the image into several grids and outputs two feature
maps: one is a heatmap, which indicates whether there are lane line instances in each
grid; and the other is a parameter map, which outputs a set of parameters corresponding
to the lane line instances. Then, on the feature map of the shared branch, the previously
calculated convolution parameters are used to calculate location maps and offset maps.
Location maps are single-channel feature maps. For each row of the feature map, SoftMax
is first performed, and then the output of SoftMax and the column coordinates are weighted
and summed to obtain the lane line position loc of the row. At the same time, for each row
of the feature map, a fully connected layer is used to predict whether the lane line crosses
the row. Since the calculation of loc is not accurate enough, offset maps are used to predict
an offset value in the horizontal direction.

In this paper, we propose an algorithm that can fully use the sequence interframe
information and can achieve higher accuracy in the segmentation of lanes and road markers
of video sequences, suppress the instability in the segmentation of continuous video
sequences, reduce the waste of interframe information, and achieve a trade-off between
accuracy and efficiency.

3. Model
3.1. Architecture Overview

Figure 1 shows the overall architecture of our algorithm. Our algorithm mainly
consists of five logical steps.

The first step is to obtain the optical flow information. In this stage, the color images
of the current frame and the previous frame are used as the input, and an optical flow
estimation network is used to calculate the optical flow between the two frames.

In the second step, the segmentation result of the previous frame and the color image
of the current frame are input. The segmentation result of the previous frame after the
erosion and dilation operation is used as a mask to crop the color image of the current
frame, and the cropped image and the complete image are input to the third step.

The third step involves inputting the cropped image and the complete image, and
extracting two different color features. Preliminary predictions of lanes and road markers in
the current frame are output through special feature fusion and feature extraction methods.
In this paper, we call the network in this step the main network.

The fourth step is warping the segmentation result output from the previous frame
to the current frame position according to the optical flow information between adja-
cent frames.

The fifth step is connecting the preliminary prediction result of the current frame
output in the third step with the warped segmentation result of the previous frame output
in the fourth step, and then correcting and outputting the segmentation result of the final
lanes and road markers of the current frame through CNN. In this paper, we call the
network in this step the optimized network.

As shown in Figure 2, in order to facilitate the introduction of our model, we simplify
the terms of some basic network combinations in this paper. The method in this paper is
described in detail below.
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Figure 1. Overview of our model. A mask is generated by the optical flow of adjacent frames to crop the current frame
image, and the cropped image and the complete image are used as the input of the main network, which is responsible for
the output of the preliminary prediction of the current frame. Then, the optical flow of adjacent frames is used to warp
the segmentation of the previous frame to the current frame position, and the distorted segmentation and the output of
the main network are used as the input of the optimization network, which is responsible for revising the preliminary
prediction of the main network and output the final segmentation of lanes and road markers.
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Figure 2. The names of some basic network combinations are simplified in this paper. (a) The
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(c) the combination of CBR-Res-CBR and residual structure is referred to as the Outer Res unit.
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3.2. Optical Flow Estimation

The key to this step is estimating the optical flow of the current frame relative to the
previous frame. We take two images of the same size as the input, and estimate the moving
distance and direction of the optical flow of each pixel in the two-dimensional plane of the
image. The main aim in this study was to design a segmentation algorithm for lanes and
road markers. Therefore, we used the optical flow estimation network PWC-NET proposed
by [34] to directly obtain optical flow information.

Optical flow estimation is performed offline; PWC-NET is trained separately, and
participates in inference after training.

3.3. Mask and Crop

In a video sequence, the position of the target in the adjacent frame does not change
suddenly; that is, the translation and rotation of the target existing in the previous frame
in the current frame image are within a certain range. Therefore, our method involves
using the output of the previous frame to emphasize the area with a high probability of
occurrence of the target in the current frame.

