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Abstract: Monitoring physical activity in medical and clinical rehabilitation, in sports environments
or as a wellness indicator is helpful to measure, analyze and evaluate physiological parameters
involving the correct subject’s movements. Thanks to integrated circuit (IC) technologies, wearable
sensors and portable devices have expanded rapidly in monitoring physical activities in sports and
tele-rehabilitation. Therefore, sensors and signal acquisition devices became essential in the tele-
rehabilitation path to obtain accurate and reliable information by analyzing the acquired physiological
signals. In this context, this paper provides a state-of-the-art review of the recent advances in
electroencephalogram (EEG), electrocardiogram (ECG) and electromyogram (EMG) signal monitoring
systems and sensors that are relevant to the field of tele-rehabilitation and health monitoring. Mostly,
we focused our contribution in EMG signals to highlight its importance in rehabilitation context
applications. This review focuses on analyzing the implementation of sensors and biomedical
applications both in literature than in commerce. Moreover, a final review discussion about the
analyzed solutions is also reported at the end of this paper to highlight the advantages of physiological
monitoring systems in rehabilitation and individuate future advancements in this direction. The
main contributions of this paper are (i) the presentation of interesting works in the biomedical area,
mainly focusing on sensors and systems for physical rehabilitation and health monitoring between
2016 and up-to-date, and (ii) the indication of the main types of commercial sensors currently being
used for biomedical applications.

Keywords: biomedical signal; monitoring system; rehabilitation; signal processing

1. Introduction

Biomedical wearable sensors allow the measurement of physiologic parameters in
a continuous, real-time and non-invasive way, including a wide range of advances in
electrocardiogram (ECG), electromyogram (EMG) and electroencephalogram (EEG)-based
sensing platforms [1–3]. These platforms and their related sensors have different diagnostic
and monitoring applications [4,5]. For example, physiological monitoring could support
both diagnosis and ongoing treatment for many diseases involving movement disorders [6].
Furthermore, home-based motion sensing could assist the subject in rehabilitation path
and falls prevention, helping him/her improve his/her independence and lifestyle [7].
Moreover, sensors acquire and analyze biomedical signals to monitoring the effectiveness
of home-based rehabilitation therapies, for example, in stroke survivors, in patients un-
dergoing surgery, in subjects involved in accidents or to evaluating the use of mobility
assistive devices in older adults [8–10]. Moreover, the monitoring of physiological signals
and parameters could also be a good support in many clinical and non-clinical applications,
e.g., in sporting activities to evaluate performance and physical condition of athletes [1,11],
in postural control to correct stability, or in a physiotherapy context after injury [12,13].
Generally, the measurement of physical activity parameters aids in guiding many types
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of applications; e.g., (i) monitoring physical activity during rehabilitation or in a physical
therapy setting; (ii) evaluating the success of an intervention and tracking physical activity
post-surgery; (iii) evaluating patient mobility; (iv) all (risk) detection; and (v) monitoring
physical activity in patients with chronic diseases and disabilities involving movement
disorders. Most recently, the coronavirus disease 2019 (COVID-19) pandemic has affected
access to standard rehabilitation services, highlighting the need to define new rehabilitation
perspectives as telemedicine [14,15]. During this period, the rehabilitation concept con-
siderably changed: the need for home medical assistance for a new idea of rehabilitation
phase in older people both with and without COVID-19, in patients affected by neuro-
motor disease, in subjects with limited movements after injury or accident and athletes is
becoming essential to help these people in maintaining their daily activities. In this context,
tele-rehabilitation became an effective and well-accepted method of providing outpatient
and community rehabilitation services to support family and caregivers in the assessment
of the home environment, patient monitoring and outpatient therapies [16–18]. In emergen-
cies such as the COVID 19 pandemic, access to health services is restricted due to the risk of
infections and limitations of health resources [14,19]. For this reason, telemedicine services
have proved extremely useful by providing home monitoring and rehabilitation solutions
and thus minimizing the risk of infection. Survivors of COVID-19-associated pneumonia
may experience a long-term reduction in functional capacity and muscle strength. Telere-
habilitation (TR) programs could be effective for patients after COVID-19 [14]. However,
few studies have assessed whether telerehabilitation for COVID-19 patients is an effective
tool. In [20,21], telerehabilitation programs consist of home exercises for aerobic recondi-
tioning, muscle strengthening, and healthy lifestyle education. The physiotherapist (PT)
contacts the patient via video call via a dedicated platform to monitor progress. Moreover,
physicians can add chest physiotherapy exercises for lung expansion and strengthening
of the respiratory muscles. In these programs, a pulse oximeter as a monitoring device is
also used.

Many healthcare devices for rehabilitation provide biosignals, such as blood pres-
sure, blood glucose levels, EEGs, ECGs and EMGs [22]. The main bioelectrical signals
are generated by the heart, the brain and the muscles, producing ECGs, EEGs and EMGs,
respectively. ECG, EEG and EMG signals are characterized by low amplitude (generally,
expressed in mV—millivolts) and low operating frequencies, from frequency Hz to some
kHz range [23]. The acquisition, analysis and interpretation of these signals are fully re-
ported in the literature [24–31]. Physical activity is often associated with the cardiovascular
and muscular systems. Therefore, electrical signal variations cause ECG and EMG during
athletic activities, and they are essential and commonly adopted parameters for healthcare
management and rehabilitation protocols. In particular, EMG signal is the typical clinical
recording method used to diagnose and monitor neuromuscular behaviours. Surface EMG
(sEMG) allows extraction of information on muscle activation during a movement or effort,
identifying impairment and functional alteration useful in clinical evaluation [32,33]. This
information can be presented in different forms (e.g., amplitude, timing, morphology,
muscle fibre conduction velocity or muscle coordination). They are relevant in many fields,
from orthopaedics and neurorehabilitation to movement analysis in exercise and sport or
aging [34,35]. This review aims to focus on EMG signal acquisition devices, also combined
with other biosignals ECG and EEG, in rehabilitation pathways, especially for telemedicine
applications. This contribution is proposed as a review by addressing questions such as
(i) what are the most recent contributions in literature? (ii) what are the commonly used
medical devices? (iii) how do these contributions and medical devices support physiologi-
cal monitoring in rehabilitation? and (iv) what are the future directions and opportunities
for EMG signal acquisition and analysis in a rehabiliation context? Many reviews are
presented in the literature regarding biosignal acquisition devices for rehabilitation ap-
plications, but to the best of our knowledge, EMG signal has been considered only in
specific context for single review. This review is thus a general but detailed comprehensive
overview of EMG monitoring systems aiming to resume and to discuss the different and
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important solutions of EMG applications in different rehabilitation contexts. The key
contributions of this review are outlined as follows. Section 2 presents a summary of basic
concepts such as bioelectrical signalss and medical devices aiming to identify their main
features and characteristics. These concepts are required background knowledge to this
review. Section 3 reports the research methodology applied to define this review. Section
4 proposes an intense state-of-the-art about the last 5 years’ contributions in wearable
sensors and platforms to summarize recent developments in the field of wearable sensors
and systems used for rehabilitation. In Section 5, most commercial biomedical signal ac-
quisition and processing sensors and devices have been reported comparing physical and
performance characteristics. Section 6 has also been formulated to summarize and discuss
the literature on EMG signal acquisition devices in rehabilitation and to explores their
challenges and their future direction. Finally, Section 7 provides conclusions of the article.

