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Abstract: Trajectory tracking is a key technology for precisely controlling autonomous vehicles. In
this paper, we propose a trajectory-tracking method based on model predictive control. Instead
of using the forward Euler integration method, the backward Euler integration method is used to
establish the predictive model. To meet the real-time requirement, a constraint is imposed on the
control law and the warm-start technique is employed. The MPC-based controller is proved to be
stable. The simulation results demonstrate that, at the cost of no or a little increase in computational
time, the tracking performance of the controller is much better than that of controllers using the
forward Euler method. The maximum lateral errors are reduced by 69.09%, 47.89% and 78.66%. The
real-time performance of the MPC controller is good. The calculation time is below 0.0203 s, which is
shorter than the control period.

Keywords: autonomous driving; trajectory tracking; real-time control; model predictive control

1. Introduction

Research in autonomous driving has aroused increasingly more attention of late [1,2].
The most basic and important goal of an autonomous passenger vehicle is to free people
from driving and safely take passengers from an initial state to a final state in a desired
interval of time. The architecture of contemporary autonomous driving systems is typically
organized into the perception system and the decision-making system [3]. The perception
system takes charge of estimating the vehicle states and representing the surrounding
environment using data from sensors, including Light Detection and Ranging (LIDAR),
Radio Detection and Ranging (RADAR), cameras, a Global Positioning System (GPS), and
an Inertial Measurement Unit (IMU). In particular, camera data is of vital importance.
Tesla released its fully self-driving version 9 Beta software on 10 July 2021, which relies on
camera vision and neural net processing to deliver autopilot. The Lane Support System
(LSS) uses cameras to identify the road lines and alert drivers to potential hazards. However,
there is still much uncertainty regarding the vision needs of LSS and the results of the
experimental tests for LSS are quite limited [4,5]. Cafiso and Pappalardo [4] developed
logit models to investigate road characteristics and conditions that affects LSS performance
and employed the Firth’s penalized maximum-likelihood method to estimate the logistic
regression coefficients and standard errors to describe the rareness of the events. They gave
threshold values for the luminance coefficient in diffuse lighting conditions and horizontal
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curvature radius, and presented remarks on road maintenance and design standards.
Pappalardo et al. [5] experimentally tested LSS performance in two lane rural roads with
distinct geometric alignments and road marking conditions. They proposed a decision
tree method to analyze the cause of the LSS faults and the effects of the variables involved.
On the other hand, the decision-making system takes charge of navigating a car from the
current position to a goal position safely, feasibly, timely, and comfortably [6]. The decision-
making system can be further divided into three subsystems: a decision and planning
system, a control system, and an actuation system. Of them, motion planning is a key
autonomous driving technique. Li and Shao [7] proposed a motion planner for autonomous
parking, and the time-optimal dynamic optimization problem with vehicle kinematics,
collision-avoidance conditions and mechanical constraints was solved using a simultaneous
approach using the interior-point method. Zhang [8] proposed a hierarchical three-layer
trajectory planning framework to realize real-time collision avoidance on highways under
complex driving conditions. Therefore, a general framework of an autonomous driving
system is shown in Figure 1. Besides a perception and decision-making system, advanced
X-by-wire chassis, including drive-by-wire, steer-by-wire, brake-by-wire and active/semi-
active suspension subsystems are of vital importance to improving the performance and
safety of connected and autonomous vehicles. Zhang et al. [9] proposed a fault-tolerant
control method for steer-by-wire systems to mitigate the undesirable influence of front
wheel steering angle sensor faults via the use of the Kalman filtering technique. A complete
and systematic survey on chassis coordinated control methods for full X-by-wire vehicles
can be found in [10]. Here we focus on trajectory tracking, which is a key technology for
precisely controlling autonomous vehicles.

Figure 1. General framework of an autonomous driving system comprising perception, decision and
planning, control and actuation.

The trajectory tracking algorithms are designed to ensure that a vehicle follows a
predetermined trajectory generated either offline using navigation systems or online using
the motion planning module. The performance of trajectory tracking directly determines
the performance of autonomous vehicles, which involves driving safety, passenger com-
fort, travel efficiency, and energy consumption [11]. The trajectory tracking control of
autonomous vehicles is a challenging research area because these systems typically are
nonlinear systems with non-holonomic constraints.

