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Abstract: Accurate estimation of cable tension is crucial for the structural health monitoring of
cable-supported structures. Identifying the cable’s force from its vibration data is probably the most
widely adopted method of cable tension estimation. According to string theory, the accuracy of
estimated cable tension is highly related to identified modal parameters including natural frequencies
and frequency order. To alleviate the factors that impact the accuracy of modal parameters when
using the peak-picking method in wireless sensor networks, a fully automated and robust identifying
method is proposed in this paper. This novel method was implemented on the Xnode wireless sensor
system and validated with the data obtained from Jindo Bridge. The experiment results indicate that,
through this method, the wireless sensor is able to distinguish the cognizable power spectrum, extract
the peaks, eliminate false frequencies and determine frequency orders automatically to estimate cable
tension force without any manual intervention or preprocessing. Meanwhile, the results of natural
frequencies, corresponding orders and cable tension force obtained from the Xnode system show
excellent agreement with the results obtained using the Matlab program method. This demonstrates
the effectiveness and reliability of the Xnode estimation system. Furthermore, this method is also
appropriate for other high-performance wireless sensor network systems to realize self-identification
of cable in long-term monitoring.

Keywords: cable tension estimation; fully automated; wireless sensor networks

1. Introduction

Cable-supported systems are widely used in large span space structures, such as
air-supported roofs, cable-stayed bridges, suspension bridges, cable domes, and so on [1].
As main load bearing components, cables play important roles in these structures and
their failure may result in the structure’s accidental collapse. Furthermore, the condition of
cable-stayed structures can be assessed through their cable tension during operation [2,3].
There are many methods to measure cable tension force, such as using load cells, hydraulic
jacks [4], FBG sensors [5] or electromagnetic sensors. However, those conventional sensors
become unfeasible and impracticable when applied in long-term monitoring. For example,
the method using load cell is uneconomical since the service life of a load cell is generally
much shorter than that of a structure. FBG sensors are sensitive to environment or operating
technology, thus have lower accuracy. Some of these sensors must be installed during
construction and are difficult to maintain, something that is not amenable to existing
structures [6,7].

The vibration-based method is commonly employed to estimate cable tension as it
is fast, economical and easy to operate compared with the above mentioned methods [8].
This dynamical method is capable of calculating cable tension force directly using only
the cable’s acceleration responses through the relationship between the cable’s natural
frequencies and the cable’s tension [9–11]. Zui et al. proposed a simple formula to estimate
cable tension by using measured natural frequencies in low-order modes and calibrating

Sensors 2021, 21, 7229. https://doi.org/10.3390/s21217229 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7745-4380
https://orcid.org/0000-0002-2554-8107
https://doi.org/10.3390/s21217229
https://doi.org/10.3390/s21217229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217229
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217229?type=check_update&version=2


Sensors 2021, 21, 7229 2 of 15

the results with finite element analytical results [12]. Ren et al. developed an empirical
formula to obtain cable tension based only on the cable fundamental frequency and verified
it with experimental results [13].

With the rapid development of internet of things (IoT)-enabled wireless sensor net-
works (WSN) [14,15], smart wireless sensors, with the capability to process data locally and
transmit information through wireless communication, have become increasingly attractive
and widely utilized in many fields [16–18], including structure health monitoring, mech-
anism control and big data analytics. IoT-WSN technology is particularly applicable for
cable tension monitoring [19–22], especially for those large scale cable-supported structures,
with a large number of cables, which are a great challenge to wired sensor monitoring
systems or traditional centralized process technologies [23]. Cable tension estimation via
wireless sensor technology has been the subject of major research in recent years. For ex-
ample, considering the effects of the sag-to-span ratio and bending stiffness, Cho et al. [24]
proposed an automated and low-cost wireless sensor system for the continuous monitoring
of cable tension based on Zui’s approach. The peak-picking method has been used with a
Fourier spectrum to identify modal frequencies, which were then utilized in cable tension
estimation. Sim et al. [25] proposed a hybrid wireless sensor network based on the Imote2
platform to detect cable tension by using simple string theory for full scale cable-stayed
bridges. To extract highly reliable frequencies from the power spectrum, a threshold value
was set to search the highest points by comparing local data near natural frequencies. This
method had been implemented on Jindo Bridge, located in Korea, and its effectiveness had
been verified successfully. A smartphone-based portable cable tension testing method has
been proposed by Zhao in which the cable force can be calculated by the estimated model
frequency of cables through a software named Orion CC [26,27].