In order to reduce the influence of noise, we first corrode the segmentation result of
the previous frame. The function of the erosion operation is to reduce the segmentation
noise, so the size of the erosion core should be set very small; otherwise, the small correct
segmentation will be erased by mistake. We set the size of the erosion core to 1 × 1.

Then, we expand the segmentation area through the dilation operation to cover the
possible position of the target in the current frame image and provide a region proposal.
We use the rectangular dilation kernel; the size of the dilation core should be determined
according to the motion intensity of the adjacent frame scene. There are many factors
that affect the motion intensity of adjacent frames, such as the video frame rate, the linear
velocity and angular velocity of the target movement, and the linear velocity and angular
velocity of the camera movement. In order to avoid the coupling of these unrelated factors,
we calculate the dense optical flow between adjacent frames in the first step, and determine
the size of the dilation core through the optical flow. Specifically, we first calculate the
optical flow of the entire image, and then evenly divide the image into S × T grids, where
each grid uses a different dilation core size. In order to cover the positions of the target
in the current frame image as much as possible, the size of the dilation core in a grid is
determined by the maximum optical flow distance in the grid, and the calculation method
is as follows:

d =
√

β2
1 + β2

2 (1)

D = η ·max(d1, d2, . . . , dn) + µ (2)

where D is the size of the dilation kernel in the grid; d is the Euclidean optical flow distance
of the pixel points in the grid, β1 and β2 are the transverse optical flow distance and
longitudinal optical flow distance of the pixel points, respectively; n is the number of pixel
points in the grid; and η and µ are parameters that are used to fine-tune the size of the
dilation kernel. Figure 3 shows a comparison of the dilation effect and image cropping
effect generated by four typical values of η and µ in the 640 × 360 image in three scenes.

3.4. The Main Network
3.4.1. Extract the Characteristics of Different Input Sources

The cropped image tends to detect the position of the existing target in the current
frame, while the complete image is used to supplement the position of the new target.
Although the cropped image and the full image of the current frame are in the same
RGB format, the information they contain has different degrees of importance. Therefore,
instead of directly connecting the two images, we introduce a branch we call Clipping-net
to process the cropped images separately. As shown in Figure 4, CNN extracts the color
features of the cropped image and the complete image on two branches separately to retain
the inherent information weight of the two different data and finally connect them together.
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Figure 3. The effect of cropping images with four different dilation kernel sizes. (a) The global size of the dilation kernel
is approximately 1; that is, the cropped area is approximately equal to the segmentation result of the previous frame. It
is obvious that the cropped image cannot cover the target position of the current frame; (b) the size of the dilation kernel
is expanded, and the cropped image can cover more of the current frame target region, but it has not reached complete
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the current frame. (d) Continue to expand the size of the dilation kernel. Obviously, the cropped image can completely
cover the target area of the current frame, but too much redundant background is retained.
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3.4.2. Fusion Features and Output Preliminary Predictions

The color features were extracted from the cropped image and the complete image
above, and now these features need to be merged. A commonly used method is to directly
generate pixel-by-pixel predictions from the trimmed image features and complete image
features. However, sometimes, due to cropping errors, the previous cropping may be
incomplete or contain too many background pixel features. Therefore, directly fusing the
two features will reduce the prediction performance.