2. Background

This section summarizes fundamental concepts needed to consider this review.

2.1. EMG and Rehabilitation

In the last decade, the new advanced devices and the increasing of computer science
technologies have improved telemedicine applications [36]. A most important applica-
tion regards telerehabilitation, which is still a new field in rapid growth. The advantage
of telerehabilitation consists in the reduction of the costs both for health care providers
and patients compared with traditional inpatient or person-to-person rehabilitation. Fur-
thermore, telerehabilitation helps patients who live in remote places, allowing them to
benefit from this technology. The primary application of telerehabilitation is regarding
physiotherapy [37], and it is often associated with telemonitoring, referred to as the remote
monitoring of physiological parameters, including ECG, blood pressure and oxygen satu-
ration in patients with chronic diseases [38]. Physiotherapy applied to telerehabilitation is
a valid approach both for musculoskeletal disorders and some physical diseases. More-
over, it contributes to improve patients’ posture and movement, supporting caregivers
in creating a customized physical exercise program for physical rehabilitation [39–41]. In
the rehabilitation field, the evaluation and the monitoring of the muscular conditions are
needed to define a pathway aiming to develop and make stronger the correct voluntary
muscle movements. The EMG signal is able to detect voluntary muscle activation giving
information to encourage the correct patterns of activity. This EMG signal together with a
robust, reliable and user-friendly acquisition and analysis system could be a strong support
in rehabilitation cases to be used in assistive technology for helping people with severe
disabilities [42]. The information about muscle activation can be expressed in different way,
e.g., as amplitude, timing, morphology or spectral features, and it could be very useful
and relevant in many fields ranging from orthopedics and neurorehabilitation to move-
ment analysis in exercise and sport, from aging to obstetrics up to occupational and space
medicine [33]. In the following sections, we report the potential clinical applications based
on sEMG sensors in rehabilitation medicine with specific focus on (i) neurorehabilitation,
(ii) stroke rehabilitation and (iii) sporting rehabilitation.

2.1.1. EMG in Neurorehabilitation

Neurological rehabilitation medicine and its clinical research demonstrate that the
damaged limb motor function can be restored to some extent through an efficient reha-
bilitation process. During this process, physicians must acquire and monitor the physical
condition and physiological parameters to evaluate the training effect and, eventually,
correct the follow-up rehabilitation training program. Information on muscle activation
supports the physician in the clinical evaluation furnishing a reference for impairment
and functional alterations. The ability of EMG signal in the measurement of this muscle
activation makes this electrodiagnostic medicine technique very useful and relevant in
neurorehabilitation, especially in the last four decades [43,44]. The application of sEMG
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techniques in neurorehabilitation is proposed in [34]. First, the authors report a review
about the applications of EMG in neurological rehabilitation as support for the assess-
ment and treatment of muscle spasticity and overactivity due to EMG’s ability to quantify
alterations associated with these disorders. Moreover, the authors discuss their limited
clinical applications. Another survey concerning the use of surface electromyography in
neurorehabilitation is addressed by Manca et al. [45]. The authors collect information on
(i) the current use of sEMG and its clinical potential, (ii) the professional figures primarily
dealing with sEMG, (iii) the educational aspects and lastly, (iv) the possible reasons for
its limited use in neurorehabilitation field. This survey research proposes and discusses
different aspects of sEMG in neurorehabilitation ranging from current trends in its use;
educational, technical and methodological features; and the translational outreach and
potential utility of this technique for clinicians and patients.

The applications of surface EMG signals in neurorehabilitation regard: (i) the mon-
itoring of neuromuscular pathologies, (ii) the prevention of work-related disorders and
occupational therapy and (iii) the monitoring of neuromuscular changes and progress in
severe patients. Information concerning the muscle activation during a movement or effort
help physicians to evaluate and provide a clinical overview of both impairment and func-
tional alteration. Another current common development of device in neurorehabilitation is
represented by the acquisition of both EMG and EEG signals through biosignal amplifiers
aiming to use physiological data to enhance their functionality in Brain Computer Interface
(BCI) application. For example, the patient’s upcoming movements could be predicted by
using electroencephalography (EEG) or electromyography (EMG). Always in BCI applica-
tions, EEG and EMG can be combined to either predict as many movements as possible or
to enhance the reliability of movement prediction [46].

2.1.2. EMG in Stroke Rehabilitation

Stroke represents one of the major causes of chronic motor disability among adults
worldwide [47]. In addition, many stroke survivors suffer from hemiplegia, which makes
walking difficult or even impossible. Therefore, rehabilitation represents an important
treatment for the post-stroke patient to recover their muscle strength and motor coordi-
nation as well as to retrieve their nervous system [48]. Motor training and rehabilitation
aim to be effective in enhancing muscle activity and improving neuromuscular control [49].
In this context, EMG-based methods could be a valid support in the detection of residual
EMG activity and consequently in the control of exoskeletons in patients unable to generate
sufficient joint torque, training them during the post-stroke period [50–52]. Electromyogra-
phy, together with a controlled Neuromuscular Electrical Stimulation (NMES), generate
the most benefits on motor recovery of upper limb function in clinical trials for patients
with stroke [53]. In this direction, Monte-Silva et al. [54] propose a systematic review
and meta-analysis concerning the effects of EMG-NMES on stroke upper limb recovery.
Another significant contribution is furnished by Hameed et al. [55]. The authors discuss
robotic devices as valuable tools to help patients with hand deficits in daily activities and
restore hand functions by rehabilitation. Specifically, they highlight the potential of using
sEMG in controlling hand robotic devices, including gloves and exoskeletons, for rehabili-
tation and assistance in daily activities. Furthermore, the authors in [56] investigate the
possible use of EMG to detect hand/wrist extension movement intention to trigger robot-
assisted training in individuals without residual movements. Specifically, they compared
movement intention detection using an EMG detector with a sensorimotor rhythm-based
EEG-BCI (Brain–Computer Interface) using only ipsilesional activity. The results show
that EMG-based assisted therapy should be a valid and practical way to trigger robot-
assisted training, furnishing also an easier interface and more compact dimensions than
EEG-BCI devices.
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2.1.3. EMG in Sports Rehabilitation

Surface EMG can evaluate the status of skeletal muscles, assisting in muscular training
and rehabilitation. Surface EMG is becoming a popular research tool in sport and rehabili-
tation sciences. In athletes’ rehabilitation, EMG is useful to analyze muscle dysfunction,
to detect not-correct muscle activation patterns and to assist in establishing and assessing
treatment outcomes [57–59]. The correct utilization of muscles and the rapid identification
of anomalous muscle pattern activation help the athletes to improve their activities and to
prevent the risk of injury [60]. The dynamic analysis of muscles performed by sEMG is
particularly interesting in sport, especially in injury prevention. For example, the analysis
of the sMEG signal could improve the performance of a task by evaluating the muscular
activation and/or muscular fatigue [61]. An important application of EMG in sporting
rehabilitation regards the fatigue analysis in triceps brachii. Hussain et al. [62] report an
interesting review summarizing and analyzing the research findings regarding analysis of
fatigue in the human triceps brachii (TB) muscle through surface electromyography (sEMG)
observations. Other applications are in postoperative rehabilitation following rotator cuff
repair, as reported in [63], or in monitoring different responses of skeletal muscles subjected
to external stimuli such as hypoxia and physical activity [64]. Wearable biosensors are
becoming most important in real-time physiological monitoring useful in athletic perfor-
mance analysis, injury and recovery time assessment, thus supporting athletes, trainers
and coaches in characterizing the daily demands of sports [65]. A sports rehabilitation
monitoring system based on wearable sensors and Internet of Things technology has been
developed in [66]. This system includes sensors to acquire and monitor ECG signals, EMG
signals, motion posture, body temperature and other physiological parameters. The ex-
perimental results show that the system can closely monitor changes in vital signs while
providing real-time monitoring and feedback. Furthermore, the acquired physiological
data can be analyzed to support physicians in formulating effective rehabilitation training
programs. Another contribution in the wearable system for EMG acquisition and analysis
to evaluate athlete performance is proposed in [67]. The authors investigate the validity
and reliability of their proposed sEMG system to characterize muscle activation patterns
during isokinetic knee extension and flexion.

