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Abstract: Cloud computing is a fully fledged, matured and flexible computing paradigm that pro-
vides services to scientific and business applications in a subscription-based environment. Scientific
applications such as Montage and CyberShake are organized scientific workflows with data and
compute-intensive tasks and also have some special characteristics. These characteristics include
the tasks of scientific workflows that are executed in terms of integration, disintegration, pipeline,
and parallelism, and thus require special attention to task management and data-oriented resource
scheduling and management. The tasks executed during pipeline are considered as bottleneck execu-
tions, the failure of which result in the wholly futile execution, which requires a fault-tolerant-aware
execution. The tasks executed during parallelism require similar instances of cloud resources, and
thus, cluster-based execution may upgrade the system performance in terms of make-span and exe-
cution cost. Therefore, this research work presents a cluster-based, fault-tolerant and data-intensive
(CFD) scheduling for scientific applications in cloud environments. The CFD strategy addresses the
data intensiveness of tasks of scientific workflows with cluster-based, fault-tolerant mechanisms.
The Montage scientific workflow is considered as a simulation and the results of the CFD strategy
were compared with three well-known heuristic scheduling policies: (a) MCT, (b) Max-min, and
(c) Min-min. The simulation results showed that the CFD strategy reduced the make-span by 14.28%,
20.37%, and 11.77%, respectively, as compared with the existing three policies. Similarly, the CFD
reduces the execution cost by 1.27%, 5.3%, and 2.21%, respectively, as compared with the existing
three policies. In case of the CFD strategy, the SLA is not violated with regard to time and cost
constraints, whereas it is violated by the existing policies numerous times.

Keywords: scientific workflows; scheduling; fault-tolerant; Montage; clustering

1. Introduction

Cloud computing is a distributed and large-scale computing environment. It provides
a pool of virtualized and dynamic computing services [1]. These services are delivered by
the cloud environment in a subscription-based environment. Cloud services are highly
scalable in nature and are provided to the customers dynamically and delivered transpar-
ently and not by manual means [2]. Services are provided to the external customers with a
significantly high Internet speed on an on-demand basis with the computing architecture
of three main services: “Infrastructure as a Service” (IaaS), “Platform as a Service” (PaaS)
and “Software as a Service” (SaaS) [3,4]. Considering the cloud resources and services,
large numbers of organizations use cloud environments to maximize their performance
with a better Quality of Service (QoS) and system performance [5–7].
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Cloud services in terms of usage are broadly categorized into scientific applications
and business models [8]. Large-scale scientific applications such as Montage [9] and Cyber-
Shake [10] are often structured as scientific workflows. These applications are used and
developed by scientists and need a high computational and storage power for their evalua-
tion and solutions [11,12]. The major fields of scientific applications include: earthquake
science, astronomy, gravitational physics and biology [13]. For instance, Montage [9] is
one of the real-time scientific applications belonging to the field of astronomy. In Montage,
input images are evaluated to obtain desired mosaics. It is a highly data-intensive workflow
as it processes high-definition input images. The input images are obtained from a region
of the sky by the astronomer for the purpose of obtaining the desired mosaics. The size
of the desired mosaic is characterized by the square degree [14]. For example, in the 1-,
2-, and 4-degree square workflows in Montage, there are 203, 732 and 3027 application
tasks, respectively. If a 4-degree-square Montage workflow is considered, it consists of
3027 application tasks with a runtime of 85 CPU hours with a cost of USD 9 when it is
running on a single processor. Cloud computing provides the availability of a large number
of resources with the most affordable price and a well-defined method for dynamically
obtaining and releasing resources [11,15,16]. Therefore, for the evaluation of scientific
data in an efficient and reliable manner, cloud computing is one of the most prominent
platforms [17–19].