As shown in Figure 5, we use a special feature fusion method suitable for the segmen-
tation of lanes and road markers when the cropped image contains too much background
or the cropped image is accidentally incomplete. The key idea is to carry out global fea-
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ture fusion before generating per-pixel prediction, so that the prediction can be provided
according to the semantic information of the whole feature space; that is, the complete
information of the whole color image can be considered implicitly, and the impact of image
cropping errors can be reduced. Specifically, we first connect the feature maps of the two
input images on the channel dimension, and then input them into a CNN containing a
pyramid structure, using the code-decoding structure to generate a global feature map
with a constant size. Then, the feature maps directly connected with the two features
are connected to obtain the complete feature maps. We use the complete feature maps to
enrich the features of each pixel to provide global context information. Then, the result-
ing complete feature map is input into the Pyramid pooling network instead of directly
upsampling in order to better use the global feature information and avoid mismatching,
category confusion, and neglecting of small categories. The output of the Pyramid pooling
network is then entered into a decoder consisting of a 3 × 3 convolutional layer, a 1 × 1
convolutional layer, an upsampling, and a residual structure to output the preliminary
lanes and road markers prediction results. In this paper, this part and the above part of the
network are collectively referred to as the main network.
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Figure 5. A network for feature fusion and output preliminary prediction. We trained this network to predict the preliminary
lane and road marker segmentation according to the cropped image and the complete image, output N + 1 two-dimensional
matrices with the same length and width as the color image, and then obtained the preliminary prediction according to
SoftMax. Each element of the same pixel coordinate in the N + 1 matrices represents the probability that each pixel in the
current frame image is predicted to be N categories or backgrounds.

3.5. Warp the Segmentation Result of the Previous Frame

We use the optical flow information estimated in the first step to warp the segmenta-
tion result output from the previous frame to the current frame position. The transforma-
tion of any pixel from the old two-dimensional coordinates to the new two-dimensional
coordinates is: {

x = δ11v + δ21w + ς1

y = δ12v + δ22w + ς2
(3)

where x and y are the new abscissa and new ordinate after pixel transformation, respec-
tively; and v and w are the old abscissa and old ordinate before pixel transformation,
respectively. The corresponding homogeneous coordinate matrix is expressed as:
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[x, y, 1] = [v, w, 1] · T = [v, w, 1] ·


δ11 δ12 0

δ21 δ22 0

ς1 ς2 1

 (4)

where the pixel space coordinate scaling rotation transformation matrix and translation
transformation matrix are:

λ =

[
δ11 δ12

δ21 δ22

]
=

[
1 0
0 1

]
, B = [ς1, ς2] (5)

Our warping processing needs to preserve the original size and scale of the target,
so the scaling transformation matrix λ is the identity matrix E. The values of ς1 and ς2 in
matrix B are the two elements in the last dimension of the four-dimensional matrix gener-
ated by optical flow estimation, respectively representing the transverse and longitudinal
movement distances of post-warping coordinates relative to pre-warping coordinates.

3.6. Optimized Network

In order to fully use the continuous information of the video sequence, we combine
the preliminary detection result of the current frame output by the main network with the
segmentation result of the previous frame after optical flow warping, so that the model can
correct the segmentation of the current frame. The key is to train the network to improve
the initial segmentation results instead of making new predictions. For this, we must use
the segmentation of the previous frame as part of the input for this stage. Our main idea
is using CNN to learn the local information of adjacent frames and output more refined
detection results. For the convenience of description, we call the network at this stage the
optimized network. Figure 6 shows the structure of the optimized network.
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Figure 6. The structure of the optimized network. Our optimized network uses two feature map fusion methods to improve
the main network segmentation results, so it contains two branches: a Concat branch and an Add branch. Finally, the
optimized network outputs the segmentation results through SoftMax.

The optimized network can be trained together with the main network, but in the
initial stage of training, the output effect of the main network is poor; that is, it contains
too much noise, which affects the learning efficiency of the optimized network and leads to
the failure of the optimized network to learn enough meaningful information. Therefore,
in the experiment, it was often necessary to let the main network train and converge first,
and then we started the joint training.

3.7. Loss Function

After defining the entire network structure, we focused on the training objectives. As
mentioned above, our method first needs to train the main network, and then the optimized
network is added to the training. We used Focal Loss in both training stages.
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We define the cross-entropy of all the pixel coordinates of the lanes and road markers
in the label and the corresponding pixel coordinates of the lanes and road markers predicted
by the network as the loss. Different from general image semantic segmentation tasks, in
tasks of segmenting lanes and road markers, most of the area in the image is the background:
the number of background pixels is about 100 times the sum of the number of pixels in other
categories. Therefore, the category probability of the network output is easily dominated
by a large area of background. In order to weaken the dominant position of the background
category in the image on the training loss, we expanded it into multi-classification Focal
Loss based on the binary loss function Focal Loss proposed in [35]. Specifically, the loss of
network is defined as:

L =
1

H ·W
H

∑
x=0

W

∑
y=0

[−α(x,y)GT · (1− P(x,y)GT)
γ · log P(x,y)GT ] (6)

where (x, y) represents the pixel coordinates; H and W represent the height and width of
the network output size, respectively. Since the network output size is the same as the
network input size, they also represent the height and width of the network input size. p
represents the probability of (x, y) pixel being predicted as the true category, γ is used to
weaken the dominant effect of high-probability categories on the overall loss, α represents
the true category weight of (x, y) pixel, and all category weights are dimension vectors:

A = [α1, α2, α3, . . . , αn−1, αn] (7)

where n is the number of categories, and the value of α is determined according to the
proportion of the number of samples of this category:

αclass = (1− Pclass)
δ (8)

where Pclass represents the proportion of the number of samples in this category, and δ is
used to weaken the dominant effect of the category with a high proportion on the overall
loss, that is, to reduce the loss of samples with high proportion.

In the joint training stage of the main network and the optimized network, we cal-
culated the Focal Loss of the main network and the optimized network, separately. The
complete loss function of joint training is the average of the two losses:

Lours =
Lm + Lo

2
(9)

where Lours refers to the complete loss of joint training, Lm refers to the network loss, and
Lo is the optimized network loss.

4. Experiment and Analysis

Our experimental platform was configured as follows: Intel i9-9900K 5 GHz × 8 CPU,
32GB RAM, NVIDIA Tesla V100 32 GB GPU (NVIDIA, Santa Clara, CA, USA).

4.1. Dataset and Evaluation Metric

We used Baidu’s open-source Apolloscape lanemark segmentation dataset [36] and
the CULane dataset [16] to test our model. The Apolloscape lanemark segmentation dataset
wasa collected from many cities in China, such as Beijing, Shanghai, and Shenzhen. The
Apolloscape lanemark segmentation dataset contains tens of thousands of labeled images
with a resolution of 3384 × 2710, covering solid lines, broken lines, turning arrows, zebra
crossings, parking area boundaries, and covering a variety of different traffic scenes. In
particular, the labels of the Apolloscape lanemark segmentation datasets were generated
on a three-dimensional point cloud and then projected onto a two-dimensional image
plane, so it is very precise. As shown in Figure 7, even the seemingly small targets in
two-dimensional images are labeled. The dataset also includes complex conditions such
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as different weather conditions, specular reflections of objects, over- or under-exposure,
congestion and obstructing of vehicles or pedestrians, and damaged targets. CULane is a
large-scale challenging dataset for academic research on lane detection. It was collected
by cameras installed on six different vehicles driven by different drivers in Beijing, who
collected more than 55 h of video and extracted 133,235 frames. For each frame, CULane
manually annotates the lane lines using cubic splines. As shown in Figure 8, when the lane
markings are obscured or invisible by the vehicle, CULane still marks the lanes according
to the context.

In training, we doubled the amount of data by flipping the image horizontally to
avoid model prediction bias caused by the left or right perspective. In other words, the
Apolloscape lanemark segmentation dataset and the CULane dataset were collected from
the road driving on the right, and we can simulate road driving on the left by flipping
the dataset horizontally. In particular, for classes whose meanings change after horizontal
flipping, we also amended their class labels at the same time.