2.2. EMG Signal Acquisition: General Considerations

The main bioelectrical signals are generated by the heart, the brain and the muscles,
producing ECGs, EEGs and EMGs, respectively. The acquisition, analysis and interpretation
of these signals are fully reported in literature [24–28]. Electrical signal variations generate
EMG signals during muscular activities [68]. Therefore, in physical activity monitoring
and the evaluation of muscle conditions, EMG has become an important and commonly
adopted parameter for healthcare management and rehabilitation protocols. High-quality
recording of EMG signal is performed by well-designed instrumentation, and it is important
to guarantee a correct processing and feature extraction [69].

2.2.1. EMG Signal Features

EMG is an electrodiagnostic medicine technique to evaluate and record the muscular
electrical signal generated by skeletal muscle activities [70]. The EMG signal measures elec-
trical currents generated in muscles during their contraction, representing neuromuscular
activities [71]. Thus, EMG provides excellent information about the health of muscles and
the function of motor neurons, which transmit electrical signals to muscle cells allowing
their contraction. Generally, EMG signals are characterized by a frequency range from 20
up to 2000 Hz and by amplitude from about 50 µV to 20 mV [72]. The features analysis
of EMG signal could offer body muscle activity information, such as fitness, fatigue and
endurance level and gesture, such that the biomechanics of human medical abnormalities
or activity levels can be detected and analyzed. The evaluation of muscle activation during
a movement or effort provides useful information on impairment and functional alter-
ation. It is widely used in medical rehabilitation, human–machine interface, biomedical
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research and other fields. The current applications of EMG mostly regard physiological
investigations, monitoring of neurological disorders, planning of treatments, assessment
of interventions and control of prostheses and robots [73]. Electromyography can be per-
formed using two electrodes: surface (or skin) electrodes or inserted (or wire and needle)
electrodes. Surface electrodes are used to monitor the overall activity of a muscle, while
the second type is generally used to reveal the electrical activity of a nerve [12]. EMG
signals represent the state of limb muscle activity, reflecting the movement of skeletal
muscle and the command information of the nervous system, which are very useful in
stroke rehabilitation treatment. The acquisition and the analysis of EMG signals are useful
to classify and recognize different limb movements, supporting the identification and the
study of limb movements and their characteristics. Specifically, sEMG provides a non-
invasive and global measurement of muscle activity, and it may be suitable for applications
in movement analysis requiring frequent assessments or information on the patterns of
activation of multiple muscles [74]. For example, surface EMG could be a valuable tool
in sport, rehabilitation and clinical assessment to quantitatively measure progress and
evaluate treatment outcomes.

2.2.2. EMG Instrumentation Characteristics

The EMG signal is a complex and non-stationary physiological signal characterized by
a low amplitude and low frequency values. Therefore, its acquisition is not easy to perform
due to noise. The noise includes three main components: (i) the noise of the electronic
acquisition equipment, (ii) the noise generated by skin-electrode contact and (iii) the noise
added by the power frequency interference. Therefore, a well-specified acquisition and
analysis system must be designed to improve the quality of EMG signal acquisition and
its spatial and temporal resolution. Generally, an EMG acquisition system is composed of:
(i) electrode, (ii) preprocessing stage (pre-amplifier and filtering), (iii) processing stage (am-
plifier), (iv) analog to digital conversion, (v) power supply and (vi) wireless transmission
module [75], as shown in Figure 1.

Figure 1. General EMG acquisition system.

Synthetically, the amplifier magnifies the difference in voltage between the inputs,
attenuating the unwanted noise, aided by analog filters; then, the amplified signal is
measured using an analog-to-digital converter (ADC), and this digitized signal allows
further computerized analysis. Moreover, the signal acquisition can be performed into two
different modalities: the monopolar acquisition performs the difference between a signal
detected on the electrode concerning a remote reference placed in an electrically inactive
area; the bipolar acquisition, instead, performs the difference between the signal detected
on the electrode concerning another electrically active electrode. Finally, the wireless trans-
mission module aims to connect the system with an external PC for EMG data analysis
and processing as well as display, control, storage and query functions. This module is
also the key element to achieve a portable performance of rehabilitation training. As re-
ported above, EMG signal is affected by the environment, physiological and equipment
noise components, so the acquired EMG signal contains a lot of information, useful and
not. Therefore, a pre-processing module is necessary to remove baseline drift and power
frequency by using a filtering stage composed of a low-pass filter and a high-pass filter [70].
The denoising and the removal of baseline wander are useful to reject the useless frequency
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signals cleaning the EMG signal by unwanted components. Moreover, a 50/60 Hz filtering
(known as notch filter) eliminates 50/60 Hz power line frequency and harmonic noise in
EMG. In particular, high-pass filters attenuate low-frequency components in the signal,
and its low-frequency cutoff must be accurately chosen because it could cause initial am-
plitude loss of slowly changing signals, waveform distortion, decreasing the latency to
the peak of the waveform and introducing artefacts [69]. On the other hand, low-pass
filters attenuate high frequencies, and in this case, its high-frequency cutoff must also be
opportunely chosen due to its influence in the reduction of the amplitude and rise time.
EMG signal in output from the conditioning stage (preprocessing and processing modules)
should be sent to an acquisition device for data recording, analysis and/or storage. This
system is generally composed of an Analog-to-Digital Converter (ADC) that discretizes the
signal in both time and amplitude, assigning a digital value to the amplitude at defined
time points. This procedure is needed to further perform signal analysis for both clinical
and research diagnostic purposes. Generally, the EMG front-end system should be satisfied
well-defined specifications. The main specifications regard [76]:

• Accuracy: this characteristic is related to the implementation of the differential am-
plifier, ADC and several other components connected to inherent noise; the aim is to
optimize each used component to minimize noise, ensuring accuracy;

• Sensitivity: this features on the ADC resolution and consequently the overall resolu-
tion of the system; it allows the physicians to understand the limits of their reading;

• CMRR: this is the Common-Mode Rejection Ratio, and it expresses the ability of the
differential amplifier to reject common-mode signals; it plays a crucial role in avoiding
50–60 Hz power line interference;

• Input impedance: the optimization of this value is relevant in differential amplifier
selections and implementations related to different user skin types and electrode in-
terfaces;

• Input range: this specification regards hardware implementation and ADC, specifying
the range of the biosignal that can be picked up without saturating the amplifier.
A larger input range is preferred to acquire the entire signal, but this requires an
expansion of signal resolution;

• SNR: this is the Signal-to-Noise Ratio, and it is the ratio between the signal’s amplitude
and the background noise.