Pure-pursuit [12] and the Stanley method [13] are two prevalent geometric controllers.
The main advantage of these methods is that they use simple geometric models with few
parameters, and therefore can give timely feedback on the current state and constraints
to meet the real-time requirement of an autonomous vehicle. The pure-pursuit method
and its variants are one of the most commonly used methods to solve the path-tracking
problem for mobile robots [14]. The Stanley method is the path-tracking approach used by
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Stanley, Stanford University’s autonomous car; Stanley won the DARPA Grand Challenge
in 2005 [13]. However, these methods have their limitations. Pure-pursuit control works
as a proportional controller of the steering angle operating on the cross-track error by
calculating the curvature from the current position to some goal position. When the look-
ahead distance is too large, its performance is poor, and the vehicle may cut corners when
changing direction or making a U-turn. The Stanley method considers both the heading
and cross-track errors and therefore it is more effective and steady than the pure-pursuit
method. But it does not perform well on discontinuous paths. To sum up, geometric-based
tracking controllers (pure pursuit, Stanley, etc.) have a simple structure and are easy to
implement. However, they are not suitable for applications that need to consider vehicle
dynamics (e.g., high-speed trajectory tracking, extreme path curvature, etc.). It is also
difficult to achieve a trade-off between stability and tracking performance [15].

Proportional-Integral-Derivative controllers (PID) [16] and sliding model controllers
(SMC) [17] are two prevalent classical control algorithms. Although PID controllers have
good tracking performance, there is a major challenge in the tuning of the parameters
because of the vehicle and tire nonlinearities. SMC is a well-developed nonlinear state-
feedback controller and has been used to design vehicle trajectory tracking controllers.
Because of the nonlinear control law, SMC shows good tracking accuracy. However, there
are several drawbacks: first, its performance is sensitive to the sampling rate of the con-
troller; second, chattering problems exist under certain conditions [18]; third, robustness
is only guaranteed on the sliding surface; and lastly, it needs prior knowledge [19]. To
sum up, compared with geometric-based tracking controllers, model-based tracking meth-
ods are more feasible and reliable in real driving scenarios at the cost of the increase in
computational burden and complexity.

Reinforcement learning (RL) has shown an ability to achieve super-human results at
turn-based games like Go [20] and chess [21]. Deep RL has been applied to the decision-
making system of autonomous driving in several simulated environments [22]. Moham-
madi et al. [23] proposed an optimal tracking controller for nonlinear continuous-time
systems with time-delay, mismatched external disturbances, and input constraints, using
the technique of integral reinforcement learning and a Hamilton-Jacobi-Bellman equation.
However, there are two main limitations for RL-based methods. First, they require large
amounts of data to build up a feasible model; specifically, data is sometimes expensive and
hard to obtain. Second, they require a sufficiently long time to train the model to complete
the specific tasks due to significant data manipulation. The performance of the controllers
using machine-learning methods relies on the learning capability of the model and the
quality of the data.

Model Predictive Control (MPC) has been applied to trajectory planning and tracking
of an autonomous vehicle due to its flexibility and ability to compute optimal solutions with
hard and soft constraints [24,25]. Shen et al. [24] proposed a unified receding-horizon opti-
mization scheme for the integrated path-planning and tracking control of an autonomous
underwater vehicle using nonlinear MPC techniques. Borrelli et al. [25] proposed a novel
approach to autonomous steering systems based on an MPC scheme. The general frame-
work of an MPC structure is shown in Figure 2. However, these MPC-based tracking
controllers are feasible only in low-speed scenarios.

Figure 2. General framework of an MPC structure.
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The accuracy of the trajectory tracking control can be greatly improved by improving
the accuracy of the predictive model. Most researchers have attempted to improve the
accuracy of the kinematic or dynamic model to improve the accuracy of the controller. Few
people paid attention to the computation errors during the integration process. With the
accumulation of the computation errors, the controller could lose its stability or an accident
might even result.

In this paper, we propose a new trajectory-tracking algorithm based on MPC. Instead
of using the forward Euler integration method, the backward Euler integration method is
used to establish the predictive model.

The contributions here can be summarized as follows:

• A trajectory tracking method is proposed based on MPC. Instead of using the forward
Euler method, the backward Euler method is used to establish the predictive model.
The proposed method is designed to meet the real-time requirement of autonomous
vehicles by structuralizing the control law and employing the warm-start strategy.