We used the method proposed in [26] to evaluate temporal consistency (TC). The
segmentation of the previous frame is warped to the current frame position by optical flow,
and the intersection over union (IoU) between the two segmentations is calculated as the
evaluation of TC. The calculation method is as follows:

TC(Pt−1, Pt) =
ˆPt−1 ∩ Pt
ˆPt−1 ∪ Pt

(10)

where Pt is the segmentation result of the current frame, and ˆPt−1 is the result after the
segmentation of the t− 1 frame is warped to the position of the current frame. Then, the
average TC of each sequence in the test set was calculated to evaluate time consistency,
as follows:

TC =
1
M

M

∑
i=1

ρ̂i ∩ ρi
ρ̂i ∪ ρi

(11)

where ρ̂ = {P̂1, P̂2, . . . , ˆPT−1} and ρ = {P2, P3, . . . , PT}, T is the number of images in the
video sequence, and M is the number of video sequences in the test set.

For the CULane dataset, we used the evaluation method mentioned in SCNN [16],
which calculates the F1 measure as the evaluation criterion. By calculating the IoU between
the ground truth and prediction, a threshold is set to determine whether the prediction is
true positive (TP) , false positive (FP) , or false negative (FN) . The IoU between ground
truth and prediction was defined as the IoU between two fixed-width lanes. Specifically,
the calculation method of the F1 measure is as follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1measure =
2 · Precision · Recall
Precision + Recall

(14)

4.2. Training

In the experiment, we found that the effect of directly training the whole model was
often poor because the output of the main network contained too much noise in the initial
stage of training, which disrupted the learning ability of the optimized network, resulting in
the inability of the optimized network to learn enough meaningful information. Therefore,
our training work was divided into two stages. First, we only trained the main network to
initialize the parameters, and then, after the convergence of the main network, we added
the optimized network into the joint training. For both stages, the model is trained by the
Adam optimizer [37] controlled by the β parameter. We set β1 = 0.9, β2 = 0.99, and the
basic learning rate as 2× 10−3.
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Image Ground true

(a)

(b)

(c)

Image Ground true

(a)

(b)

(c)

Figure 7. The annotations of the Apolloscape lanemark segmentation dataset are very accurate.
(a) Safety zone warning lines in fence gaps; (b) tiny targets in the distance, including turning arrows,
zebra crossings, stop lines, and single solid lines; (c) single solid lines of opposite lanes and border
lines of parking areas obscured by railings.

(a)

(b)

(c)

Image Ground true

(a)

(b)

(c)

Image Ground true

Figure 8. The CULane dataset contains a variety of challenging scenarios: (a) the ratio of light to
dark in the image under the overpass is very large; (b) the traffic on the road is crowded, and the
blocked lanes are also marked according to the context; (c) the night scene is extremely dark, and the
visibility of the lanes is poor.

In order to observe whether this training strategy was conducive to improving the
learning effect of our model, we compared two training methods, and the experimental
results are shown in Table 1. We also output the middle layer feature maps of the model
separately, as shown in Figure 9. Obviously, more neurons respond correctly and produce
less noise, especially near lanes and road markers, indicating that the network using this
training strategy can extract target features faster.

Table 1. The mIoU classes, mIoU categories, and TC of our model under two training strategies.

Training Strategy mIoU cls mIoU cat TC

Direct joint training 0.708 0.891 0.719
Two-stage training 0.776 0.953 0.771
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Figure 9. Output and intermediate feature maps of our model under two training strategies. (a) The
model with direct joint training from start to finish. The main network cannot focus on the lane and
road marker targets, and the optimized network produces a large amount of noise. (b) The model in
which the main network is trained first and then they are trained together. The main network can
extract the target features correctly, and the optimized network produces only a small amount of
noise, and the model output is better.

4.3. Ablation Experiments

First, we separately tested the improvement of the Clipping-net branch in the network
for lane and road marker segmentation, and we tried different dilation kernel sizes. In
Table 2, we show the changes in the mean intersection over union (mIoU) and TC caused
by the size adjustment of the dilation kernel of mask cropping. It can be seen that in the
forward reasoning process of the model, a small dilation kernel leads to poor effect, and
mIoU and TC increase with the expansion in the size of the dilation kernel. However, when
η and µ exceeded 1.2 and 25, respectively, the model could not continue to obtain more
gains, and even showed a decrease in mIoU and TC.