3. Research Methodology

This review has been conducted following the Preferred Reporting Items for System-
atic Reviews and MetaAnalyses (PRISMA) item [77]. This research aims to investigate and
provide a review of existing research on biosignal monitoring systems in the rehabiliation
field. Scientific contributions and commercial devices have been chosen based on their
contents and applications, closely related to the objective of this paper.

For scientific papers, the chosen databases were PubMed, MDPI, Springer, ACM
Digital Library and Science Direct, as reported in Table 1.

Table 1. Databases used for this review.

Database URL Date Access

PubMed https://pubmed.ncbi.nlm.nih.gov/ 30 June 2021
MDPI https://www.mdpi.com/ 30 June 2021

Springer https://link.springer.com/ 30 June 2021
ACM Digital Library https://dl.acm.org/ 30 June 2021

Science Direct https://www.sciencedirect.com/ 30 June 2021

The main research questions (RQ) of this study are:

• RQ1: what are the most recent contributions in literature?
• RQ2: what are the commonly used medical devices?

https://pubmed.ncbi.nlm.nih.gov/
https://www.mdpi.com/
https://link.springer.com/
https://dl.acm.org/
https://www.sciencedirect.com/
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• RQ3: how do these contributions and medical devices support physiological monitor-
ing in rehabilitation?

• RQ4: what are the future directions and opportunities for EMG signal acquisition and
analysis in a rehabiliation context?

Based on these research questions, while reviewing the existing research on keywords
Biosignals, Acquisition device, Wearable device, Monitoring, Rehabilitation and Telemedicine,
a total of 856 were identified as interesting for the topic of this review from 2004 to the
present. From these resulting articles, 743 were removed because they did not fully satisfy
the requirements of this review. Starting from these 113 remain papers, 15 contributions
were also excluded because they did not report explicit considerations about EMG signals.
Finally, from 98 studies, 20 contributions about wearable monitoring systems were chosen
among papers published in the literature in the last 5 years to be analyzed in depth. A flow
diagram illustrating our review methodology process is shown in Figure 2.

Figure 2. Flow diagram about research methodology.

4. Wearable Devices for Rehabilitation

Rehabilitation consists of an iterative process involving assessments and specialized
training, which unfortunately are often limited by healthcare centres’ restricted resources.
To overcome this limitation, wearable technology should be an important, potential and
valid solution to objectively assess and monitor patients inside and/or outside clinical
environments. The information extracted by the use of this technology should provide a
more detailed evaluation of the impairment, also allowing the identification of rehabilita-
tion therapies [78]. The advantage of wearable devices in terms of portability, low cost and
unobtrusive sensors makes this technology highly efficient in tracking movements aiming
to enhance patient care with neurologic or musculoskeletal conditions. Furthermore, these
sensors enable quantification of motor behaviour useful in compensation motor recovery
mechanisms, remote monitoring, telerehabilitation and robotics [79–81].
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Electrical biosignals are important indicators of the health and fitness condition of
the human body. The acquisition and analysis of biosignals such as ECG, EMG and
EEG through real-time e-health monitoring systems allow the extraction of relevant and
useful information to achieve better healthcare in terms of observation, diagnosis and treat-
ment [82]. A general setup of these systems is reported in Figure 3:

Figure 3. General setup of biosignal monitoring system.

EEG, ECG and EMG signals are extracted by electrodes placed on the patient and
acquired by sensor devices able to process these signals and transmit them on accurate
instrumentation for monitoring.

Generally, these systems present heavy drawbacks regarding the limitation in acquir-
ing and sending data at high rates, the low energy efficiency and the restricted portability
due to their large size and weight. To overcome these limitations and make these systems
more efficient, wearable devices are becoming essential in daily and clinical practice to
allow continuous monitoring of human activity in terms of changes in biological signals.
The increasing trends of wearable devices and the multimodal acquisition of different
biosignals are crucial for advancing disease-diagnosis and treatment. Wearable devices
perform activity monitoring through two main processes: (i) data acquisition and prepro-
cessing; (ii) transmission, analysis and classification of acquired data. Signal preprocessing,
for example, includes amplification and filtering stage; signal analysis, instead, involves
averaging or extraction of relevant features to be used as training data for classifier [83].

In literature, many contributions are available concerning the design and the imple-
mentation of wearable sensors aiming to define platforms of multimodal acquisition and
recognition of different biosignals, such as electroencephalography, electromyography and
electrocardiography, for continuous and automatic monitoring of human health status,
improving diagnosis, follow-up and therapeutic strategies of several disorders. Wearable
devices usually involve smart sensors to detect and monitor a set of physiological parame-
ters aiming to support their continuous monitoring for diagnostic, therapeutic and control
purposes [84]. The great demand of the aging population for healthcare management
needs the use of these wearable medical devices to monitor personal health information in
real-time to prevent diseases and emergency health risks. Today, many wearable health-
care devices provide biosignals, such as EEGs, ECGs, EMGs, blood pressure or blood
glucose levels. Electrical signal variations cause ECG and EMG during muscular activities,
and they are important and commonly adopted parameters for healthcare management
and rehabilitation protocols.

Zhao et al. [84] propose a wearable monitoring device for upper limb rehabilitation.
This device integrates ECG/EMG sensors with data acquisition boards to obtain accurate
signals during robotic glove assisting training. The ECG/EMG signals are acquired, prepro-
cessed, digitized and transmitted to a remote receiver via a low-energy Bluetooth module.
In addition, a software platform was developed for data analysis by integrating different
algorithms to visualize ECG/EMG information and extract patterns of interest. EMG and
ECG sensors monitor the hand activities and the relative changes in the physiological status
of a subject, respectively. The results show that monitoring ECG and EMG signals assist the
subject in improving upper limb rehabilitation according to specific treatment conditions
and the users’ demands.
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Liu et al. in [85] propose a portable and wireless acquisition system to acquire physio-
logical signals. The system mainly consists of a portable device, a graphic user interface
(GUI) and an application program for displaying the signals on a computer or a smart de-
vice. This device is characterized by eight measuring channels, a powerful microcontroller
unit, a lithium battery, Bluetooth 3.0 data transmission and a built-in 2 GB flash memory.
The results show that as this system can measure signals in real-time, supporting physicians
and researchers can perform experiments collecting physiological signals of interest.

Park et al. [86] report about an energy-efficient integrated circuit architecture of a 128-
channel ∆-modulated ∆Σ analog front-end (∆-∆Σ AFE) for 1024-channel neural recording
microsystems. The proposed platform is based on the modularity of 128 channels and
consists of eight multi-shank neural probes connected to individual AFEs. In addition,
a spectrum equalization scheme has been implemented to reduce area and energy con-
sumption, taking advantage of the inherent spectral characteristics of neural signals (most
of the energy is present in low frequencies). The following features characterize the de-
signed ∆-∆Σ AFE: each single-channel AFE consumes 3.05 µW from 0.5 and 1.0 V supplies
in an area of 0.05 mm2 with 63.8-dB signal-to-noise-and-distortion ratio and 3.02 noise
efficiency factor.

An analog front-end AFE with two-channel acquisition is described in [87]. It is charac-
terized by high impedance for low power application of bioelectrical activity. The proposed
architecture comprises a programmable gain amplifier (PGA) and a 10-bitΣ∆ (SDM-ADC).
The overall gain is programmed through the flip-over-capacitor feedback and proposed
reconfiguring in the PGA. The AFE measured frequency response from 50 Hz to 360 Hz
with an SNR of 63 dB, power consumption of 11 mW, programmable gains from 52.6 dB to
72 dB and an input-referred noise of 3.5 µV in the amplifier bandwidth.