• Unlike conventional MPC-based controllers, both the acceleration and steer angle
are control inputs. The proposed MPC-based controller can automatically adjust the
velocity according to the information of the reference trajectory.

• The dynamic regret of the proposed controller is tightly bounded, and the closed-loop
controller is proved to be stable.

• The MPC controller using the backward Euler method has a better tracking accuracy
in the lateral error, and it is more robust.

This paper is organized as follows. The MPC-based controller of autonomous vehicles
is described in Section 2. After that, the stabilizability of the controller is discussed in
Section 3. Simulation results are shown in Section 4. Section 5 concludes this paper by
summarizing all of the main results.

2. Control Design

Establishing a prediction model and designing a rolling optimization function are the
kernels of designing a path tracking controller. Due to the strongly nonlinearity of vehicle
dynamics, it is very hard to establish a model to describe the actual vehicle dynamics.
Researchers generally use Ackermann steering geometry and its simplified bicycle models
to describe the vehicle kinematics and dynamics. MPC schemes using dynamic vehicle
models and various tire models are generally computationally expensive, and tire models
may become singular at low speeds [26]. Kong et al. [26] compared a kinematic and a
dynamic bicycle model, and showed that both models could correctly predict a vehicle’s
future states, and combining MPC schemes with a simple kinematic bicycle model is less
computationally expensive. Polack et al. [27] compared a 3-DOF kinematic bicycle model
with a 9-DOF model, and showed that the 3-DOF model could capture enough of the
non-holonomic constraints of the actual vehicle dynamics. When the maximum-allowed
lateral acceleration of a vehicle was no greater than 0.5 g m/s2, where g is the acceleration
due to gravity, using a 3-DOF kinematic bicycle model produces acceptable results and
could generate a feasible track. Chen et al. [28] implemented an MPC-based controller for
path-tracking using three vehicle dynamics models: a bicycle model, an 8-DOF model and
a 14-DOF model. They showed that the bicycle controller could successfully navigate a
vehicle along the given path and calculate the optimal steering sequences faster than the
controllers with the 8-DOF and 14-DOF vehicle. They concluded that the bicycle controller
is suitable for a possible physical implementation with real-time requirements. Therefore,
in this paper, the kinematic model of autonomous vehicles is used [26,29]

.
x = v cos(ϕ + β),
.
y = v sin(ϕ + β),
.
ϕ = v sin(β)

lr
,

.
v = a,
β = tan−1( lr

l f +lr
tan(δ)),

(1)
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where x and y are the coordinates of the center of mass in an inertial frame (X,Y). ϕ is the
inertial heading, and v is the longitudinal speed of the vehicle. The parameters lf and lr are
the distance from the center to the front and rear axles, and δ is the front steering angle.
Two front and two rear wheels of the vehicle are combined into single wheels located at the
center of the front and rear axle, respectively, as illustrated in Figure 3. β is the slip angle at
the center of gravity.

Figure 3. Kinematic rear axle bicycle model of the vehicle.

In our problem, X = [x, y, ϕ, v] is the vehicle state, U = [a, δ] is the control state. The
model is established based on the following assumptions.

• The vehicle is traveling on a flat surface, with the vehicle’s movement perpendicular
to the road surface ignored.

• Only the front wheel can be steered.
• The wind resistance and ground-side friction that the wheels are subjected to while

driving are ignored.
• The wheels always maintain good rolling contact with the ground.
• The impact of the vehicle suspension is not taken into account.
• Load transfer is not considered.

The state-space equations of the vehicle system (1) are continuous in time and cannot
be used for the design of the MPC algorithm directly. Therefore, the model of the system
was converted to discrete state-space equations by discretizing the state-space equations.
We assume that the model can be rewritten as

.
X = f (X, U). (2)

Generally, the state at k + 1 instant at time t is computed using the forward Euler
integration method

X(k + 1|t ) = X(k|t ) + Ts
.
X(k|t ) = X(k|t ) + Ts f (X(k|t ), U(k|t )), (3)

where Ts is the sampling time.
In this paper, instead of the forward Euler method, the backward Euler method is

used to establish the predictive model. Although it requires an extra computation at each
iteration, the backward Euler method has great stability properties and its local truncation
error is of order O(T3

s ), which is much smaller than O(T2
s ) using the forward Euler method.