In Table 3, we show the classes’ mIoU of the networks with Clipping-net branch
and the networks without Clipping-net branch. Our network achieved the best mIoU
performance when we set η = 1.2 and µ = 25 so that the dilation kernel size was 1.2 times
the optical flow distance plus half of the average width of the lanes and road markers
(about 25 pixels). Notably, the networks without Clipping-net branch and with η = 2.8
and µ = 50 as the Clipping-net branch network have an almost mIoU average of the input,
but the precision of each category is different, and the linear target segmentation accuracy
increases, apparently because the Clipping-net branch provides more information, i.e., the
location of the target may exist in the current frame. We output feature maps of different
sizes output by the convolution layers of different depths in the main network with and
without Clipping-net branch. We averaged the feature values of each channel in the feature
maps. These feature maps are shown in Figure 10. It can be easily observed that when we
added Clipping-net branch into the main network, the features near the lanes and road
markers in the feature map were more obvious; that is, the main network could extract the
correct features in the shallower convolution layer. Therefore, in the other experiments that
followed, we added the Clipping-net branch to the main network and used η = 1.2 and
µ = 25.
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Table 2. The mIoU classes, mIoU categories, and TC of our model with dilation kernels of differ-
ent sizes.

Clipping-Net Branch mIoU cls mIoU cat TC
η µ

0.1 1 0.693 0.877 0.632
0.1 8 0.699 0.879 0.678
0.5 8 0.713 0.892 0.704
0.5 25 0.769 0.946 0.763
1.2 25 0.776 0.953 0.771
1.2 50 0.773 0.951 0.770
2.3 50 0.768 0.947 0.770
2.8 50 0.767 0.945 0.769
2.8 80 0.754 0.928 0.761

Full image (without cropping) 0.742 0.910 0.728

Table 3. The mIoU of our model that removes the Clipping-net branch and our model that contains the Clipping-net branch
in each class.

Category Class No Clipping-Net Branch
Clipping-Net Branch

η = 1.2 and µ = 25 η = 2.8 and µ = 50

Dividing

White solid 0.995 0.997 0.987
Yellow solid 0.871 0.903 0.873
Yellow double solid 0.903 0.909 0.895
White solid and broken 0.863 0.894 0.887

Guiding White broken 0.705 0.715 0.706
Yellow broken 0.847 0.878 0.851

Stopping White solid 0.789 0.792 0.787

Parking White solid 0.667 0.679 0.662

Zebra Crosswalk 0.858 0.921 0.854

Rotation arrow

White thru 0.653 0.712 0.681
White thru and left 0.668 0.698 0.663
White thru and right 0.732 0.768 0.758
White left 0.730 0.744 0.741
White right 0.619 0.626 0.620
White left and right 0.566 0.587 0.541

Reduction Speed bump 0.571 0.617 0.579

Attention Zebra attention 0.743 0.759 0.733

No park No parking 0.759 0.761 0.752

Average 0.752 0.776 0.754
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Figure 10. The feature maps of different sizes output by convolutional layers of different depths in
the network. (a) Our network without Dlipping-net branch: the input of the network is only the
complete image of the current frame. Some convolution kernels react to many non-target features,
resulting in features near lanes and road markers being difficult to be extracted correctly by the
network. (b) Our network with Clipping-net branch: the inputs of the network not only include the
complete image of the current frame, but also the cropped image of the current frame. Obviously,
the Clipping-net branch can inhibit the activation of the convolutional kernels in the background.
Convolutional kernels almost never react to non-target features, and most of the activated neurons
are concentrated near the target. Compared with (a,b) can extract the features near lanes and road
markers earlier.

