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Abstract: This paper develops a framework to track the trajectory of a target in 2D by considering
a moving ownship able to measure bearing measurements. Notably, the framework allows one to
incorporate additional information (e.g., obtained via intelligence) such as knowledge on the fact the
target’s trajectory is contained in the intersection of some sets or the fact it lies outside the union of
other sets. The approach is formally characterized by providing a constrained maximum likelihood
estimation (MLE) formulation and by extending the definition of the Cramér–Rao lower bound
(CRLB) matrix to the case of MLE problems with inequality constraints, relying on the concept of
generalized Jacobian matrix. Moreover, based on the additional information, the ownship motion
is chosen by mimicking the Artificial Potential Fields technique that is typically used by mobile
robots to aim at a goal (in this case, the region where the target is assumed to be) while avoiding
obstacles (i.e., the region that is assumed not to intersect the target’s trajectory). In order to show
the effectiveness of the proposed approach, the paper is complemented by a simulation campaign
where the MLE computations are carried out via an evolutionary ant colony optimization software,
namely, mixed-integer distributed ant colony optimization solver (MIDACO-SOLVER). As a result,
the proposed framework exhibits remarkably better performance, and in particular, we observe that
the solution is less likely to remain stuck in unsatisfactory local minima during the MLE computation.

Keywords: target motion analysis; intelligence-aware estimation; radar; Cramér–Rao lower bound;
nonlinear estimation; constrained MLE; data fusion; smart estimation; intelligence analysis; critical
infrastructure protection; evolutionary ant colony optimization; MIDACO-SOLVER

1. Introduction

In the last decades, target motion analysis (TMA) has become an increasingly popular
research field, and in the literature, several approaches have been developed, such as batch
processing frameworks [1–4] and recursive ones [3,5–8]. The aim of TMA is to estimate
the state of a target (usually position and velocity) from noise-corrupted measurements
collected by an observer [9]. The TMA problem presents several challenges, mainly due
to the nonlinear relationship between the measurements and target state. Another chal-
lenge is that the observer must outmaneuver the target in order to make the target state
observable [10]. For instance, to track a target with constant velocity, the observer plat-
form must change its speed or course. Otherwise, there exist other target trajectories that
produce the same sequence of noise-free bearing angles [3].

Among other approaches, bearing-only target tracking [11–13] represents an increas-
ingly popular topic, with application scenarios ranging from underwater tracking [14,15]
to cooperative tracking for multiagent systems [15–18].

Other relevant approaches in the literature include, among other works: applications
to sensor network localization [19]; algorithms based on direction-of-arrival measurements,
modeled by von Mises–Fisher distributions [20]; pseudolinear estimators for 3D target
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motion analysis by a single moving ownship collecting azimuth and elevation angle
measurements [21]; a methodology based on a bank of batch maximum a posteriori (MAP)
estimators as a general estimation framework that provides the relinearization of the entire
state trajectory, multihypothesis tracking and an efficient hypothesis generation scheme [22];
an approach based on Newton–Raphson methods and Particle Swarm Optimization [23];
a methodology to combine target motion compensation and track-before-detect methods
within passive radar based on global navigation satellite systems (GNSS) for the detection
of maritime targets [24]; TMA from cosines of conical angles acquired by a towed array [25];
and a new pseudolinear filter for bearings-only tracking without the requirement of bias
compensation [26].

Notice that, in the literature, some approaches have been developed where the avail-
ability of road or traffic information is used to track a moving target. In particular, in [27],
the target is assumed to move in a a road network, and the tracking is performed via
an airborne sensor that exploits knowledge on the network; in [28], a similar setting is
considered, and a Bayesian approach is adopted; in [29], a particle filter is developed in
order to track multiple vehicles on multi-lane roads based on a microscopic traffic flow
model. However, such approaches require one to rely on a large deal of fine-grained
information (e.g., the structure of the road network) and can only be applied to scenarios
involving roads. However, in many cases, especially considering a maritime context,
only coarse-grained information is available: for instance, the environment might contain
physical obstacles or deterring entities such as warships that discourage the target from
passing nearby, or there might be rough evidence of the presence of a target in a given
zone (e.g., due to a witness or to cheap range-free sensors able to only detect the presence
of a target in a given zone). In this view, relying on such a coarse-grained information
could help improve the target’s trajectory estimate, also in contexts where road network
information cannot be leveraged upon without requiring huge computational resources.
This has been demonstrated, for instance, in [30] where such information is used in the
framework of network localization to overcome localization ambiguities.

This is the aim of this paper. In particular, this paper considers a scenario where
additional information is available to the ownship in charge of estimating the target’s
trajectory; specifically, the ownship is aware that the trajectory of the target lies in the
intersection of some sets and is not contained in the union of some other sets. This
additional information is exploited by developing a constrained MLE problem and an
approach for the selection of the ownship’s trajectory mimicking the Artificial Potential
Fields technique [31,32], which is typically used by mobile robots to aim at a goal (in
this case, the region where the target is assumed to be) while avoiding obstacles (i.e., the
region that is assumed not to intersect the target’s trajectory). Moreover, from a theoretical
standpoint, the CRLB on the estimation covariance matrix is characterized in the case of
MLE problems with inequality constraints; this is performed by extending the approach
in [33,34], where equality constraints where discussed, via the cast of inequality constraints
into nonsmooth equality ones and by the adoption of generalized Jacobian matrices [35],
which are set-valued on a zero-measure set where the derivative of the resulting nonsmooth
function is not defined.