Hence, the backward Euler method’s error generally decreases faster as Ts → 0.
The state at k + 1 instant at time t is computed using the backward Euler method

X̃(k + 1|t ) = X(k|t ) + Ts f (X(k|t ), U(k|t )),
X(k + 1|t ) = X(k|t ) + Ts f (X̃(k + 1|t ), U(k|t )), (4)

Equation system (8) can be rewritten as

X(k + 1|t ) = X(k|t ) + Ts f̃ (X(k|t ), U(k|t )),
f̃ (X(k|t ), U(k|t )) = f (X(k|t ) + Ts f (X(k|t ), U(k|t )), U(k|t )).

(5)
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Therefore, the state information of vehicles in the prediction horizon NP can be obtained

X(k + 1|t ) = X(k|t ) + Ts f̃ (X(k|t ), U(k|t )),
...

X(k + i|t ) = X(k + i− 1|t ) + Ts f̃ (X(k + i− 1|t ), U(k + i− 1|t )),
...

X(k + Nc + 1|t ) = X(k + Nc|t ) + Ts f̃ (X(k + Nc|t ), U(k + Nc|t )),
...

X(k + NP|t ) = X(k + NP − 1|t ) + Ts f̃ (X(k + NP − 1|t ), U(k + Nc|t )),

(6)

where Nc is the control horizon and 1≤ Nc≤ NP, which denotes component-wise inequality.
The differences between the predictive states and the reference trajectory Xref are

defined as follows

e(k + 1|t ) = X(k + 1|t )− Xre f (k + 1|t ),
...

e(k + NP|t ) = X(k + NP|t )− Xre f (k + NP|t ).
(7)

To ensure the passenger comfort and feasibility of the vehicle, the output control
should be varied as smoothly as possible. Therefore, the optimization objective function is
defined as

J(e(t), U(t)) =
NP

∑
i=1
‖e(k + i|t )‖2

Q +
Nc

∑
i=1
‖U(k + i|t )−U(k + i− 1|t )‖2

R, (8)

where Q and R are the weight matrices for the vehicle states and control states, respec-
tively. Consequently, the rolling optimization can be obtained by solving the constrained
optimization problem in every sampling period

min
U(t)

J(e(t), U(t))

s.t.
amin ≤ a(k + i|t ) ≤ amax, i = 1, 2, · · · , Nc,
δmin ≤ δ(k + i|t ) ≤ δmax, i = 1, 2, · · · , Nc,
emin ≤ e(t) ≤ emax, t = k + Ts, · · · , k + NPTs,

(9)

where (amin, amax) and (δmin, δmax) are the hard constraints of the vehicle. The last con-
straints are added to ensure safety driving.

The control inputs are obtained by solving the optimization problem (9). The first
element in the control inputs is taken as the optimal control at the current time. After the
prediction and control of the current time step are completed, the states are updated with
the actual ones, which are then used as the initial states for the optimization problem in the
next predictive horizon. The process is repeated until the vehicle reaches the final state.

The problem (9) is a quadratic programming (QP) one which is a traditional opti-
mization problem for trajectory tracking. The first term in the cost function requires that
the actual trajectory be as close as possible to the reference trajectory to ensure the safety
and feasibility of the trajectory. The second term requires that the control input be varied
smoothly to ensure the feasibility of the vehicle and the comfort of passengers. The differ-
ence between the reference and the actual trajectory must be sufficiently small. Otherwise,
it may lead to a crash, and the trajectory is no longer feasible.