In order to make full use of wireless sensor networks in cable tension estimation
(CTE) systems and ensure the system satisfies the requirements of many different types of
cable-supported structures, it is essential to develop a fully automated and robust cable
tension estimation system. Previous research has achieved successful results in cable
tension force monitoring, however, there are still some problems to be solved, which
mainly include: (1) Preprocessing or manual interventions required during testing, such
as pre-calculated reference modal parameters or picking peaks manually, are usually
inescapable [25–27]. This is a big challenge for large-scale cable structures with a dense
array of sensors. (2) The peak-picking method is commonly and conveniently used in
extracting frequencies, especially for clearly separated power spectra, but in practice the
power spectra of acceleration responses from ambient excitation usually have undesirable
peaks or miss the inner peaks. Threshold values are helpful in picking reliable peaks, but
fail to eliminate false frequencies. Meanwhile, the peak-picking method is particularly
related to the vibration mode, and so may fail to identify the modal parameters for weak
vibrations. (3) The current systems are mainly used for special structures or applications,
which are not universal, so the properties and vibration characteristics differ widely. This
limits the development and applications of an estimation system.

In this study, a robust and fully automated cable tension estimation system is proposed.
Firstly, the main factors affecting the accuracy of cable tension estimation are discussed
with regard to instances where the peak-picking method and simple string cable model
are used in cable tension estimation via wireless sensor networks. Furthermore, a CTE
strategy is developed to solve the potential problems resulting from incorrectly identified
frequencies and corresponding mode orders. Finally, this method is implemented with the
Xnode wireless sensor system, and the data collected from Jindo Bridge employed to verify
the feasibility of the system.

2. Theoretical Background of Cable Tension Estimation via Cable Vibration

The vibration-based method is one of the most convenient and widely accepted cable
tension estimation methods, because it requires only an accelerometer to measure the cable
vibration subjected to environmental loading. For cable-stayed structures, the cable can
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be simulated as an inclined string with two fixed ends. In this paper, the flat taut string
theory is utilized to estimate cable tension via the vibration frequencies of the cable. Based
on the assumption that the cable’s bending stiffness is considered and the sag-extensibility
is neglected, the dynamic differential equation of the stayed-cable is given as follows:

m
∂2v(x, t)

∂t2 + EI
∂4v(x, t)

∂x4 − T
∂2v(x, t)

∂x2 = 0 (1)

where m is the cable’s mass per unit length, v is the cable’s deflection, EI is the flexural
stiffness of the cable, and T is the cable tension. Based on the tightening string model, the
relation of the cable’s natural frequencies and the cable tension can be expressed by:

(
fn

n
)

2
= (

1
4mL2 )T + (

n2π2

4mL4 )EI = a + bn2 (2)

where fn is the natural frequency, n is the order of the natural frequency, L is the length of
cable, and a and b are the linear regression results of ( fn/n)2 and n2. Using Equation (2),
the cable tension force can be estimated as:

T = 4 × m × L2 × a (3)

3. Key Influence Factors of Cable Tension Estimation Accuracy

According to the principle mentioned above, it is obvious that the accuracy of cable
tension is particularly related with the modal parameters, mass (m) and length of the cable
(L). The inaccuracy of those parameters may result in a large error in the estimation of cable
tension, something that will be discussed as follows.

In practice, it is a big challenge for a wireless sensor to extract the cable’s natural
frequencies autonomously and accurately from the power spectrum of the cable’s vibra-
tion through the peak-picking method. The commonly encountered problems are listed
as follows:

(1) Identifying useful vibration data.

In real testing, the cable vibration may not be strong enough to show obvious fre-
quency poles in power spectrum. In this case, there may be no frequency peaks to be
found or undesirable peaks may be eventually picked through the regular peak-picking
method [25], as shown in Figure 1. Consequently, the obtained cable tension would not
be correct. Figure 1a shows a cable vibration that is too weak to exhibit the obvious peaks.
Figure 1b shows a power spectral density (PSD) with many false peaks found through
the regular peak-picking method. In this instance, the wireless sensor should have the
capability to identify whether the power spectrum of acceleration response would be useful
and recognizable.