The paper is complemented by an experimental analysis showing the effectiveness of
the proposed approach.

To summarize, the main contributions of the paper are as follows:

• We develop a novel MLE approach to carry out batch target-tracking estimation based
on noisy bearing-only measurements, which incorporates as inequality constraints
additional information in terms of sets where the target’s trajectory is assumed to be
contained and other sets which have empty intersection with the target’s trajectory;

• We characterize the CRLB associated to the constrained problem by considering a
generalized set-valued Jacobian matrix of the constraints function and by resorting to
nonsmooth theory;
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• We provide a heuristic way to select the ownship’s trajectory based on the although
coarse-grained available information regarding the target’s trajectory.

2. Materials and Methods

The aim of this section is to present the main algorithms, tools and derivations that are
used in the paper. Specifically, the section is organized as follows: in Section 2.1, we present
our problem statement; then, we discuss maximum likelihood estimation problems (in
Section 2.2, we review the unconstrained case, while in Section 2.3 we develop the proposed
MLE approach with additional inequality constraints); Section 2.4 is devoted to addressing
the computational aspects related to the approximated solution of the above constrained
and unconstrained MLE problems; Sections 2.5 and 2.6 address, respectively, the char-
acterization of the CRLB in the unconstrained and constrained case; finally, Section 2.7
discusses a heuristic approach to choosing the ownship’s direction based on the available
information.

2.1. Problem Statement

Let us consider a scenario where a target moves in a linear motion on a plane; in
particular, considering a discrete-time sampling, let us assume that the target moves
according to the following equations:

xt(k) = xt0 + ẋt0kT +
1
2

ẍtk2T2

yt(k) = yt0 + ẏt0kT +
1
2

ÿtk2T2

ẋt(k) = ẋt0 + ẍtkT

ẏt(k) = ẏt0 + ÿtkT,

(1)

with T being the sampling time. Moreover, let us consider an ownship platform aiming to
estimate the parameter vector

ψ =
[
xt0 yt0 ẋt0 ẏt0 ẍt ÿt

]T , (2)

based on a batch of measurements, sampled at uniform discrete-time instants t = kT
during the ownship motion and evaluated over the time interval [0, kmaxT].

In more detail, we assume that the ownship attempts to sense the following nominal
measurement (e.g., see [36]):

h(ψ, k) = atan2(yt(k)− yo(k), xt(k)− xo(k)) (3)

where xo(k), yo(k) are the coordinates of the ownship at time t = kT along the x and y axes,
respectively. However, we consider a scenario where the ownship is actually provided
with noisy measurements with the following structure:

z(k) = h(ψ, k) + w(k),

where the terms w(k) ∼ N
(
0, σ2) are independent and identically distributed Gaussian

noises with zero-mean and variance σ2.
Further to that, let us assume that additional information is available; specifically, let

us assume that the ownship is aware that, during the considered time frame [0, kmaxT], the
position p(k) = [xt(k), yt(k)]T of the target is confined in a region P of the plane defined
as follows:

P =

{
p ∈ R2 | p ∈

m⋂
i=1

Xi

}
, (4)
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where the sets Xi ⊆ R2 are convex, and their intersection is nonempty; moreover, the
ownship is aware that the position p(k) lies outside a region S of the plane defined
as follows:

S =

{
p ∈ R2 | p ∈

r⋃
i=1

Yi

}
, (5)

where the sets Yi ⊆ R2 are convex.
The aim of this paper is to investigate how this additional information influences the

estimation of θ and how the ownship can leverage on this additional information to select
a trajectory that improves the estimation performance.

2.2. Maximum Likelihood Estimation without Additional Information

Let us discuss how to estimate the parameter vector ψ via the maximum likelihood
estimate (MLE) technique (see, for instance [37], p. 182). The MLE for a vector parameter ψ
is defined to be the value θ∗ that maximizes the likelihood function p(z1, z2, . . . , zm, θ) over
the allowable domain of θ. In what follows, where understood, we abbreviate the notation
by writing p(θ). When p(θ) is differentiable, we have that the MLE θ∗ satisfies

∂ ln(p(θ))
∂θ

∣∣∣
θ=θ∗

= 0n. (6)

It is worthwhile to mention that the solution of the above equation is unique in this case and
is theoretically asymptotically unbiased. For our case, we have the following expression
for the likelihood function [3]:

p(θ) =
1

2πσ

kmax

∏
k=1

exp
(
− (z(k)− h(θ, k))2

2σ2

)
. (7)

Notably, the maximization problem at hand can be formulated as

θ∗ = arg max
θ

p(θ) = arg max
θ

ln(p(θ)). (8)

Let us define λ(θ) = − ln(p(θ)). The above problem can be equivalently expressed as

θ∗ = arg min
θ

λ(θ) (9)

which, by simple computations is equivalent to solving [3]

θ∗ = arg min
θ

kmax

∑
k=1

(z(k)− h(θ, k))2

2σ2 . (10)

Notably, Equation (10) is recognized to be the classical least squares (LS) solution.

2.3. Maximum Likelihood Estimation with Additional Information

Let us now extend the above MLE framework in order to account for the additional
intelligence available to the ownship.