4.4. Evaluation
4.4.1. Apolloscape Lanemark Segmentation Dataset

We also tested other algorithms for comparison, including the single-frame image
algorithm PSPNet [38], VPGNet [18], DeepLabv3+ [39], Dilation-CNN [40], HRNet [41]
and the semantic video segmentation algorithm [26], GRFP [22], and NetWarp [24]. Table 4
shows the comparative results. All the listed algorithms used NVIDIA Tesla V100 to
retrain and predict on the Apolloscape lanemark segmentation dataset. We used the best
single-frame method DeepLabv3+ [39] and the best multi-frame method PSPNet + Eff. [26]
as the baseline to compare the performance on the test set. Compared with the single-frame
image segmentation method, the TC of all the semantic video segmentation methods
increased. Compared with the high-precision, single-frame image semantic segmentation
algorithm DeepLabv3+, our algorithm produced a 1.5% improvement in mIoU classes,
1.1% improvement in mIoU categories, and 6.5% improvement in TC, and the speed was
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increased three-fold. The TC of our algorithm was 2.2% lower than the best semantic video
segmentation algorithm PSPNet + Eff. [26], but produced a 1.4% improvement in mIoU
classes and a 1.5% improvement in mIoU categories, and the speed was increased 2.5-fold.

Table 4. Segmentation score for lanes and road markers on the Apolloscape lanemark segmentation
dataset by different methods.

Method mIoU cls mIoU cat TC fps

Single frame

VPGNet [18] 0.720 0.905 0.653 42
DeepLabv3+ [39] 0.761 0.942 0.706 21
PSPNet [38] 0.748 0.921 0.683 30
Dilation-CNN [40] 0.673 0.859 0.611 59
HRNet [41] 0.735 0.916 0.664 87

Multiframe

PSPNet + GRFP [22] 0.755 0.935 0.761 26
PSPNet + NetWarp [24] 0.754 0.931 0.767 25
PSPNet + Eff. [26] 0.762 0.938 0.793 30

Dilation + GRFP [22] 0.687 0.864 0.679 54
Dilation + NetWarp [24] 0.688 0.863 0.692 51

HRNet + Eff. [26] 0.744 0.923 0.785 87

Ours 0.776 0.953 0.771 74

Image

Ground 

true

DeepLabv3+

PSPNet+NetWarp

Ours

Figure 11. Some examples of the segmentation results of lanes and road markers on the Apolloscape lanemark segmentation
dataset by our model are presented. Our model can obtain more information from adjacent frames and segmentation
better by using clipping-net branch and optical flow optimized network. We indicate the obvious segmentation differences
between the different methods with a red dotted box.

We show some examples from the test set in Figure 11 to illustrate the benefits of our
approach. Notably, our method can suppress the instability caused by the segmentation of
continuous video sequences and more accurately segment the turn arrows, broken lines,
zebra crossings, and the opposite lane blocked by railings. It can be found that the positions
of the above targets are obviously changed by inter-frame motion. When we use prior
information to emphasize the possible positions of the targets and combine the consistent
information of adjacent frames together, the segmentation of the current frame becomes
easier and more accurate.

We also noticed that, compared with the above targets, the positions of single solid
lines and double solid lines were insensitive to inter-frame motion, so their segmentation
accuracy was already very high in the single-frame lane and road marker segmentation
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methods, so cannot be easily improved by the current proposed semantic video segmenta-
tion methods, and our method is no exception.

4.4.2. CULane Dataset

We provide additional experimental comparisons on CULane. In Table 5, compared
with the baseline method, our lane line segmentation accuracy and time consistency
are improved, and a better trade-off is achieved between accuracy and inference speed.
Obviously, our method produced improved performance in dazzle light, arrow, and night
scenes. This is because the lanes in these scenes become difficult to detect. If only relying
on the image of the current frame for inference, segmentation becomes very difficult. Our
method considers the past segmentation and the optical flow between image frames and
uses them to optimize the segmentation accuracy of the current frame, thus making lane
segmentation easier. In addition, TC considerably improves. The advantage is that the
segmentation result of the sequence is more stable, and the segmentation jitter of different
frames is reduced. Some qualitative comparisons are shown in Figure 12.

Table 5. Comparison of different methods on CULane, with an IoU threshold of 0.5. For crossroad, only FPs are shown.