To meet the real-time requirement, instead of directly calculating a control sequence
by solving (9), we solve an approximate optimization problem by imposing the constraints
uk+1 = uk+2 = . . . = uk+Nc on the control law. Therefore, we only need to calculate a
‘mediocre’ control to follow the given trajectory. This significantly reduces the complexity
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of the primal problem as it dramatically reduces the number of the variables. It is worth
noting that imposing the constraint conditions uk+1 = . . . = uk+Nc on (9) is equivalent to
setting Nc to 1. Besides greatly reducing the computational burden, one of the most telling
advantages of structuralizing the control is to produce an improvement in the robustness
and in the general behavior of the system, because allowing the free evolution of the
manipulated variables could lead to undesirable high-frequency control signals and even
to instability as noted in [30]. We note that, if the coefficient matrices Q and R are positive
semi-definite, the primal problem is tightly bounded and the approximate problem is also
tightly bounded. Since Q and R are positive semi-definite, x1

TQx1 ≥ 0, x2
TRx2 ≥ 0. Hence,

the cost function in (9) is convex. The feasible region subjected to the constraint conditions
(linear equations and inequalities) in (9) is also convex. Thus, the optimal solution of (9) is
located in either the interior or the boundary of the feasible region. Therefore, the value
of the cost function does not go to infinity, and the primal problem is tightly bounded.
When imposing the constraint condition uk+1 = . . . = uk+Nc, the corresponding feasible
region is still convex since the intersection of convex sets is still a convex set. Similarly, the
approximate problem is tightly bounded. In the next section, we prove that the proposed
close-loop MPC controller is stable if Nc = N1 = 1, λ = 0 and NP is large.

3. Stabilizability of Controller

Combining (1) and (5) leads to

xk+1 = xk + Ts(vk + aTs) cos(ϕk + Tsvk sin(β)/lr + β),
yk+1 = yk + Ts(vk + aTs) sin(ϕk + Tsvk sin(β)/lr + β),
ϕk+1 = ϕk + Ts(vk + aTs) sin(β)/lr,
vk+1 = vk + aTs.

(10)

Equation system (10) can be rewritten as

Xk+1 = (I + AkTs)Xk + BkTsUk,

Ak =


0 0 −(vk + aTs) sin(γ) cos(γ)− (vk + aTs)Ts sin(γ) sin(β)/lr
0 0 (vk + aTs) cos(γ) sin(γ) + (vk + aTs)Ts cos(γ) sin(β)/lr
0 0 0 sin(β)/lr
0 0 0 0

,

Bk =


Ts cos(γ) −(vk + aTs) sin(γ)(1 + vkTs cos(β)/lr)βδ

Ts sin(γ) (vk + aTs) cos(γ)(1 + vkTs cos(β)/lr)βδ

Ts sin(β)/lr (vk + aTs) cos(β)βδ/lr
1 0

,

γ = ϕk + Tsvk sin(β)/lr + β, βδ =
lr l

l2 cos2(δ)+l2
r sin2(δ)

, l = l f + lr.

(11)

For the sake of convenience, we omit the subscript k in the remainder of this paper.

Theorem 1. System (11) is controllable.

Proof of Theorem 1. First, we seek the eigenvalues λ of A. By solving the characteristic
polynomial det(λI-A) = 0, we have

λ1 = λ2 = λ3 = λ4 = 0. (12)
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According to the definition of controllability proposed by Hautus [31], system (4) is
controllable if and only if, for all λi, i = 1, 2, 3, 4 Rank([λiI-A,B]) = 4. Here we only need to
consider Rank([λ1I-A,B]) due to (12)

[λ1 I − A, B] =


0 0 −A13 −A14 B11 B12
0 0 −A23 −A24 B21 B22
0 0 −A33 −A34 B31 B32
0 0 −A43 −A44 B41 B42

 = [04×2, Ω4×4]. (13)

The determinant of Ω is

det(Ω) =
(vk + aTs)

2l cos(β)

l2 cos2(δ) + l2
r sin2(δ)

6= 0. (14)

Hence we have Rank(Ω) = 4 and 4 ≥ Rank([λ1I-A,B]) ≥ Rank(Ω) = 4.�

Theorem 2. System (11) is observable.

Proof of Theorem 2. According to the definition of observability proposed by Hautus [31],
system (4) is observable if and only if, for all λi, i = 1, 2, 3, 4 Rank([λiI-A;C]) = 4.

In our problem, the output function is Y = X = CX, and thus C = I4×4 and Rank(C) = 4.
Therefore, 4 ≥ Rank([λ1I-A;C]) ≥ Rank(C) = 4. �

Theorem 3. System (11) is stabilizable.

Proof of Theorem 3. According to the definition of stabilizability proposed by Hautus [31],
system (11) is stabilizable if and only if λi ≥ 0, i = 1, 2, 3, 4, and the system is controllable.
Combining Theorem 1 and (12) proves that Theorem 3 holds. �

Theorem 4. The closed-loop MPC controller is stable for Nc = 1, λ = 0 and large NP.