In particular, we notice that, by Equations (1) and (2), it holds that

p(k) = Q(k)ψ, (11)

with

Q(k) =
[

I2 kTI2
1
2

k2T2 I2

]
∈ R2×6. (12)

Therefore, by plugging the above expression in Equation (4), we have that p(k) ∈ P if and
only if

Q(k)ψ ∈ P , ∀k ∈ {0, . . . , kmax}, (13)
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while p(k) 6∈ S if and only if

Q(k)ψ 6∈ S , ∀k ∈ {0, . . . , kmax}.

In the following section, we assume that the constraints in the form

Q(k)θ ∈ P , Q(k)θ 6∈ S

can be equivalently expressed as

gk(θ) = g(Q(k)θ) ≤ 0q

for some q ≥ 0 and for some differentiable function g : R2 → Rq. In this view, the above
unconstrained MLE problem can be extended as follows:

θ∗ = arg min
θ

λ(θ)

subject to

gk(θ) ≤ 0q, ∀k ∈ {0, . . . , kmax}.

(14)

2.4. Computational Approach to Solve MLE Problems

Notice that, as remarked in [38], the MLE for bearings-only target motion analysis
does not admit a closed-from solution and must be implemented iteratively, considering
an initialization close to the true solution to avoid divergence. In particular, we point out
that the above MLE minimization problems (both in the unconstrained and constrained
fashion) are not, in general, convex, thus calling for approximated solution schemes that
typically aim to find a good local optimum. In this paper, we resort to the MIDACO-
SOLVER optimization software, which implements an extension of the evolutionary ant
colony optimization meta-heuristic [39] and which has been developed especially for
highly nonlinear real-world applications. See [40] or [41] for a focus of the performance
of MIDACO software with respect to the state of the art. Notably, MIDACO-SOLVER
allows one to evaluate the satisfaction of the constraints and the objective function from an
algorithmic standpoint, thus allowing one to also tackle the problems that are not easily
expressed in a closed form nor easily solved by traditional solvers. Note that the suggested
strategy is independent of a particular solver, but the nonconvex nature of the optimization
problem suggests an evolutionary approach, such as genetic algorithms [42].

2.5. CRLB of the Estimate in the Unconstrained Case

Let us now discuss a useful metric that represents a lower bound on the covariance ma-
trix associated to the MLE estimation process. Specifically, in this subsection, we consider
the unconstrained case, while the constrained one is discussed in the next subsection.

In particular, consider the problem of evaluating the CRLB for the estimated vector ψ
of target parameters (see, for instance [37], p.44). In particular, it is well known that the
covariance matrix is bounded by the inverse of the Fisher information matrix (FIM) J, i.e.,
it holds that

E{(θ∗ −ψ)(θ∗ −ψ)T} ≥ J−1(ψ) = CRLBunconstrained,

where
J(ψ) = E{[∇θλ(θ)][∇θλ(θ)]T}

∣∣∣
θ=ψ

.

Note that the expectations in the above equation are taken with respect to p(θ); moreover,
the derivatives in J(·) are evaluated at the true value of ψ (i.e., ψ = ψ) or, alternatively,
at the estimated value θ∗ (i.e., ψ = θ∗) if the true value is unknown. Let us now present
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a more direct expression of the FIM. To this end, let us express the gradient of λ(θ) with
respect to θ as [3]

∇θλ(θ) = −
kmax

∑
k=1

1
σ2 (z(k)− h(θ, k))∇θh(θ, k); (15)

then, we have that [3]

E
{
[∇θλ(θ)][∇θλ(θ)]T

}∣∣∣
ψ
=

1
σ4

kmax

∑
k=1

E{(z(k)− h(ψ, k))2}∇xh(ψ, k)∇ψh(ψ, k)T

=
1
σ2

kmax

∑
k=1
∇ψh(ψ, k)∇ψh(ψ, k)T ,

(16)

where in the first equation, we used the fact that the measures are independent in order to
neglect mixed terms, while the last equation follows from the consideration that

E
{
(z(k)− h(ψ, k))2

}
= E

{
w(k)2

}
= σ2.

Notice that, in the Appendix A, we provide the analytical expression of the entries of
∇ψh(ψ, k).

2.6. CRLB for Constrained MLE

As demonstrated in [33] (see also [34]), assuming θ ∈ Rn, when the MLE problem has
an equality constraint in the form

f (θ) = 0q, f : Rn → Rq,

the CRLB can be computed starting from the unconstrained case, according to the following
equation

CRLBconstrained = J−1(ψ)− J−1(ψ)F(ψ)
(

FT(ψ)J−1(ψ)F(ψ)
)−1

FT(ψ)J−1(ψ),

where F(ψ) is the n× q Jacobian matrix of the constraint function f , evaluated at ψ, i.e.,

F(ψ) = ∇θ f T(θ)
∣∣∣
θ=ψ

.