(2) Extracting a cable’s natural frequency from vibration data automatically and robustly.

For each cable, the auto-power spectrum density is generally adopted to extract struc-
tural natural frequencies by using its own vibration response. However, the acceleration
signal may be influenced by many uncertain environmental factors [28,29], which may
lead to some false peaks in the auto-power spectrum. The aforementioned theory indicates
that the frequencies used in Equation (2) are all with correct mode orders. If the identified
frequencies or the mode orders are inaccurate, then the cable tension force would not be
correct. Thus, the automatic extraction of the true frequencies of the cable is also a problem
to be solved for wireless sensor networks.
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Figure 1. Examples of power spectra that cannot show accurate information about a cable’s frequency.
(a) A cable vibration that is too weak to exhibit the obvious peaks; (b) A power spectral density (PSD)
with many false peaks found through the regular peak-picking method.

(3) Identify the frequency order automatically.

Generally, the prominent peaks of the power spectrum density may not start from
the first mode [25] or may exist in a discontinuous order. The example in Figure 2 shows
that one modal frequency (marked with a black spot) is missed, meaning that the order of
obtained potential frequencies will be distorted. In such a case, automatically identifying
the mode order is also challenging for a smart sensor.
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Figure 2. Power spectral density with frequency missing.

4. Automated and Robust Cable Tension Estimation Method

According to the theory mentioned in part two, assuming that unit mass and effective
length of cable are constants, the cable tension estimation is focused on identifying frequen-
cies and their orders automatically in WSN. Considering the aforementioned problems,
an improved strategy based on vibration method is developed for a wireless sensor to
realize fully automated and robust cable tension estimation. As shown in Figure 3, the
whole method includes three steps: (1) automatically calculating PSD from acceleration
data; (2) fully automated and robust peak-picking analysis to obtain true frequencies;
(3) identification of the mode order and computation of cable tension force according to the
linear regression result.
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The details of each step will be discussed as follows.

4.1. Power Spectral Density Estimation

The PSD of cable acceleration vibrations is estimated using the Welch periodogram
method, the algorithm was implemented in the Xnode wireless sensor platform and
illustrated in Figure 4.
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Firstly, the number of the segment (k) utilized to allocate memory for all acceleration
data is automatically calculated based on their overlap and data length. Then the accelera-
tion data are divided into k segments and saved temporarily as acc1, acc2, acck respectively.

Secondly, a fast Fourier transformation (FFT) is conducted on each segmented re-
sponse with a Hanning window to obtain auto-power spectrum (APS) estimation of the
acceleration response. Only half of the complex value results are saved because of symme-
try of data so that a long-term history record segment can be processed by using a modest
amount of memory.

Subsequently, the averaged power spectral density can be obtained by dividing
absolute value of summary of APSi by k, with the results saved locally for the next process
of the peak-picking algorithm.

Finally, the memory of whole time domain segments is released to save memory.

4.2. Automatic and Robust Peak-Picking Method

Basically, the power spectrum of vibration data contains many peak responses which
correspond to a cable’s natural frequencies, so that a simple peak-picking method with
threshold value is used to extract the frequencies [25].

(1) Updating threshold value automatically for weak vibration.

The threshold value (εu) is initially set to be the sum of mean(psd) + 2 × std(psd) for
peak picking with 95% confidence [25]. However, in practice, even though the power
spectrum is clearly separate and cognizable, it is difficult to capture enough peaks with the
initial εu all the time, especially for some weak vibration, (e.g., 70% of the data from Jindo
Bridge are in this situation).

In this case, the threshold value will be reduced automatically during the searching
process until enough peaks are obtained or until the threshold value reaches the lower
limit ε l . If there are still not enough peaks, the cable tension task will be returned as zero.
Figure 5 shows the procedure of picking peaks by adjusting threshold value. The number
of identified peaks was increased from two to seven by updating the threshold value and,
thus, the estimated cable tension became much more reliable.
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Figure 5. C3 Cable of Jindo Bridge on Haenam side.

(2) Exclude the false frequencies.

Figure 6 shows the power spectral density of one cable in Jindo Bridge. It exhibits
several peaks above 8 Hz including the third peak marked by a red spot, which is a false
frequency. Therefore, in practical vibration testing, it is quite possible to get undesirable
peaks that are bigger than the threshold value. Meanwhile, for some useless vibration
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data, there may still be many peaks by using initial threshold value, such as in the example
shown in Figure 1b.
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Figure 6. Frequency with false peaks.