Proof of Theorem 4. This proof is similar as that for Theorem 4 in [32] for generalized
predictive control. When NP is sufficiently large, we have

GTG > 0, (15)

where
G =

[
B; AB; · · · ; ANP−1B

]
NP×Nc

. (16)

Therefore, GTG is a positive scalar, which is always invertible. Therefore, the matrix
GTG + λI is invertible, and a feasible control can be obtained using the expression in [32]

uopt = (GTG + λI)
−1

GT(Xr − X). (17)

Since our optimization problem is convex, there is only one optimal solution and thus
our controller will asymptotically converge to (17). �

4. Simulation

The simulation environment is MATLAB/Simulink R2020a, and (9) is solved using
‘fmincon’, a built-in function in MATLAB. Sequential quadratic programming is used as
the nonlinear solver. The warm-start technique is employed by using the result of the
previous optimization problem as a guess for the current optimization problem to further
speed up the efficiency of the nonlinear solver. The accuracy of ‘fmincon’ is set to 10−6.
The processor used in the simulation is Intel(R) Core(TM) i7-4510U @ 2.00 GHz 2.6 GHz.



Sensors 2021, 21, 7165 9 of 17

Real-Time Synchronization is enabled to test the real-time performance of the controllers.
The simulation system consists of a kinematic model of autonomous vehicles and the
trajectory tracking controller proposed in this paper. The parameters of the vehicle model
and the controller are shown in Table 1 and can be found in [33]. The road conditions
are assumed to be dry and clean and they can support the forces required for braking,
accelerating and steering.

Table 1. Parameters of the vehicle and the controller.

Parameter Value

lf 1.232 m
lr 1.468 m

Range of a [−1 m/s2, 1 m/s2]
Range of δ [−0.44 rad, 0.44 rad]

Range of lateral error [−0.5 m, 0.5 m]
NP 15
Nc 1
Q 100I 1

R I
1 I is the unit matrix.

4.1. Sinusodial Path Following

First, we present the tracking results of a sinusoidal trajectory with an amplitude of
4 m and a wavelength of 100 m in [20]. The reference speed along x-axis Vref is set to be a
constant. The open-loop reference trajectory is given by

Yre f = 4 sin(2πXre f /100). (18)

The tracking result of the sinusoidal trajectory is shown in Figure 4. The sampling
time is set to Ts = 0.05 s. The reference trajectory was indicated by the black solid line. The
obtained trajectories using the forward and backward Euler method were represented by a
blue dotted line and a red dashed line, respectively. When the reference velocity is set to
Vref = 40 km/h, the maximum lateral error using the backward Euler method was 0.0767 m,
in contrast to 0.2481 m using the forward Euler method. The maximum longitudinal errors
using the forward and backward Euler method were 0.07 m and 0.0703 m, respectively.
The maximum calculation time using the backward Euler method was 0.0203 s, and the
average calculation time was 0.0081 s, in contrast to 0.0197 s and 0.01 s using the forward
Euler method. The maximum heading errors were 0.0277 rad using the backward Euler
method and 0.019 rad using the forward Euler method. When the reference velocity is set to
Vref = 60 km/h, the maximum lateral error using the Euler method was 0.4191 m; whereas,
it was 0.2184 m using the backward Euler method. The maximum calculation times using
the forward and backward Euler method were 0.0183 s and 0.0143 s, respectively; the
average computation times were 0.0086 s and 0.0084 s; the maximum heading errors were
0.0293 rad and 0.0355 rad. The maximum longitudinal errors are 0.1059 m and 0.1085 m.
To sum up, the lateral error using the backward Euler method was much smaller than
that using the forward Euler method. However, the longitudinal error and heading error
using the backward Euler method were slightly larger than that using the forward Euler
method. Besides that, the backward Euler method required a little more calculation time.
The state errors, including the lateral, longitudinal and heading errors, increased with the
reference velocity.
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Figure 4. Results for tracking the sinusoidal trajectory with Ts = 0.05 s: left for Case (a) with
Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.

The comparison of the calculation time between the two controllers is shown in
Figure 5. The calculation time of the MPC controller using the backward Euler method
at each control period was almost the same or slightly larger than that of the MPC-based
controller using the forward Euler method.