Let us now extend this method to the case of inequality constraints. To this end, consider a
constraint in the form of

g(θ) ≤ 0q

where g : Rn → Rq is differentiable. We point out that the inequality constraint can
equivalently be expressed in the form of an equality constraint using

f (θ) = max
{

g(θ), 0q
}
= 0q,

where max is intended component-wise. Notably, the max function is globally Lipschitz
(e.g., see [43]); hence, if g is differentiable everywhere, we have that f is differentiable for
all θ ∈ Rn \Ω, where Ω is a zero-measure set in the form

Ω = {θ ∈ Rn | gi(θ) = 0, for some i ∈ {1, . . . , q}}.
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In this view, a natural extension is to resort to the generalized Jacobian of f . Specifically, it
follows from [35] that the generalized Jacobian FG(θ) of f (θ) is defined as

FG(θ)=co
{

lim
i→∞

F(θi) : θi → θ, θi 6∈ Ω
}

, (17)

with co being the convex closure, F(θi) ∈ Rn×m the classical Jacobian whenever it exists,
and Ω the set of measure zero where F(θi) is not defined. In other words, FG(θ) is in
general set-valued at the points where the Jacobian is not defined and FG(θ) = {F(θ)}
when the Jacobian is defined. Consequently, in the case of inequality constraints, the CRLB
is also, in general, set-valued, and it holds that

CRLBconstrained =

{
J−1(ψ)− J−1(ψ)F

(
FT J−1(ψ)F

)−1
FT J−1(ψ)

∣∣∣ F ∈ FG(ψ)

}
.

Notice that, in the event that ψ coincides with a point in the zero-measure set Ω, any metric
based on the CRLB (e.g., variance for a specific parameter, norm of the matrix, etc.) is
computed considering the worst case over the elements in the set CRLBconstrained.

2.7. Ownship Trajectory Selection Based on Artificial Potential Fields

The availability of additional information (i.e., knowledge on P and S) can be lever-
aged by the ownship in order to select a trajectory that allows one to improve the accuracy
of the estimate, i.e., by moving along a direction that mediates between the attempt to get
closer to P and the will to avoid S . In this paper, we borrow some of the key concepts
of the so-called artificial potential fields (APF) technique [31,32] in order to accomplish
this task. Within the APF approach, a robot has to navigate in a space toward a goal while
avoiding one or more obstacles; this is achieved by associating a repulsive potential field to
each obstacle and an attractive potential field to the goal so that, depending on the robot’s
position, the robot moves in the direction of the force that corresponds to the antigradient
of the overall potential field.

For the application at hand in this paper, we consider a repulsive potential field to
be associated with each set Yi that the target is assumed not to cross and an attractive
potential field associated with each set Xi where the target is assumed to be confined in.
For simplicity, assume the ownship is initially in the origin, considering some fixed frame
of reference.

In detail, referring to yi and xi as the center of mass of Yi and Xi, respectively, the
potential field at a point p ∈ R2 is the superposition of a contribution

−1
2

αi(xi − p)T(xi − p)

for each set Xi and a contribution

1
2

βi(yi − p)T(yi − p)

for each set Yi, i.e.,

U(p) = −1
2

m

∑
i=1

αi(xi − p)T(xi − p) +
1
2

r

∑
i=1

βi(yi − p)T(yi − p),

from which the corresponding force at the origin is

f (02) = −∇pU(p)
∣∣∣

p=02
=

m

∑
i=1

αixi −
m

∑
i=1

βiyi,
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and we note that the force is the composition of terms that are attracting toward the points
xi and terms that are repulsive from the points yi.

Notice that, in this paper, we chose coefficients βi that are proportional to the area of
the corresponding set Yi (i.e., the larger Yi is, the more the force is repulsive); conversely,
we chose coefficients αi that are inversely proportional to the area of the corresponding set
Yi (i.e., the smaller Xi is, the more the force is attractive).

Ownship Trajectory

Based on the resulting force f (02) at the origin, the ownship computes the angle γ

between the vector
[
0 1

]T and f (02) and moves according to[
xo(kT)
yo(kT)

]
=

[
cos(γ) − sin(γ)
sin(γ) cos(γ)

][
ẋokT

A sin(ωxo(kT))

]
, (18)

i.e., the ownship moves of linear motion (and constant velocity ẋo) along the direction of
f (02) while performing sinusoidal motion around such a direction. Notably, Equation (18)
can be rearranged as[

xo(kT)
yo(kT)

]
=

[
cos(γ)ẋokT − A sin(γ) sin(ωxo(kT))
sin(γ)ẋokT + A cos(γ) sin(ωxo(kT))

]
. (19)

Figure 1 provides an example of the above procedure for the selection of f (02).

Figure 1. Example of the proposed approach for selecting the ownship’s trajectory. In this example,
we consider two sets, X1 and X2, and one setm Y1, represented by the circles shown with a solid
line and by a dotted line, respectively. The points x1 and x2 and the point y1 (i.e., the centers of the
circles) are shown with an x mark and with a cross, respectively. In this example, we choose α1 and α2

equal to the area of X1 and X2, respectively, while β1 is the reciprocal of the area of Y1. The resulting
direction for the ownship is shown with an arrow (the initial position for the ownship is given by the
starting endpoint of the arrow).



Sensors 2021, 21, 7211 9 of 23

3. Experimental Analysis

In order to experimentally demonstrate the effectiveness of the proposed approach,
we consider the scenario depicted in Figure 2, where the target has an initial position xt0 =
yt0 = 3× 104 m and moves with constant velocity having components ẋt0 = 8.333 m/s
and ẏt0 = 7.778 m/s, while the acceleration is ẍt0 = ÿt0 = 0 m/s2.

-2 0 2 4 6 8 10 12

104

0

1

2

3

4

5

6

7

8

9

10

104

Figure 2. Scenario considered in the experimental analysis. We assume additional information is
available, in that the target’s trajectory is known to be confined in the intersection of the two solid
circles and to lie outside the dotted circle. The red (shorter) arrow represents the target’s trajectory.
The APF direction is shown with a black (longer) arrow.