In [88], a multi-channel data acquisition system to record bio-electrical signals is
proposed. The system consists of eight front-end acquisition modules and a synchroniza-
tion module useful for reliable synchronization of all acquired signals. Each front-end
acquisition module uses a separated universal serial bus data link to the computer. It
is synchronized with other modules by an external clock, providing the time-base for
the microcontrollers. The generated synchronization error is smaller than 10 µs, so the
system is suitable for real-time analysis of movements. Furthermore, each analog front-end
circuit is based on the highly integrated chip ADS1299, which contains analog filters and
simultaneous digitalization of eight bipolar channels. Therefore, the proposed system can
support real-time recordings of up to 64 bipolar channels. Lastly, raw data are analyzed
and stored on a personal computer or a single-board computer.

A most recent contribution is given by Tran et al. in [89]. The authors present
a four-channel, power-efficient and low-noise neural recording analog front-end (AFE)
integrated circuit (IC). The overall architecture is composed of a four-channel neural
recording analog front-end. Each front-end channel consists of a low-noise amplifier (LNA),
a programmable gain amplifier (PGA) and buffers. The four-channel AFE is followed
by a 4-to-1 multiplexer (MUX) and the analog-to-digital converter (ADC). The overall
system presents a programmable gain range from 45 dB to 63 dB, and it achieves integrated
input-referred noise of 3.16 µVRMS within the 10 kHz bandwidth, a noise efficiency factor
of 2.04, a power efficiency factor of 4.16 and =power consumption of 2.82 µW per channel
powered from the 1-V supply voltage.

A modular and wearable system for the acquisition and wireless transmission of
biological signals is proposed in [90]. This system has been configured for different signals,
such as ECG and EMG signals, and it is based on the ADS1294 Medical Analog Front End
and the CC3200 microcontroller, both from Texas Instruments. It is a portable solution sup-
plied by two Li-ion charged batteries. The results are promising in size, physical reduction,
robustness in the wireless transmission and reliability in data acquisition and processing.

Another contribution is proposed in [91] by Sarker et al. A compact and wearable
portable bio-signal acquisition device has been designed and implemented. It is charac-
terized by real-time data wireless transmission and low energy consumption. The system
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has been defined to acquire ECG and EMG signals at eight channels with a 24-bit resolu-
tion/channel configuration and 500 samples/s. Moreover, the device has been used in an
IoT-based system as an example of possible integration.

Mazzetta et al. [92] propose a stand-alone wearable sEMG system for monitoring
muscle activity in real time. This system can detect the muscle activation potentials,
and it embeds the complete real-time data processing thanks to an integrated low-power
microcontroller. The system is optimized for power consumption, compactness and energy
autonomy, so it can be used for valuable diagnostic data sets for patients during their
day-to-day life. Moreover, the results in testing the system report an achieved specificity
and sensitivity in recognizing exact activity timing over 87% and 82%, respectively, with the
advantage of being wireless and comfortably wearable.

The system presented in [93] consists of a non-contact ECG sensor with a fully inte-
grated analog front-end (AFE), a temperature sensor, an accelerometer and a Bluetooth
Low Energy (BLE) module for multiparameter real-time monitoring. Small dimensions
characterize it, and it can be used by inpatient, outpatient, people with disabilities or aging
people who live alone. Data processing is performed by an Android application, sending
alerts to authorities in case of an emergency.

Kim et al. [94] present a low-power, multimodal analog front-end (AFE) for wearable
health monitoring sensors. It is based on novel system architecture and very large scale
integrated circuit design methods with CMOS technology. Three sensors for bio-potential,
photoplethysmography (PPG) and bioelectrical impedance analyzer (BIA) are integrated
for low dimension and power consumption. Results showed high-quality AFE permitting
users to effortlessly self-monitor multiple clinically relevant physiological parameters.

Authors in [95] proposes a novel analog front-end (AFE) to investigate three fea-
tures: (i) voltage-dependent input impedance, (ii) bandpass amplification and (iii) stray
capacitance reduction by using capacitive electrocardiogram (cECG) or capacitive elec-
tromyogram (cEMG) measurements in seven human subjects. Performance evaluation
indicates that the proposed AFE can provide a feasible balance between sensitivity and
stability in capacitive biopotential measurements (CBMs). Thus, it could be a versatile
replacement for the conventional voltage follower used in CBMs.

Biagetti et al. [96] present a low-cost wearable wireless system for the acquisition of
surface electromyography (sEMG) and accelerometer signals aiming to monitor human
activity when performing sport and fitness activities, as well as in healthcare applications.
The proposed system consists of several ultralight wireless sensing nodes that can ac-
quire, process and efficiently transmit the motion-related (biological and accelerometer)
body signals to one or more base stations through a 2.4 GHz radio link using an ad hoc
communication protocol designed on top of the IEEE 802.15.4 physical layer. In addition,
a user interface software for viewing, recording and analyzing the data was implemented
on a controlled personal computer connected through a USB link to the base stations.
To demonstrate the system’s capability to detect the user’s activity, data recorded from a
few subjects were used to train and test an automatic classifier to recognize the type of
exercise being performed. The system was tested on four different exercises performed by
three people; the automatic classifier achieved an overall accuracy of 85.7% combining the
features extracted from acceleration and sEMG signals.

Another contribution proposed by Biagetti et al. [97], following the previously devel-
oped system, regards the design of a wireless sensor device for the real-time acquisition of
bioelectrical signals, such as EMG and ECG. This device aims to furnish a complete stream
of data suitable for human activity detection, motion analysis and technology-assistance for
people with physical or cognitive impairments. Six electrodes are considered to allow up
to three independent bioelectrical channels, each with 24 bits of resolution and a sampling
rate up to 3.2 kHz. Moreover, a Bluetooth Low Energy wireless link has been chosen to
interact with many consumer electronics devices. Specifically, this contribution investigates
data rate restrictions imposed by these devices proposing a strategy aiming to maximize
the available bandwidth and reliability of the transmission.
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Xian Li and Ye Sun [98] present a button-like wearable wireless non-contact system
for long-term multiple biopotential signal (ECG, EMG and EEG) monitoring. This system
is based on an ultra-high input impedance of the analog front-end for non-skin contact
detection. The system is powered by a 150 mAh rechargeable Li-ion battery and packaged
into a 39 mm × 32 mm × 17 mm 3D printed small box for a total weight of 24.0 g. A power
management circuit is included to provide a dual power supply for operational amplifiers.
The system’s performance has been evaluated through multiple motion scenarios with
different types of cloth, and the results show the feasibility of long-term biopotential
monitoring for daily application without affecting daily activities.

In [99], the authors present a single-channel amplifier to simultaneously acquire
the ECG signal and the impedance respiration signal. The system is based on the over-
sampling and fast digital lock-in technology. It uses capacitive reactance of a capacitor
changing with the signal’s frequency to satisfy the different impedance requirements of
both the respiratory impedance signal and ECG signal. The preprocessing stage has been
designed to improve the common-mode rejection ratio (CMRR) and the signal-to-noise
ratio (SNR). ADS1294R (four-channel 24-bit ADC with integrated respiration impedance
and ECG front-end) has been included to detect the ECG signal, and respiration signal and
STM32F103RET6 has been adopted for signal processing. The results show as the designed
circuit can support the simultaneous acquisition of multiple human physiological signals
in a signal channel. Moreover, it can also detect other impedance variation signals and
bioelectrical signals such as EMG, EOG and EEG signals.