Figure 5. Comparison of the computation time for tracking the sinusoidal trajectory with Ts = 0.05 s:
left for Case (a) with Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.

Figures 6 and 7 show the articulated acceleration and steer angle, respectively. The For-
ward Euler method was more sensitive to the longitudinal velocity, whereas the backward
Euler method was more sensitive to the steer angle.

We noted that, as mentioned before, the differences between the reference and actual
trajectories increase with the vehicle velocity. There exists a threshold value of velocity to
determine the existence of the solution of the optimization problem for trajectory track-
ing. In other words, when the reference velocity is greater than some value, no feasible
solution exists. When Ts = 0.05 s, the threshold value of the reference velocity using the
forward Euler method was 67.7 km/h (when Vref = 67.8 km/h, the maximum lateral
error was 0.5009 m), whereas it was 83 km/h using the backward Euler method (when
Vref = 83.1 km/h, the maximum lateral error was 0.5002 m). Hence, the MPC using the
backward Euler method was more robust than that using the forward Euler method.
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Figure 6. Articulated acceleration for the comparison between the forward and backward Euler
method: left for Case (a) with Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.

Figure 7. Articulated steer angle for the comparison between the forward and backward Euler
method: left for Case (a) with Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.

4.2. Circular Path

In the second scenario, the vehicle was required to track a circle with a radius of 40 m.
The parametric equations for the circle were

X(t) = Rd cos(ϕ(t)− π/2),
Y(t) = Rd + Rd sin(ϕ(t)− π/2),
ϕ(t) = t Vre f /Rd,

(19)

where Rd is the radius of the reference circle. The initial configuration and constraint
conditions were chosen to be same as previously to be consistent. The sampling time and
the reference velocity are set to Ts = 0.05 s and Vref = 10 m/s, respectively.

The tracking result of the circular path is shown in Figure 8. The maximum lateral
and longitudinal errors using the backward Euler method were 0.0596 m and 0.0091 m,
in contrast to 0.3664 m and 0.3664 m using the forward Euler method. The maximum
calculation time using the backward Euler method was 0.016 s, and the average calculation
time was 0.0084 s, in contrast to 0.0199 s and 0.0085 s using the forward Euler method. The
maximum heading errors were 0.0411 rad using the backward Euler method and 0.0194 rad
using the forward Euler method. In sum, the MPC controller using the backward Euler
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method had a better tracking accuracy in the circular path than that using the forward
Euler method.

Figure 8. Simulation results for the circular path with radius Rd = 40 m. Notations the same as in
Figure 4.

Figures 9 and 10 show the articulated acceleration and steer angle, respectively. The
articulated acceleration and steer angle using the backward Euler method were quite
different from those using the forward Euler method. As can be seen from Figure 8,
the backward Euler method was more accurate than the forward Euler method, and the
calculation times were almost the same as shown in Figure 11.

Figure 9. Articulated acceleration for the comparison between the forward and backward Euler
method for the circular trajectory.

Figure 10. Articulated steer angle for the comparison between the forward and backward Euler
method for the circular trajectory.
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Figure 11. Comparison of the computation time for the circular path. Red dashed curve: MPC-based
controller using the backward Euler method; blue dotted curve: MPC-based controller using the
forward Euler method.

4.3. Double Line Change Path

In this scenario, the vehicle was required to track a double line change path. The
reference trajectory of the double line change path can be found in [33]. The tracking
result of the double line change path is shown in Figure 12. When the reference velocity is
set to Vref = 40 km/h, the maximum lateral and longitudinal errors using the backward
Euler method were 0.3034 m and 0.0203 m, in contrast to 0.3827 m and 0.0412 m using the
forward Euler method. The maximum heading errors were 0.0673 rad using the backward
Euler method and 0.0648 rad using the forward Euler method. When the reference velocity
is set to Vref = 60 km/h, the maximum lateral and longitudinal errors using the backward
Euler method were 0.587 m and 0.0504 m, in contrast to 0.6187 m and 0.0311 m using the
forward Euler method. The maximum heading errors were 0.1035 rad using the backward
Euler method and 0.0967 rad using the forward Euler method. In sum, the MPC controller
using the backward Euler method had a better tracking accuracy in the circular path than
that using the forward Euler method. Figures 13 and 14 show the articulated acceleration
and steer angle, respectively.