Notice that we assume the additional information is available to the ownship regarding
the target’s trajectory. Specifically, we assume the target’s trajectory lies in the intersection
of the circles X1 and X2 and outside of the circle Y1; the centers x1, x2, y1 and the radii
ρX1 , ρX2 and ρY1 of such circles are reported in Table 1.

Table 1. Parameters describing the sets X1,X2 and Y1 considered in the experimental analysis.

Set Centroid Radius

X1 x1 = [104, 5× 104]T m ρX1 = 5× 104 m

X2 x2 = [2× 104, 6× 104]T m ρX2 = 4.5× 104 m

Y1 y1 = [4× 104, 8× 104]T m ρY1 = 2.5× 104 m

In our simulations, we consider a sampling time T = 2 s, a time horizon of 3600 s
and noise variance set to σ = 0.5◦.

As for the ownship, we consider four operational scenarios:

• No information: the ownship does not rely on the additional information and selects
the trajectory in Equation (19) with γ = 0 rad.
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• Unconstrained, APF direction: the ownship does not rely on the additional informa-
tion for the computations but selects the trajectory according to the proposed APF
approach; in other words, it selects the trajectory in Equation (19) with γ = 0.749 rad.

• Constrained, no APF direction: the ownship relies on the additional information for
the computations but selects the trajectory in Equation (19) with γ = 0 rad.

• Proposed Approach: the ownship follows the trajectory in Equation (19) with γ =
0.749 rad and, further to that, actively relies on the additional information during the
computation of the MLE solution, of the experimental covariance matrix and CRLB.

In all cases, we select the following parameters for the ownship: xo(0) = yo(0) = 0 m,
ẋo = 7.778 m/s, ω = 2.5× 10−4 rad/s and A = 5× 103 m.

The computation of the MLE solution with MIDACO-SOLVER was conducted on
an Intel® i7 quad-core @ 2.27 GHz. For each execution of MIDACO-SOLVER, we set
the number of evaluated solutions to 106. All other MIDACO-SOLVER parameters were
used by their default values, which especially means that a feasibility accuracy of 0.001
was used for all individual constraints. In all cases, we compute the MLE solution with
MIDACO-SOLVER, and we consider 100 MLE solutions for each operational scenario.

Table 2 reports the results obtained for the four operational scenarios, considering
both the best solution found (in terms of the objective function of the MLE) over the 100
runs and the average of the solutions found. For each solution reported in the table, we use,
as a measure of quality of the estimate the relative position and relative velocity, defined as
follows:

rel. pos. err. =

∥∥∥∥∥∥∥∥


xt0 − x∗t0
xt0

yt0 − y∗t0
yt0


∥∥∥∥∥∥∥∥

2

(20)

rel. vel. err. =

∥∥∥∥∥∥∥∥


ẋt0 − ẋ∗t0
ẋt0

ẏt0 − ẏ∗t0
ẏt0


∥∥∥∥∥∥∥∥

2

(21)

while, since the target moves of with zero acceleration, we consider the absolute accelera-
tion error

abs. acc. err. =

∥∥∥∥∥∥
ẍ∗t

ÿ∗t

∥∥∥∥∥∥
2

(22)

where the asterisk superscript is used for the estimated parameters. According to the table,
the best solution found in the first and proposed operative scenarios is comparable and
exhibits small error, while the error is larger for the third operational scenario. Conversely,
within the second operational scenario, the best solution also found is not satisfactory, due
to large relative velocity error. The situation is radically different considering the average
of the found solutions; in fact, we observe that while the proposed approach shows limited
error, the first and second operational conditions are characterized by erroneous average
solutions (especially for what concerns the estimate of the target’s initial velocity), while
the third one exhibits a limited but significant degradation. This suggests that, while the
proposed approach consistently finds a good solution over the different trials, the other
methods may become trapped by worst local minima.

This intuition is supported by Figure 3, where we show the distribution of the position
and velocity error values over the 100 trials. According to the figure, it can be noted that
the first two scenarios have, overall, worse performance than the second and third scenario.
Moreover, while outliers in the first two operative scenarios assume remarkably large
values, in the latter two scenarios the outliers exhibit only a limited increase.
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Table 2. MLE parameter estimation via MIDACO-SOLVER for the different operational scenarios.

xt0 m yt0 m ẋt0 m/s ẏt0 m/s ẍt m/s2 ÿt m/s2 rel. pos. err. rel. vel. err. abs. acc. err.