In WSN system, the true mode frequencies should be distinguished automatically for
cable tension estimation. The detailed procedure is described as follows, with a flow chart
in Figure 7.
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During the implementation of the peak-picking process, the position number (order in
frequency region) of each qualified peak is temporarily saved as

N− ID1, N− ID2, . . . N− IDi, N− IDn . In principle, the difference value (∆N− IDi =
∆N− IDi+1 − ∆N− IDi) between any two adjacent mode frequencies should be almost the
same, which can be adopted to eliminate false frequencies. The most frequent value α in
array of ∆N− IDi is at first acquired automatically.
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For the non-vibration data that still has many disordered peaks (in Figure 1b), the
differences values (∆N− IDi) are generally randomly distributed, therefore the number of
∆N− IDi which approximates to α (in this paper abs(∆N− IDi − α) ≤ 1) would be less than
half, through which the data could be determined as invalid data. Hence, the found peak
is set as empty and cable tension returned as zero, CTE application is finished temporarily.

Any two adjacent N− IDi and N− IDi+1 would be interpreted as true frequencies
as long as the quotient of ∆N− IDi and α are much close to an integer. The [ l1 l2 ]
([ 0.1 0.9 ] in the paper) are two threshold values to judge this quotient. In this way,
the third data with the high value in Figure 6 is consequently eliminated. The other
corresponding frequency will be saved locally as a true mode.

4.3. Identify the Frequency Order

According to the simple string theory, the cable tension is highly related with the linear
regression results of ( fn/n)2 and n2. Therefore, the order of all obtained frequencies should
be determined correctly. Generally, the continuous true mode frequencies are separated
equidistantly in power spectrum density, the frequencies order can be determined through
Equation (4).

ni = round(
fi

α × ∆ f
) (4)

where ∆ f is the frequency resolution, round is the function to take the nearest integer value.
With these model frequencies and their physical parameters of the cable, the CTE

application can be implemented successfully on an independent sensor node after getting
the linear regression results of ( fn/n)2 and n2.

5. CTE Implementation in the Xnode Wireless Sensor Platform
5.1. Xnode Wireless Sensor Platform

The fully automated cable tension estimation algorithm is implemented on a high
fidelity smart sensor platform named Xnode as shown in Figure 8, which was developed
by Smart Structures and Technology Laboratory at the University of Illinois at Urbana-
Champaign [30,31].
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A wireless sensor has the advantages of wireless communication, autonomous com-
putation, and of being locally powered with a low cost. Meanwhile, compared with other
wireless sensor platforms, Xnode has a higher ADC resolution (24 bits) and a higher sam-
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pling rate (16 kHz) which can provide high fidelity measurements for the monitoring
research of engineering structures.

The strategy of wireless cable tension monitoring based on Xnode is shown in Figure 8.
The entire system consists of one gateway node and several leaf nodes, which communicate
with each other via remote command middleware services. The gateway connected to
a PC through a USB cable is responsible for managing all leaf nodes by sending task
commands and receiving information from leaf nodes. The leaf nodes are mounted on
cables to measure their vibration data and process them locally based on applications.

For a long-span cable-stayed bridge with a large amount of cables, their own properties
should be saved in an SD card on the leaf nodes. Furthermore, the wireless sensor can
obtain cable parameters from local SD card automatically by executing the task of reading
the relevant configuration file. Meanwhile, only the auto power spectrum is used to capture
the natural frequencies of the cable through a peaks-picking method and the cable tension
then calculated based on the string theory method. During the process, the leaf nodes do
not need to share any information between each other.