Figure 12. Simulation results for the double line change path: left for Case (a) with Vref = 40 km/h
and right for Case (b) with Vref = 60 km/h.
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Figure 13. Articulated acceleration for the comparison between the forward and backward Euler
method for the circular trajectory: left for Case (a) with Vref = 40 km/h and right for Case (b) with
Vref = 60 km/h.

Figure 14. Articulated steer angle for the comparison between the forward and backward Euler
method for the circular trajectory: left for Case (a) with Vref = 40 km/h and right for Case (b) with
Vref = 60 km/h.

The comparison of the calculation time between the two controllers is shown in
Figure 15. When the reference velocity is set to Vref = 40 km/h, the maximum calculation
time using the backward Euler method was 0.0178 s, and the average calculation time
was 0.0084 s, in contrast to 0.0157 s and 0.0084 s using the forward Euler method. When
the reference velocity is set to Vref = 60 km/h, the maximum calculation time using the
backward Euler method was 0.0152 s and the average calculation time was 0.008 s, in
contrast to 0.0169 s and 0.0083 s using the forward Euler method.

Figure 15. Comparison of the computation time for tracking the double line change path with
Ts = 0.05 s: left for Case (a) with Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.
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Through three sets of comparisons, we can draw some conclusions. First, the lateral
tracking errors using the backward Euler method were much smaller than those when using
the forward Euler method. Second, the lateral tracking errors using either the forward or
backward Euler method increased with the reference velocity. Third, the calculation times
using the backward Euler method were almost the same with that using the forward Euler
method. Lastly, compared with the articulated acceleration, there was a clear discrepancy
in the articulated steer angle.

5. Conclusions

An effective and efficient method for generating a feasible trajectory is of vital im-
portance to meet the requirement of instantaneous control for autonomous driving. In
this paper, we have proposed a trajectory tracking controller based on MPC. Most MPC-
based and other methods either set the velocity to a constant or cannot actively adjust
the longitudinal velocity according to the information of the reference trajectory. To solve
this problem, both the acceleration and steer angle are set to control inputs. Hence, the
proposed controller can automatically adjust the velocity according to the information of
the reference trajectory. Moreover, instead of the forward Euler integration method, the
backward Euler integration method is used to establish the predictive model. To meet
the real-time requirement, we impose the constraints uk+1 = . . . = uk+Nc on the control law.
This significantly reduced the problem complexity. The warm-start technique was used to
further accelerate the convergence of the optimization solver of the controller by using the
previous results as a guess for the current optimization problem.

The proposed closed-loop MPC controller was stable and validated by simulation
experiments. Compared with the MPC controller using the forward Euler method, the
MPC controller using the backward Euler method had a much better accuracy in the lateral
error, which is an important indicator to ensure driving safety. The lateral error could be
reduced by up to 78%. There is little difference in the longitudinal error between the two
controllers. However, the heading error of the MPC controller using the backward Euler
method was larger than that of the MPC controller using the forward Euler method. The
maximum and average computation times using the backward Euler method were almost
the same or slightly larger than those using the forward Euler method. Moreover, the MPC
controller using backward Euler method was more robust than that using the forward Euler
method. The threshold value of the velocity for the MPC controller using the backward
Euler method was larger than that using the forward Euler method (83 km/h versus
67.7 km/h for the sinusoidal trajectory). Overall, the MPC controller using the backward
Euler method had a better tracking accuracy at the cost of no or little computation time.

The existence of the discrepancy between the actual trajectory and the reference
trajectory is mainly due to the modelling errors, computation errors and disturbance
errors. Recent studies on MPC-based controllers mainly focus on the modelling errors
and disturbance errors. Few authors investigated the computation errors during the
discretization for nonlinear systems. We hope that this paper is instructive and allows
researchers new insight into creating MPC-based controllers.

From the perspective of science, our contribution is to give a new way to establish a
predictive model, which is a cornerstone of designing a path tracking controller. Besides
the forward and backward Euler methods, there are several integration methods, such as
the midpoint method and Runge-Kutta methods. Improving the accuracy of the prediction
model using other integration methods could be a promising way to get an effective control
to maintain a good tracking accuracy.
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