For the performance of workflow executions on target resources, there are two main
workflows management strategies: (a) Pegasus WMS (Workflow Management System),
and (b) Heterogeneous Event Management Middleware (HEMM). WMS was presented
in [18,20]. In each workflow management strategy, it is supposed that when a task is allo-
cated to a resource, the resource starts the execution after accepting the task. However, the
factors such as: (a) dependencies between the tasks, (b) reliability, (c) scheduling policies,
(d) QoS assurance, and (e) fault-tolerant mechanisms may be deployed in a system [21].
Due to such factors there is a risk of performance degradation [14]. Similarly, some of
the workflows are too large and need to be moved from one node to another, resulting in
significantly expensive data movement [22]. Moreover, there are some special characteris-
tics of scientific workflows. These characteristics include the tasks of scientific workflows
that are executed in terms of integration, disintegration, pipeline, and parallelism, and
thus require special attention to task management and data-oriented resource scheduling
and management [23]. The tasks executed during pipeline are considered as bottleneck
executions, the failure of which result in the wholly futile execution, which requires a fault-
tolerant-aware execution. The tasks executed during parallelism require similar instances
of cloud resources, and thus, cluster-based execution may upgrade the system performance
in terms of make-span and execution cost. [24,25]. All these challenges lead to the need for
effective and well-defined workflows scheduling strategy with cluster-based, fault-tolerant
mechanisms.

In this research work, a systematic approach is used to find the solutions to all the
above-mentioned challenges. Therefore, a cluster-based, fault-tolerant and data-intensive
(CFD) resource scheduling and management strategy for scientific applications in cloud
computing is proposed. The main contributions of this work are provided below:

• A cluster-based, fault-tolerant and data-intensive (CFD) resource scheduling and
management strategy for scientific applications in a cloud environment is proposed in
this research work. The CFD strategy is elaborated through multiple elements, e.g.,
user and application interface, Workflow Admission, Workflow Mapper, Workflow
Scheduler, and Workflow Engine.

• There are four core components of the CFD strategy, e.g., (a) Workflow Admission,
(b) Workflow Mapper, (c) Workflow Scheduler, and (d) Workflow Engine. These
components convert scientific data submitted by one or more users into scientific
workflows and assign them to the required resources for execution.

• A selective reclustering-based, fault-tolerant mechanism [26–29] is provided to the
CFD strategy.
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• The CFD strategy is evaluated through WorkflowSim [30,31], while considering the
performance evaluation parameters, e.g., execution time, cost, budget, deadline and
SLA violation.

• In order to show the efficiency of the CFD strategy, the Montage [14] scientific work-
flow is executed and compares the simulation results with three well-known heuristic
scheduling policies: (a) “Minimum Completion Time” (MCT) [32], (b) “Max-min” [22],
and (c) “Min-min” [22] scheduling policies. The simulation results reflect that the
proposed CFD strategy outperforms the current solutions.

The remainder of the paper is organized as follows: Section 2 presents the related
work; Section 3 presents the System Model and Design; Section 4 provides in detail the
experiments, results and discussions; and Section 5 concludes the work.

2. Related Work

The related work is reviewed thoroughly in terms of scientific workflow schedul-
ing and fault-tolerant techniques. The basic characteristics of scientific workflows were
explored. At the very beginning, a study was conducted on five basic realistic scientific
applications [13]. These workflows included CyberShake (earthquake science), Montage
(astronomy), Laser Interferometer Gravitational Wave Observatory (LIGO) (gravitational
physics), Epigenomics (biology) and SIPHT (biology). The study provides the basic informa-
tion, structure and behavior of each workflow in terms of its execution. A comprehensive
characterization of each application with structural, computational and data requirements
was pointed out. It was also noted that the scientific workflows had some special struc-
tural properties in terms of pipeline execution, data aggregation, data parallelism, data
distribution and data redistribution.

In order to improve the workflow completion time and efficient utilization of avail-
able resources, a scheduling strategy, Adaptive Data Aware Scheduling (ADAS), was
presented [33]. The ADAS strategy is an integrated data and task management strategy
in a cloud environment for workflow applications that uses two stages. In the first stage,
which is called the “setup stage”, the cluster is created and in the second stage, which
is called the “run stage”, the workflow is executed. The presented work lacks the fault-
tolerant mechanism. The scheduling was one of the major components for the execution
of scientific workflows and its importance could not be denied at any stage of execution.
Thus, “Fault-Tolerant Workflow Scheduling (FTWS) Using Spot Instances on Clouds”, a
scheduling algorithm for the execution of workflows which is robust against the perfor-
mance variations was proposed in [34]. The scheduling algorithm schedules tasks by using
two cloud pricing models i.e, on-demand and spot instances pricing models. These models
are specifically designed to reduce the cost of execution within the constraint of deadlines.
The work proposed in [34] is only for generic types of workflow and is mostly used for
business applications, such as business models for Amazon, and lacks particularity for
scientific applications.