Ground truth 3.000× 104 3.000× 104 8.333 7.778 0.000 0.000 - - -

No information, average 3.933× 104 3.848× 104 −5.048 −4.123 3.437× 10−3 2.303× 10−3 4.202× 10−1 2.218 4.137× 10−3

Unconstrained, APF direction, average 3.796× 104 3.733× 103 −4.714 −4.143 4.780× 10−3 3.958× 10−3 3.605× 10−1 2.191 6.206× 10−3

Constrained, no APF direction, average 3.204× 104 3.193× 104 7.161 6.884 2.543× 10−4 4.987× 10−5 9.384× 10−2 1.815× 10−1 2.591× 10−4

Proposed Approach, average 3.040× 104 3.035× 104 7.912 7.382 2.652× 10−4 2.598× 10−4 1.767× 10−2 7.169× 10−2 3.713× 10−4

No information, best 3.028× 104 3.024× 104 8.045 7.507 1.989× 10−4 1.969× 10−4 1.243× 10−2 4.902× 10−2 2.789× 10−4

Unconstrained, APF direction, best 3.704× 104 3.640× 104 0.686 0.618 3.754× 10−3 3.560× 10−3 3.171× 10−1 1.299 5.173× 10−3

Constrained, no APF direction, best 2.811× 104 2.806× 104 10.081 7.382 −1.460× 10−3 −2.202× 10−3 9.023× 10−2 3.412× 10−1 2.642× 10−3

Proposed Approach, best 3.026× 104 3.023× 104 8.070 7.531 1.835× 10−4 1.821× 10−4 1.179× 10−2 4.471× 10−2 2.586× 10−4



Sensors 2021, 21, 7211 12 of 23

0 2 4
0

1

2

3

4

5

0 2 4
0

1

2

3

4

5

0 2 4
0

1

2

3

4

5

0 2 4
0

1

2

3

4

5

Figure 3. Ensemble view of the (relative) position and velocity error values over 100 runs (i.e., see
Equations (20) and (21)), considering the four operative scenarios.

In order to further analyze the different operational scenarios, Table 3 reports the norm
of the covariance matrix obtained experimentally from the 100 trials, the experimental
covariance limited to the solutions with errors within the 50th percentile, and the norm
of the CRLB. In other words, we experimentally evaluate the covariance by executing 100
instances of MIDACO-SOLVER with random initial choice for the parameters and then
taking the covariance of the 100 (or less, when only the 50th percentile is considered),
possibly different, solutions obtained via MIDACO-SOLVER.

Notably, for the proposed approach, due to the presence of inequality constraints, the
CRLB is in general set-valued and, following a worst-case philosophy, when the set is not a
singleton, we consider

max
C∈CRLBconstrained

‖C‖2. (23)

According to the table, the magnitude of the norm of the experimental covariance matrices
associated with the proposed approach is three orders of magnitude smaller than those
corresponding to the first and second operational scenarios, while it is two orders of mag-
nitude smaller than the covariance associated to the third operational scenario. Moreover,
the norm of the CRLB covariance matrices is two orders of magnitude smaller than the one
obtained for the first and second operational scenarios, while it is comparable to the one
associated with the third operational scenario. Moreover, we observe that, while in the
other cases the experimental covariance is between three and four orders of magnitude
larger than the CRLB, for the proposed approach, the experimental covariance is just two
orders of magnitude larger than the CRLB. Notably, the discrepancy experienced between
the experimental covariance computed over 100 trials and the CRLB one is due to the
structure of the problem at hand. In fact, the MLE problem being solved amounts to a
nonconvex, nonlinear programming problem and is thus characterized by the presence of
local minima. Since we are adopting an approximated solver for finding a solution, the
large experimental covariance is explained by the reach of different local minima across the
different trials. In fact, while analyzing the covariance restricted to solutions with errors
within the 50th percentile, we observe a significant drop with respect to the covariance
over all trials; in particular, we observe a reduction of two orders of magnitude for the
first two operational scenarios and one order of magnitude for the other two; moreover,
also in this case, the proposed approach shows a two orders of magnitude reduction of the
covariance with respect to the others.

Let us now discuss the computation times, which are collected in Table 4. According
to the table, we observe that the main differences arise between the unconstrained and the
constrained cases, the latter requiring a computational time that is, on average, about 46%
larger than the unconstrained case, while the standard deviation is sensibly larger, being
about 6.92 times the one obtained in the unconstrained case.
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Table 3. Euclidean norm of the parameter estimation via MIDACO-SOLVER for the different operational scenarios.

Experimental Covariance ‖ · ‖2 Experimental Covariance ‖ · ‖2 CRLB ‖ · ‖2
(Solutions with Errors≤ 50th Percentile)

No information 3.851× 108 3.743× 106 7.713× 105

Unconstrained, APF direction 5.666× 108 4.144× 106 7.713× 105

Constrained, no APF direction 3.696× 107 5.410× 106 1.454× 103

Proposed Approach 4.784× 105 6.600× 104 1.873× 103

Table 4. Average and standard deviation over 100 trials of the computational time (in seconds) for
the computation of the MLE solution via MIDACO-SOLVER for the different operational scenarios.

Time (Average) s Time (Standard Deviation) s

No information 58.790 3.235

Unconstrained, APF direction 59.124 3.049

Constrained, no APF direction 85.926 21.231

Proposed Approach 86.230 22.395

Overall, the above results suggest that, while the implementation of the constrained
MLE computation without considering the APF direction has a positive effect on the
estimate, the APF direction alone has no particular benefit without constraining the MLE
based on the available information. Instead, when such innovations are combined, the
MLE error, the experimental covariance and the CRLB are greatly reduced. Notably, since
the proposed approach amounts to a constrained problem, the price to pay is a noticeable
but limited increase in the computation times.