To promote the application of CTE in practice, as shown in Figure 9, the sensor nodes
should sample acceleration data based initially on sampling parameters which are received
from the gateway through the remote command. Once the vibration data are acquired, the
Xnode processor of leaf nodes will autonomously process acceleration data locally based
on the CTE task. Finally, only the required results will be sent back to the gateway node
and shown on PC screen terminal.
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5.2. Practical Validation

To verify the wireless cable tension estimation algorithm on Xnode, the data of Jindo
Bridge (shown in Figure 10) has been used in this paper. The data of Jindo Bridge were
acquired in 2010 in collaboration with the University of Illinois at Urbana-Champaign,
KAIST University and the University of Tokyo [32]. The details of the test can be found in
S H Sim et al. [25].
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The data from sensor node 64# (see Figure 11) on the Haenam side were used in Xnode
to show the implementation of the cable tension estimation application and demonstrate
the effect of cable effective length on the estimation results of cable tension. The sensor
node is mounted on cable HC04 which is the shortest one among all monitored cables. The
properties of cable HC04 are summarized in Table 1.
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Table 1. Cable properties [33].

Cable
Total Length (m) Effective Length (m)

Damper Position (m)
(from Deck Side)

Net
Length (m)

Unit Mass
(ton m−1)Sensor No. Type

64 φ7 × 151 97.10 95.38 3.40 93.7 0.0476

The cable tension estimation application is loaded on Xnode to analyze the acceleration
data, which is saved in the SD card in advance according to the method mentioned above.
The CTE application results are saved in an SD card and also shown on computer screens
through the TeraTerm terminal emulator.
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As shown in Figure 12, the power spectral density calculated by Xnode is matched
with the results of the Matlab program. Obviously, there are only two peaks picked by
using the initial threshold value, which are not enough to estimate cable force correctly.
After updating the threshold value several times, the number of found peaks has then been
increased to five, and so the correct results are obtained. Meanwhile, the second found peak
(a false frequency) is successfully excluded through the method mentioned above. Note
that the effective length used to estimate cable tension force is set to be equal to 95.38 m
here [33].
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The results of Xnode displayed on TeraTerm are shown in Figure 13. True frequencies
and cable tension force values from Xnode and Matlab are summarized in Table 2. All the
frequencies and corresponding orders show excellent agreements.
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Table 2. Frequency and cable tension force of cable#64.

Frequency Order
Frequency (Hz)

Xnode Result Matlab Result

4 4.9780 4.9710
5 6.2329 6.2193
6 7.4951 7.4863
7 8.7548 8.7530

Tension force (Tonf) 272.53 271.077

As previously mentioned, the peak-picking method result is in accordance with the
vibration. Ten arrays of measured data from cable #64 of Jindo Bridge are used to better
describe the changes of extracted frequencies and tension force with varied vibrations, and
the cable tension force values are listed in Table 3 using the effective length estimated by
Park et al. (2008). The RMS value is used to represent vibration magnitude.

Table 3. Results of cable tension estimation with varying vibrations.

Data No. 1 2 3 4 5 6 7 8 9 10
RMS 3.992 6.943 8.018 8.883 9.908 10.115 10.719 11.541 13.232 32.992

Frequency
(Hz)

2nd 2.4813
3rd 3.7266
4th 4.9706 4.9719 4.9710 4.9709 4.9726
5th 6.2167 6.2180 6.2171 6.2193 6.2194 6.2182 6.2200 6.2187
6th 7.4836 7.4843 7.4863 7.4854 7.4874 7.4856 7.4849 7.4848
7th 8.7313 8.7335 8.7530 8.7546 8.7323 8.7344 8.7338 8.7526
8th 10.0011 10.0244 10.0025 10.0058 10.0020 10.003 10.0007
9th 11.2711 11.2953

10th 12.5977
Regression coefficient 1.5381 1.5369 1.5394 1.5377 1.5333 1.539 1.5404 1.5393 1.5426

Tension force (Tonf) 0
(No peaks) 271.856 271.644 272.086 271.786 271.008 272.015 272.263 272.069 272.652

5.3. Discussion about Automated Cable Tension Estimation in WSN

The WSN has been widely used in cable-stayed structures to realize long-term health
monitoring or reliability assessments. The peak-picking method is the most convenient
and efficient way to obtain modal frequencies to estimate cable tension force based on the
vibration method. However, it may be difficult to determine the peaks due to noise, sensor
sensitivity and some other factors. As for the problems mentioned in Section 3, the auto-
mated updating of the threshold value is helpful to capture the potential modal frequencies,
especially of weak vibrations with recognizable power spectra. This is despite the way
in which the updated threshold value may reduce the reliability of extracted frequencies
as the system has corresponding strategies to distinguish undesirable frequencies and
determine modal order automatically to ensure its robustness. Compared with previous
works in cable tension estimation systems, there are some improvements shown in Table 4.