The authors of [100] propose their contribution in the design of a portable device
for ECG, EMG, EEG and Electrooculogram (EOG) signal monitoring aiming to support
diagnosis and the evolution of several diseases. The processor satisfies the suppressing of
baselines wander (0.1–0.5 Hz) and power line interference noise (50/60 Hz), and it provides
to switch between low noise–high CMRR mode and average noise-average CMRR mode.
Moreover, a bandpass and a band-stop FIR filter have been developed. The processor
also contains a Successive Approximation Register (SAR) DAC for the controlling signal.
It is designed in Spartan-3E FPGA and 0.18 µm CMOS TSMC technology for a total of
33,005 µm2 area and power consumption of 0.382 mW.

Lee et al. [101] present a novel wireless ExG sensor tag with a multi-channel physi-
ological signal acquisition (PSA) system aiming to acquire biopotential signals, such as
ECG, EOG and EMG. Furthermore, a mixed-signal processor system-on-chip (SoC) and
Bluetooth Low Energy (BLE) chip have been implemented for real-time recording and
wireless transmission, respectively. This system is optimized for power efficiency, and it
can be easily achieved in 12 h with a 200 mAH battery of continuous recording of ExG
signals in healthcare applications.

Flexible architecture of a multi-purpose physiological signal (e.g., ECG, EMG) recorder
is presented in [102], supporting wired and wireless body sensor networks. It allows a
wide range of hardware settings, data processing and reporting options. The proposed
architecture is based on three main layers, including data acquisition, processing and
communication modules. A programmable analog front-end ADAS1000 with five config-
urable gain single-ended channels has been implemented. In addition, a 24-bit resolution
analog-to-digital converter with a programmable data rate up to 128 kHz has been de-
signed. Moreover, three channels are provided for immediate communication and storage
of results of physiological measurement in either raw or processed form.

A noise-power-area optimized biosensing front-end application specified integrated
circuit (ASIC) for wireless body sensor nodes, and implantable medical devices are pre-
sented in [103]. The ASIC is implemented in a 0.18 µm CMOS process, and it is recon-
figurable to accommodate different biopotentials with the high-pass and low-pass cutoff
frequencies being 0.5–300 Hz and 150–10 kHz, respectively. An antialiasing filter is also
available for the switching-optimized 10-b successive approximation register (SAR) analog-
to-digital converter (ADC). The analog front-end (AFE) allows a programmable gain from
38 to 72 dB. Moreover, a power management unit provides the power supply, multiple
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reference voltages and bias currents to the entire chip. In terms of performance, the fol-
lowing characteristics can be identified: (i) AFE and ADC dissipate 5.74 µW and 306 nW,
respectively, (ii) the measured input-referred noise is 2.98 µVrms, (iii) the noise efficiency
factor is 2.6, (iv) the power efficiency factor is 9.46 and (v) the area of the AFE is 0.0228 mm2.

A summary of these contributions about wearable monitoring systems chosen among
the papers in the literature published in the last 5 years is made in Table 2.

Table 2. Summary of selected wearable monitoring system included in this review.

Authors Signals Channels Platform Characteristics Features

Tran et al.,
2021 Bio-potentials 4 channels

Four-channel neural recording
analog front-end composed by a
low-noise amplifier (LNA),
a programmable gain amplifier
(PGA) and buffers; 4-to-1
multiplexer (MUX) and
analog-to-digital converter
(ADC)

Programmable gain from
45 dB to 63 dB,
input-referred noise of
3.16 µVRMS within the
10 kHz bandwidth, noise
efficiency factor of 2.04,
power efficiency factor of
4.16, power consumption of
2.82 µW per channel
powered from 1 V supply
voltage

Yin et al., 2021
Bio-potentials,
impedance
respiration

Single 1 channel

Oversampling and fast digital
lock-in technology, ADS1294R,
STM32F103RET6 for signal
processing

Improve the common-mode
rejection ratio (CMRR) and
the signal-to-noise ratio
(SNR) of the signal

Zhao et al.,
2020 ECG/EMG N.A. Low-energy Bluetooth module

Wearable monitoring device,
software platform for data
analysis

Biagetti et al.,
2020 Bio-potentials 3 channels

Six electrodes, 24 bits of
resolution and a sampling rate
up to 3.2 kHz for each channel,
Bluetooth Low Energy wireless
link

Wireless sensor, real-time
acquisition, maximization of
the available bandwidth,
reliability of the
transmission

Nakamura et al.,
2020 ECG/EMG N.A. Analog front-end (AFE) Capacitive measurements

Liu et al., 2019 Bio-potentials 8 channels

Powerful microcontroller unit,
lithium battery, Bluetooth 3.0
data transmission and built-in 2
GB flash memory

Portable device with a
graphic user interface (GUI)
and an application program
for displaying the signals on
a computer or a smart
device

Park et al.,
2018 Bio-potentials 128 channels

Energy-efficient integrated
circuit architecture of a
∆-modulated ∆Σ AFE with
multi-shank neural probes
connected to individual AFEs

The ∆-∆Σ AFE is
characterized by a consume
of each single-channel AFE
of 3.05 µW from 0.5 and
1.0 V supplies in an area of
0.05 mm2 with 63.8 dB
signal-to-noise-and-
distortion ratio and 3.02
noise efficiency factor

Raheem et al.,
2018 Bio-potentials 2 channels

Programmable gain amplifier
(PGA) and 10-bitΣ∆
(SDM-ADC)

High impedance, power
consumption of 11 mW,
programmable gains from
52.6 dB to 72 dB and input
referred noise of 3.5 µV in
the amplifier bandwidth

Mazzetta et al.,
2018 EMG Differential 1

channel

32 bit ARM® Cortex®-M4,
microSD, Bluetooth 4.0,
592 mWh battery, micro-USB
connector, 30 × 30 × 15 mm
dimensions, weight of 10 g

Power consumption,
compactness and energy
autonomy, wireless and
comfortably wearable
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Table 2. Cont.

Authors Signals Channels Platform Characteristics Features

Biagetti et al.,
2018 sEMG N.A.

Ultralight wireless sensing
nodes, base station for data
transmission through a 2.4 GHz
radio link, communication
protocol designed on top of the
IEEE 802.15.4 physical layer

Low-cost wearable wireless
system, user interface
software for viewing,
recording and analyzing
data

Kast et al.,
2017 Bio-potentials Bipolar 64

channels

Up to eight front-end acquisition
modules with synchronization
module, a separated universal
serial bus data-link to the
computer and an ADS1299

Raw data are analyzed and
stored on a personal
computer or a single-board
computer

Sarker et al.,
2017 ECG/EMG 8 channels

24 bit resolution/channel and
500 samples/s, IoT-based
system

Compact and wearable
portable bio-signal
acquisition device, real-time
data wireless transmission,
low energy consumption

Li et al., 2017 ECG/EMG N.A.

150 mAh rechargeable Li-ion
battery, packaged into a
39 × 32 × 17 mm 3D printed
small box, total weight of 24.0 g,
power management circuit, dual
power supply for operational
amplifiers

Wearable wireless
non-contact system,
ultra-high input impedance,
feasibility of long-term
biopotential monitoring

Senepati et al.,
2017 ECG/EMG N.A.