Figures 4–9 provide an at-a-glance view of the performance gap when the additional
information is actively relied upon. Specifically, Figures 4 and 5 show the results of
the proposed operational scenario considering the average MLE solution over the 100
trials (blue dashed line), along with 100 trajectories (in cyan) obtained by sampling the
parameters from a Gaussian distribution with mean given by the average MLE result and
covariance corresponding to the experimental covariance matrix or the CRLB, respectively
(the ownship’s trajectory is shown via the blue sinusoidal dashed curve). Conversely,
Figure 6 shows the results obtained considering the case where the APF direction is used
but the additional information is not relied upon during the MLE computation; specifically,
the figure considers the best solution found and the CRLB matrix. Notably, in the latter
case, the large covariance yields sampled trajectories that are characterized by remarkably
large error, while the proposed approach (both considering the experimental and CRLB
covariance matrices) yields significantly better results. Figure 7 shows a zoomed version
of Figure 6; according to the figure, we observe that, while the APF approach without
using the additional information in the MLE computations is characterized by an initial
position that is relatively accurate, the velocities and accelerations are characterized by
highly variable and erroneous values, resulting in the inaccurate trajectories. Finally,
Figures 8 and 9 show the results obtained considering the case where the APF direction
is not used but the additional information is relied upon during the MLE computation;
specifically, Figure 8 consider the best solution found and the experimental covariance
matrix, while Figure 8 considers the best solution found and the CRLB matrix; in this
case, the trajectory is characterized by an intermediate error and is outperformed by the
proposed approach.
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Figure 4. Sampling of 100 trajectories (in cyan) based on the average solution found via the proposed
approach and on the experimental covariance matrix.

Figure 5. Sampling of 100 trajectories (cyan) based on the average solution found via the proposed
approach and on the CRLB covariance matrix.
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Figure 6. Sampling of 100 trajectories (cyan) based on the best solution found via the unconstrained,
APF direction approach and on the CRLB covariance matrix.

Figure 7. Zoomed version of a portion of Figure 6.

Figure 8. Sampling of 100 trajectories (cyan) based on the best solution found via for the constrained
case, but without relying on the APF, and on the experimental covariance matrix.
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Figure 9. Sampling of 100 trajectories (cyan) based on the best solution found via for the constrained
case, but without relying on the APF, and on the CRLB covariance matrix.

To conclude the section, we compare the proposed approach against other methods
in the literature. Specifically, our proposed comparison is based on two macro-steps: (i)
the estimation of the target’s trajectory for k ∈ {0, . . . kmax} via other approaches in the
literature and (ii) the comparison with the trajectory obtained based on the estimation of
the parameter vector ψ via the proposed approach. In particular, we estimate the target’s
trajectory by resorting to the following four algorithms:

• a standard extended Kalman filter (EKF) (e.g., see [44] and references therein), where
we approximate the nonlinear output function h(·) by its Jacobian matrix at each time
instant;

• the pseudolinear Kalman filter (PL-KF) [45], where the nonlinear and noisy output
z(k) = atan2(yt(k)− yo(k), xt(k)− xo(k)) + w(k) is approximated by

z̃(k) =
[

sin(z(k))
− cos(z(k))

] [
1 0 0 0 0 0
0 1 0 0 0 0

]
︸ ︷︷ ︸

M

x̂k|k + η(k),

where x̂k|k is the vector collecting the filtered states (i.e., the stack of the positions,
velocities and accelerations) of the target at time k and η(k) is a pseudolinear noise in
the form

η(k) ∼ N (0, Rk),

with
Rk ≈ ‖d̂k|k−1‖2σ2

and

d̂k|k−1 = Mx̂k|k−1 −
[

xo(k)
yo(k)

]
,

x̂k|k−1 being the vector collecting the prediction of the target’s states at time k;
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• a statistical linearization extended Kalman filter (SL-EKF) [46] where, instead of the
Jacobian of the output function h(·), we approximate the nonlinear measurement
function y(k) = h(x, k) + w(k) via the linear approximation H∗x, with

H∗ = arg min
H∈R2×6

‖y(k)− Hx̂k|k‖2.

• the shifted Rayleigh filter (SRF) [47], where z(k) is approximated by

z(k) ≈ Π(Mx(k) + u(k) + ω(k)),

where Π(r) = r/‖r‖, u(k) =
[
xo(k) yo(k)

]
and

ω(k) ∼ N
(

02, σ2E
[
‖Mx(k) + u(k)‖2

∣∣∣ z(1), . . . , z(k)
]

I2

)
.

Conversely, within the proposed approach, we estimate the parameter vector

ψ =
[
xt0 yt0 ẋt0 ẏt0 ẍt ÿt

]T

via the proposed constrained MLE formulation, and we compute the trajectory of the target
as follows

x(k) = Q(k)ψ,

where
x(k) =

[
xt(k) yt(k) ẋt(k) ẏt(k) ẍt(k) ÿt(k)

]T ,

and

Q(k) =

 I2 kTI2
1
2

k2T2 I2

02×2 I2 kTI2
02×2 02×2 I2

.

Regarding the initial condition for the algorithms compared against the proposed approach,
we consider three different scenarios, with a decreasing degree of uncertainty:

1. a scenario where the average initial condition x̂0|0 is drawn from a zero-mean Gaussian
variable with standard deviation equal to ψ, while the initial covariance Σ0|0 is equal
to the square of ψ, i.e.,

x̂0|0 ∼ N
(

06, diag(ψ)2
)

, Σ0|0 = diag(ψ)2;

2. a scenario where the average initial condition is drawn from a Gaussian variable with
a mean equal to ψ and standard deviation equal to ψ, while the initial covariance is
equal to the square of ψ, i.e.,

x̂0|0 ∼ N
(

ψ, diag(ψ)2
)

, Σ0|0 = diag(ψ)2

3. a scenario where the average initial condition is exactly ψ, while the initial covariance
is equal to the square of ψ, i.e.,

x̂0|0 = ψ, Σ0|0 = diag(ψ)2.