The practical validation of the Xnode sensor shows that this system is capable of
estimating cable tension with full automation and high robustness. The modal parameters
and cable tension greatly agree with the results of Matlab and previous research [25,32].

From the results of ten arrays of data, it is found that the peak-picking method
failed to acquire frequencies from very weak vibration data, which are instead judged
as unrecognizable signals through the method described in Figure 7. Normally as the
magnitude of a cable vibration increases, the higher modal frequencies are more easily
excited, showing a slight relation with the bigger cable tension force value in Table 3. The
small tension force results mainly belong to those data with lower modal frequencies.
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Table 4. Estimation system in this study compared with previous works.

Estimation System Description

In a previous study [24]

(1) PSD must be recognizable
(2) Need the first modal frequency
(3) Continuous frequencies
(4) Cannot eliminate false frequencies

In a previous study [25]

(1) PSD must be recognizable
(2) Continuous frequencies
(3) Using constant threshold value
(4) Cannot eliminate false frequencies

In a previous study [26,27]
(1) PSD must be recognizable and well separated
(2) Picking peaks on phone manually or frequency difference may cause error
(3) Not considered robust

In this study

(1) Identify whether PSD is recognizable automatically, if not, return to zero to retest
(2) Eliminate false frequencies automatically
(3) Update threshold to process small but recognizable vibration data
(4) Identify frequency order for both continuous and discontinuous spectra (skipped frequencies)

6. Conclusions

This paper firstly discussed the existing problems of cable tension estimation using
wireless smart sensor networks. To take full advantage of a smart sensor system, a robust
and fully automated cable tension estimation method based on ambient vibration was pro-
posed in this study. The reliable estimated frequencies and corresponding mode orders are
crucial for cable tension estimation when the simple string theory is adopted. The method
in this study is capable of distinguishing the cognizable vibration signal and automatically
extract potential frequencies using a peak-picking method. Meanwhile, false frequencies
were eliminated successfully and the frequency’s orders were determined correctly to
estimate cable tension force. Through this strategy, the fully automated cable tension
estimation could be realized for cable-supported structures in long-term health monitoring.

A cable tension estimation application was implemented successfully on the Xnode
platform based on the following autonomous processing: calculating and averaging power
spectral density, picking peaks from power spectrum, eliminating false peaks, determining
mode order and calculating cable tension force. As shown in this case, modal properties
were correctly determined without any preprocessing or manual intervention. The natural
frequencies and corresponding orders of a Jindo Bridge cable obtained from Xnode system
were found to be in excellent agreement with those obtained from Matlab. The estimated
tension force results matched very well with about 0.53% difference, it is also close to the
results presented by previous studies [25,32] with a difference of less than 0.53%.

The system constructed in this study is effective in automated cable tension estimation.
It is sensitive to strong vibration data having obvious peaks in power spectral density.
For weak vibration, this system is capable of capturing peaks for accurate tension force
by setting an updated threshold value. For invalid vibration data, the results of the
cable tension estimation task were set as zero and sent back to the terminal to call for
retesting later.

The Xnode sensor has more memory and an improved processor compared with the
previous wireless sensor, which greatly helps to realize cable tension estimation indepen-
dently, autonomously, and locally. Based on the method proposed in this paper, each
cable of a structure would achieve self-identification in long-term monitoring as long as
it received the command of a base station node, with only the final results sent back to
terminal for early warning.

The method presented in this paper may fail to calculate correct tension force when
the power spectrum has continuous and multiple skipped frequencies. Therefore, in real
testing, it is better to compare the tension force results of several inspections to obtain
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a reliable value for structure assessment. Meanwhile, the accuracy of the cable tension
force may be affected by the number of obtained frequencies. Generally, the more true
frequencies are acquired, the better the accuracy will be. In addition, a recognizable power
spectrum which has less obvious peaks may be misjudged as a useless signal; therefore,
several tests may be needed to obtain enough peaks in practical experiment.

The cable tension force of an in-service bridge usually varies in practical monitoring
because of vehicle load and environmental effects. Therefore, further research will be
focused on improving the algorithm and identification technology, which may also be
able to automatically analyze the cause of force changes, especially for sudden changes in
long-term monitoring, and send alarms to avoid potential risks for the structures.
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