Band pass and band stop FIR
filters, Successive
Approximation Register (SAR)
DAC, Spartan-3E FPGA and
0.18 µm CMOS TSMC
technology

Area of 33,005 µm2 area,
power consumption of
0.382 mW, suppressing of
baselines wander and power
line interference noise
(50/60 Hz)

Bhamra et al.,
2017 ECG/EMG N.A.

ASIC technology in a 0.18 µm
CMOS process, high-pass and
low-pass cutoff frequencies
being 0.5–300 Hz and
150 Hz–10 kHz, antialiasing
filter, successive approximation
register (SAR) analog-to-digital
converter (ADC), power
management

Wireless, programmable
gain from 38 to 72 dB, AFE
and ADC dissipation of
5.74 µW and 306 nW,
measured input-referred
noise of 2.98 µVrms, noise
efficiency factor of 2.6,
power efficiency factor of
9.46, area of the AFE of
0.0228 mm2

Kim et al.,
2016

Bio-potentials,
PPG, BIA N.A.

CMOS technology, low-power
and multimodal analog
front-end (AFE)

Wearable health monitoring,
low dimension and power
consumption

Mahmud et al.,
2016 ECG N.A.

Fully integrated analog
front-end (AFE), temperature
sensor, accelerometer, Bluetooth
Low Energy (BLE) module

Multiparameter real time
monitoring, small
dimensions, Android
application, alerts

Piccinini et al.,
2016 ECG/EMG N.A.

ADS1294 Medical Analog Front
End, CC3200 microcontroller,
two Li-ion charged batteries

Portable solution, size
physical reduction,
robustness in wireless
transmission, reliability in
data acquisition and
processing

Lee et al., 2016 ECG/EMG N.A.

Mixed-signal processor
system-on-chip (SoC), Bluetooth
Low Energy (BLE) chip,
200 mAh battery

Wireless transmission,
power efficiency, 12 h of
continuous recording

Augustyniak et al.,
2016 Bio-potentials Single-ended 5

channels

Programmable AFE ADAS1000,
24-bit resolution
analog-to-digital converter with
programmable data rate up to
128 kHz

Wired and wireless body
sensor networks,
configurable gain for
channel
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5. Commercial Wearable Devices

Wearable portable systems aim to daily acquire and processes different health data,
providing early detection of pathological signs and improving the treatment and the
continuous monitoring of disease. Many commercial EMG and ECG sensors are available,
and they are designed and created to satisfy different specifications. In this section, the
review proposes a description of the common commercial biosignal acquisition systems
for physiological monitoring. These systems have been chosen to be the most used devices
in health practice presenting similar characteristics to be compared.

Biometrics Ltd offers different data acquisition systems to collect analog and digital
data from various sensors and are available in wireless, portable and laboratory configu-
rations. Wireless systems furnish total freedom of movement without being constrained
by wires [104]. They are available in 2-, 4-, 8- and 16-channel configurations to acquire
EMG signals by using surface, small and lightweight sensors, allowing muscle activity
readings to be smooth and robust with a range of up to 30 m from its receiver. The main
features of these types of sensors are (i) a bandwidth from 10 Hz to 250 Hz through to 10 Hz
to 5000 Hz and (ii) a sensitivity for the peak to peak measurements ranging from +/−
60 mV to +/− 6000 mV [105]. Portable systems are comprehensive packages of sensors
and instrumentation for static and dynamic measurements in a clinical setting, a research
centre, or at any remote location such as an office, workplace or home. Biometrics offers
three different versions of EMG sensors: (i) surface EMG sensors, (ii) wireless surface EMG
sensors and (iii) surface EMG amplifier.

Shimmer offers a set of individual sensors for different parameters measurement [106].
Shimmer3 EMG Unit provides a configurable digital front-end useful for the acquisition
and measurement of EMG signals [107]. This unit uses a non-invasive sensor allowing
registration of the activity of the whole muscle. It provides two channels of EMG data with
a common reference electrode in a wireless solution. It can also acquire ECG data, but EMG
and ECG data cannot be measured simultaneously from a single unit. Shimmer3 EMG unit
contains an MSP430 microcontroller, a Bluetooth Radio (RN-42) and an integrated 8 GB
micro SD card, and it is supplied by a 450 mAh rechargeable Li-ion battery. The Shimmer3
ECG unit is equivalent to the Shimmer3 EMG unit, but it is optimized for the measurement
of physiological signals for ECG [108]. It is a four-lead ECG solution to measure bipolar
limb leads chosen from V1–V6; moreover, it offers respiration demodulation from ECG
data and allows lead-off detection.

BioSemi instrumentation proposes ActiveTwo biopotential measurement systems for
research applications [109]. This system is characterized up to 256-channel DC amplifier,
24-bit ADC per channel and active electrodes. These active electrodes are smaller with less
cable weight while offering even better specs in terms of low-frequency noise and input
impedance. Specifically, the ActiveTwo system provides: (i) up to 256 + 8 electrode +7
sensor channels in a single ultra-compact box, (ii) battery-powered front-end with fiber
optic data transfer, (iii) reliable measurements without skin preparation, (iv) improved
digital resolution with LSB value of 31 nV and (v) user-selectable sample rate of 2, 4, 8,
16 kHz/channel. Moreover, it is suitable for EEG, ECG and EMG measurements, and it
offers graphical programming in LabVIEW.

FreeEMG is an electromyography device with wireless probes for the dynamic analysis
of muscle activity. It is a 4G technology device for surface EMG analysis characterized
by signal accuracy, absence of wires, lightness and reduced size of the probes. FreeEMG
is largely used for orthopedic and neurological disorders; pharmacological treatments;
the evolution of motor deficits; rehabilitation and follow-up; and athletic task optimization.
PLUX develops innovative biosignal acquisition and monitoring platforms integrating
wearable body sensors such as EMG and ECG combined with wireless connectivity and
software applications [110]. Two of these platforms are BITalino and Biosignalplux.

BITalino (r)evolution kit is an all-in-one board with all the blocks pre-connected and
ready to work out-of-the-box [111]. This model is fitted with Bluetooth communication.
Its EMG sensors are specially designed for surface EMG. The bipolar configuration is
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ideal for low-noise data acquisition, and the raw data output enables it to be used for
human–computer interaction and biomedical projects alike.

Biosignalsplux represents an advanced wireless toolkit to collect and analyze reliable
and high-definition biosignal data [112]. It offers a set of cabled and wearable sensors.
The biosignalsplux electromyography (EMG) sensor is a high-performance bipolar sensor
with low noise for seamless muscle data acquisition. This sensor is designed to monitor
muscular activity, and the bipolar configuration is ideal for uncompromised low-noise
data acquisition. The raw data output provides medical-grade data enabling it to be
used for advanced and highly accurate biomedical biomechanics and sports research. Its
main features are (i) bipolar differential measurement, (ii) pre-conditioned analog output,
(iii) high signal-to-noise ratio and (iv) medical-grade raw data output. It is also ready-to-
use, and it is miniaturized. The wireless single-channel EMG device for real-time muscle
sensing is muscleBAND. It is an integrated single-channel EMG sensor with a triaxial
accelerometer and magnetometer for real-time acquisition of muscle activity and motion
data with an integrated dual Bluetooth module. This sensor allows data acquisitions with
up to 16-bit resolution at up to 1000 Hz sampling rate, with the internal battery providing
enough power for continuous data streaming.