Figures 10–12 report the results of the comparison, where the four aforementioned
approaches are compared against the average MLE solution over 100 trials obtained via the
proposed methodology, considering the same simulation setting as in the fourth operational
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scenario described above. Specifically, we report the relative position and velocity errors
between the real target’s trajectory at time k and the estimated one, i.e.,

xt(k)− x̂(k)
xt(k)

,
yt(k)− ŷ(k)

yt(k)
,

ẋt(k)− ̂̇x(k)
ẋt(k)

,
ẏt(k)− ̂̇y(k)

ẏt(k)
,

where we denote by x̂(k), ŷ(k), ̂̇x(k) and ̂̇y(k), the estimate of the target’s positions and
velocities obtained according to the generic technique being compared. According to
Figure 10, the proposed approach achieves an error that is at least two orders of magnitude
less than the other approaches. Notably, while moving to a scenario where more informa-
tion on the initial condition is available for the four approaches used in the comparison,
the gap with PLKF and SL-EKF reduces to about one order of magnitude. Finally, when we
compare the initial condition for the methods against the proposed one, which is assumed
to have a mean that corresponds to the actual vector of parameter being estimated, we
observe that the proposed approach is comparable with SL-EKF, while being in general
better than the others.

Overall, the proposed comparison contributes to experimentally demonstrating the
effectiveness of the proposed approach with respect to the literature.

Figure 10. Comparison of the proposed approach against EKF, PLKF, SRF and SL-EKF, con-
sidering a scenario where the methods compared with the proposed one are initialized with
x̂0|0 ∼ N

(
06, diag(ψ)2) and Σ0|0 = diag(ψ)2.
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Figure 11. Comparison of the proposed approach against EKF, PLKF, SRF and SL-EKF, con-
sidering a scenario where the methods compared with the proposed one are initialized with
x̂0|0 ∼ N

(
ψ, diag(ψ)2) and Σ0|0 = diag(ψ)2.

Figure 12. Comparison of the proposed approach against EKF, PLKF, SRF and SL-EKF, considering
a scenario where the methods compared with the proposed one are initialized with x̂0|0 = ψ and
Σ0|0 = diag(ψ)2.
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4. Conclusions and Future Work

This paper presents a batch strategy to estimate the parameters describing the trajec-
tory of a target, based on a moving ownship able to measure bearings. In particular, the
proposed methodology allows one to incorporate additional information (e.g., obtained
via intelligence) such as knowledge of the fact that the target’s trajectory is contained
in the intersection of some sets or the fact it lies outside the union of other sets. The
approach is formally characterized by providing a constrained MLE formulation and by
extending the definition of the CRLB matrix to the case of MLE problems with inequality
constraints, relying on the concept of generalized Jacobian matrix. Moreover, based on the
additional information, the ownship motion is chosen by mimicking the Artificial Potential
Fields technique that is typically used by mobile robots to aim to a goal (in this case, the
region where the target is assumed to be) while avoiding obstacles (i.e., the region that is
assumed not to intersect with the target’s trajectory). As a result, the proposed framework
exhibits remarkably better performance, and in particular, we observe that the solution is
less likely to remain stuck in unsatisfactory local minima during the MLE computation
and is characterized by smaller covariance, (both considering the experimental and the
CRLB ones).

Future work will be mainly devoted to extending the framework along the following
research directions: (i) consider more sophisticated models for the target’s motion (e.g.,
nearly constant acceleration); (ii) consider dynamically changing constraints on the target’s
trajectory; (iii) provide adaptive strategies for the ownship trajectory based on the, although
partial, initial estimates (e.g., in order to avoid crossing the space where the target’s
trajectory is contained); (iv) filter possible outliers (e.g., resorting to the approach in [3],
Section 2.7); and (v) consider multiple targets.
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PL-KF Pseudo-linear Kalman filter
SL-EKF Statistical linearization extended Kalman filter
SRF Shifted Rayleigh filter
TMA Target motion analysis

Appendix A

In this appendix we provide the analytical expression of the partial derivatives of the
function h(ψ, k) with respect to the target’s motion parameters. For the sake of readability
let us define

∆x(k) = xt(k)− x(k),

∆y(k) = yt(k)− y(k).
(A1)

The partial derivatives of h(ψ, k) with respect to the target’s motion parameters are as
follows

∂h(ψ, k)
∂xt0

= −
∆y(k)

∆x(k)2 + ∆y(k)2

∂h(ψ, k)
∂yt0

=
∆x(k)

∆x(k)2 + ∆y(k)2

∂h(ψ, k)
∂ẋt0

= −kT
∆y(k)

∆x(k)2 + ∆y(k)2

∂h(ψ, k)
∂ẏt0

= kT
∆x(k)

∆x(k)2 + ∆y(k)2

∂h(ψ, k)
∂ẍt0

= −1
2

k2T2 ∆y(k)
∆x(k)2 + ∆y(k)2

∂h(ψ, k)
∂ÿt0

=
1
2

k2T2 ∆x(k)
∆x(k)2 + ∆y(k)2 .

(A2)
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