Category SCNN [16] ENet-SAD [42]
LaneATT [43] CondLaneNet [31]

Ours
Small Medium Large Small Medium Large

Normal 90.60 90.10 91.17 92.14 91.74 92.87 93.38 93.47 92.69
Crowded 69.70 68.80 72.71 75.03 76.16 75.79 77.14 77.44 76.37
Dazzle light 58.50 60.20 65.82 66.47 69.74 70.72 71.17 70.93 71.34
Shadow 66.90 65.90 68.03 78.15 76.31 80.01 79.93 80.91 80.52
No line 43.40 41.60 49.13 49.39 50.46 52.39 51.85 54.13 51.71
Arrow 84.10 84.00 87.82 88.38 86.29 89.37 89.89 90.16 90.19
Curve 64.40 65.70 63.75 67.72 64.05 72.40 73.88 75.21 71.45
Night 66.10 66.00 68.58 70.72 70.81 73.23 73.92 74.80 74.93
Crossroad 1990 1998 1020 1330 1264 1364 1387 1201 1376

Total 71.60 70.80 75.13 76.68 77.02 78.14 78.74 79.48 78.32
TC 0.634 0.667 0.691 0.705 0.708 0.732 0.737 0.749 0.783
FPS 17.2 82 277 197 30 248 171 65 89

Image

Ground true

LaneATT

CondLaneNet

Ours

Figure 12. Some examples of the qualitative comparison results of our work on the CULane dataset are shown. In some
difficult scenarios, because our method explicitly considers the segmentation in the previous moment, it can sometimes
produce better results.
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However, we also found some limitations of our method: for normal or other scenes,
our method cannot improve accuracy. This is because, in these scenes, the lanes are clearly
visible in most cases; in other words, the inter-frame movement has little effect on the
target position. Our method is obviously aimed at scenes that are occluded or difficult to
see in lanes and the stability of sequence segmentation, so our method does not improve
the segmentation accuracy in normal or other scenes.

5. Conclusions

One of the important technologies in the field of autonomous driving is the segmenta-
tion of lanes and road markers. Previous researchers have proposed many methods for this
task. Most of the lane and road marker segmentation methods are only trained on a single
frame of an image, and the correlation between frames is not considered, which leads to
unstable segmentation on continuous frame image sequences. A few methods consider the
correlation of video sequences, such as methods based on key frames. These methods may
cause the cumulative error of semantic segmentation to become increasingly serious as the
distance between the current frame and the key frame increases.

In this work, we proposed a video lanes and road markers segmentation algorithm,
which includes image sequence processing and an end-to-end trainable multiple-input
single-output network to jointly handle lane and road marker segmentation. Our method
involves estimating the optical flow of adjacent frames, and then using the segmentation
of the previous frame to crop the target area of the past frame and its neighborhood
through a mask, thereby emphasizing the location of high-probability targets in adjacent
frames, and providing region proposal for the semantic segmentation network, guiding
the network to move its attention to the area near the target in the past frame. Finally, the
optimized network uses optical flow information to refine the segmentation results. Tests
on the Apolloscape lanemark segmentation dataset and the CULane dataset showed that
compared with single-frame image segmentation algorithms and other semantic video
segmentation algorithms, our method achieves higher accuracy in image sequences, and
acheived improvements in multiple evaluations. Especially for targets such as turning
arrows, broken lines, zebra crossings, and opposite lanes blocked by railings, as well
as in dazzle light, arrows, and night scenes, our method provides significant accuracy
improvements. Among the robust methods, the segmentation speed of video lane and
road marker is faster by 2.5 times and accuracy is higher by 1.4%. In the worst case, the
time consistency is reduced by only 2.2% at most. In future work, we will continue to
study the segmentation and detection of lanes and road markers. Our goal is to explore
novel pipelines that use continuous frame information to further improve the segmentation
accuracy and stability of target edges in image sequences.
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