Delsys proposes complete wireless EMG-based solutions for monitoring human move-
ment in research, clinical and educational settings [113]. These solutions are composed of
(i) research, mobile and lite systems, (ii) EMG sensors, (iii) mobile software and (iv) soft-
ware for devices integration. The most used EMG sensor is Trigno Avanti Sensor, which
can capture muscle activity and movement data accurately. It is designed to work with
all Trigno systems, and it is characterized by (i) patented technology, (ii) improved RF
performance, (iii) cable-free design, (iv) selectable EMG bandwidth settings and (v) on-
board signal processing. It also allows differential EMG input acquisition in a very small
dimension and weight. Trigno Research+ is a high-performing device designed to make
EMG signal detection reliable and easy, offering a full set of physiological and biomechan-
ical monitoring tools to simplify complex research and provide the highest quality data.
Proprietary RF protocol guarantees synchronization between all sensors and allows data
transmission from Trigno wireless sensors to a Trigno base station. Table 3 reports the main
characteristics of the selected wearable monitoring systems.

Table 3. Main characteristics of the commercial wearable monitoring systems.

Features Biometric Shimmer Biosemi BTS
Bioengineering Biosignal Plux BITalino Delsys

Type of sensor Wireless EMG
Sensor

Shimmer3 EMG
Unit ActiveTwo FreeEMG 1000

H2O

Electro-
myography
Sensor

Electro-
myography
Sensor

Trigno Avanti
Sensor

Size
(mm × mm
×mm)

42 × 24 × 14 65 × 32 × 12 120 × 150 × 190 Probes: 41.5 ×
24.8 × 14 28 × 70 × 12 12 × 27 27 × 37 × 13

Weight 17 g 31 g 1.1 kg 13 g—battery
included 25 g N.A. 14 g

# channels 1 2 8 up to 256 1 1 1 1 differential input

Input
impedance >100 Mohms N.A. >100 M @ 50 Hz >100 GOhm 10/7.5

GOhm/pF

Input range +/−6 mV Approx. 800 mV
@ gain = 6

+262 mV to
−262 mV N.A. Up to 10 mV ±1.64 mV @

VCC = 3.3 V 11 mV/22 mV rti

Gain +/−60 mV to
+/−6000 mV

1,2,3,4,6,8,12
(software
configurable)

N.A. N.A. 1000 1009 11 mV/22 mV rti

CMRR
>96 dB
(typically
110 dB) @ 60 Hz

N.A. >90 dB @ 50 Hz N.A. 100 dB 86 dB <−80 dB

Consumption N.A. N.A. 4 Watt @ 280
channels N.A. 1 mA 0.17 mA N.A.

Bandwith 0–250, 470, 950,
5000 Hz 8.4 kHz Up to DC—3200

Hz @ –3 dB N.A. 25–500 Hz 25–482 Hz 10–850 Hz
20–450 Hz
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Table 3. Cont.

Features Biometric Shimmer Biosemi BTS
Bioengineering Biosignal Plux BITalino Delsys

Data
transmission Wireless Bluetooth Radio

– RN-42 Fiber optic Wireless IEEE
802.15.4

Bluetooth Low
Energy N.A.

2.400-2.483 GHz
ISM Band,
Proprietary RF
Protocol - BLE
V4.2

Resolution N.A. 24 bit 24 bit 16 bit 12 bit N.A. 16 bit

Sample rate N.A.
125, 250, 500,
1000, 2000, 4000,
8000 SPS

2048 Hz–4096
Hz–8192
Hz–16,384 Hz

N.A. N.A. N.A. 4370 sa/sec

Battery type
and life

Rechargeable
Li-ion Polymer,
Up to 8 h

450 mAh
rechargeable
Li-ion battery

Battery power
with >10 h @
144 channels,
>72 h @ 16
channels

Battery Li-Po,
Up to 6 h N.A. Battery Li-Po

700 mAh

Rechargeable
Li-Po Battery
Up to 8 h

6. Discussion

The acquisition and analysis of biopotentials (e.g., EEG, ECG and EMG) are relevant
in a diagnostic and therapeutic context to monitor and identify normal and/or abnormal
physical conditions. In the rehabilitation field, these biopotentials became important to
support human activity monitoring. Surface EMG is a widely used technology in rehabili-
tation research. It furnishes quantifiable information on the myoelectric signal of a muscle.
Nevertheless, there is a strong contrast between the application of sEMG in clinical practice
and research findings. This contrast is due to several issues including: (i) limited time and
resources due, for example, to electrodes and skin preparations, electrode placements and
equipment setup; (ii) clinically inapplicable sEMG system features mainly caused by the
limited spatial resolution of sEMG; and (iii) lack of training and confidence in utilization of
sEMG technology. Common example of issues are technical and regard signal processing
and information extraction algorithms which do not directly produce clinically relevant
information. Other issues concerns the user-unfriendliness of some equipment. Finally,
the cost of the devices and the timing procedure to perform a measurement and to obtain a
clinically useful information have also a negative impact. In terms of sensor technology,
the main characteristics of a wearable system include low-energy operations, light weight
and safety requirements. In addition, a wearable device must be compact and comfort-
able enough to be easily used. Moreover, it must be portable and guarantee continuous
monitoring of human behavior through a battery power supply and wireless connectivity,
respectively. Today, many commercial sensors are available to meet these requirements,
and they offer different personalized solutions regarding specific needs. These sensors are
characterized by small dimensions and portable configurations, making them more useful
in patient control in clinical structure and at home. The limitation of modern commercial
sensors is mainly due to the high cost and the complexity of the system used by a single
subject. Moreover, they are not always easy to use. One of the main problems of exist-
ing biosignal technology is the high cost of commercial devices that is higher in devices
with wireless technologies, which makes it easier to install on the muscle and connect
with the computer; however, this requires a more complex system configuration. Very
often, these commercial sensors present complex design, mainly based on sophisticated
hardware with little attention toward a comfortable sensor–patient interface. Another
problem regards the fact that these sensors are designed based on bench tests, models and
patient simulators, ignoring the key component and working well in the simulation phase
but revealing problems under real-life conditions. To improve these limitations, research
prototypes are becoming very important because the newest sensor technology must meet
the needs of clinicians and patients. The new generations of sensor-driven technologies
should individuate the potential clinical need, identifying the key biosignals related to
a specific physiological processes and seeking the development of platforms based on
novel sensing technologies. These new platforms must be able to monitor the physiological
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processes from useful locations using novel transduction mechanisms. The hardware also
should be designed and developed around these constraints and requirements. In the
future, these sensors will support home-based physiological data collection, preventive
healthcare programs and also facilitate remote care and rehabilitation protocols. For this
reason, the future steps will regard the development of miniaturized and economic devices
which will be used on a large population.

7. Conclusions

This contribution is proposed as a review of the most common physiological moni-
toring systems in the rehabilitation field. It focuses on the EMG signal front-end as one of
the main platforms to support physicians, patients and general subjects in rehabilitation
protocols. In this review, many references in the literature have been presented to highlight
the importance of the acquisition, analysis and monitoring of EMG signals to muscular
activity control. Moreover, different commercial available EMG sensors have also been
described and compared to identify the most common features of these devices in EMG
acquisition. The main characteristics are portability and wireless data transfer, aiming to
ensure a practical use in rehabilitation.
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