In [35], three scheduling algorithms were developed to provide resources for the
ensembles of workflows and their scheduling on the cloud, within the limits of deadlines
and budget constraints. The first scheduling algorithm is Dynamic Provisioning Dynamic
Scheduling (DPDS), which is an online scheduling algorithm that schedules tasks and
provides resources at runtime. It consists of two procedures: (a) the scheduling procedure
and (b) the provisioning procedure. The second scheduling algorithm is Workflow-aware
DPDS (WA-DPDS) which extends the DPDS, as well as initiates a Workflow Admission
module. The third and last scheduling algorithm of the work presented in [35] is Static
Provisioning Static Scheduling (SPSS) which is the static version of WA-DPDS [35]. It creates
a scheduling and provisioning plan before running any workflow tasks. In other words,
SPSS only starts those workflows for executions that can be completed within budget
and deadline constraints, while the rest of the workflows are rejected without starting
their execution. The algorithm is specifically designed for an ensemble of workflows
which are not suitable for the execution of heterogeneous types of workflows, i.e., when
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different types of workflows need to be executed and not generally applicable for all
types of workflows independently. Fault tolerance parameters are also not included in the
presented work.

Aside from the above-mentioned scheduling algorithms, there are various heuristic
methods, such as “Minimum Completion Time” (MCT) [36], “Maximum-minimum” (Max-
min) [37] and “Minimum-minimum” (Min-min) [38]. These methods are used for the
scheduling of independent tasks of scientific applications [32]. In MCT, the completion
time of each task is calculated and tasks with a shorter completion time are allocated first.
In Max-min, firstly the large tasks are executed leading to delay in tiny tasks, while in
Min-min, the small tasks are executed first, leading to a delay in the larger tasks. The
majority of the tasks in the scientific workflows are numerous and represent large amounts
of computations, as well as data [39]. Therefore, load balancing is one of the main issues in
scheduling techniques, specifically for the execution of such types of scientific workflows
through Workflow Management System because, when load balancing is conducted in
scheduling techniques, the Dependency Imbalance and Runtime Imbalance occur. To
overcome such deficiencies, the Balance Task Clustering (BTC) Technique for scientific
workflows is presented in [40]. There were three main goals which were achieved in BTC.
Firstly, a series of metrics were proposed that revealed the internal structure of the workflow
which supported the reducing runtime and dependency imbalance. Secondly, a concept of
family and neighboring task clustering was used as there was a strong connection between
parents, children, and siblings. Finally, the balancing method and quantitative metrics
were analyzed, i.e., workflow imbalance problems were characterized by metrics and,
by the comparison of the relative values, a balancing method was selected. The work
presented in [40] focused on load balancing, while the rest of the factors of scheduling
(e.g., data management, task assignment, time and cost) remained intact. The overhead of
metrics and dependency analysis could not be denied as there were numerous numbers of
short-running tasks in the workflows system. Furthermore, if we apply the fault tolerance
methods on the given technique, there were chances of reducing the performance with
respect to workflow completion time. Similarly, a load-balancing technique was proposed
concerning only time, while the cost of tasks was not considered at any stage. Moreover,
the authors did not mention whether the BTC technique was an independent technique
or whether it was intended to be used with another model as a mere assertion of system
architecture. Moreover, the workflow system model was unable to consider all the factors,
such as cost, data management, task assignment, and fault tolerance.

In [41], a data-aware scheduling strategy referred to as “Enhanced Data-oriented
Scheduling strategy with Dynamic clustering fault-tolerant technique” (EDS-DC) was
given. The strategy was particularly developed for applications related to scientific work.
The authors used WorkflowSim [30] as a simulation environment and contended that their
results demonstrated significant improvements. The EDS-DC strategy did not consider
the appropriate procedure of workflow submission in relation to the generation of results.
In [28], a cluster-based, fault-tolerant strategy referred to as “Fault-tolerant Clustering”
(FTC) for scientific applications was presented. In FTC, the authors categorized the failures
as task failures and job failures. The authors further contended that a job was a cluster of
multiple tasks. When a single cluster of tasks fails then it was called a job failure. However,
when a single task or combination of tasks in a cluster failed to execute tasks, this was
called a task failure. In task failure, the failure of the overall job is not necessary. The work
presented provided three methods as fault-tolerant mechanisms and solved the problem
of the environment with faults. The first method was Dynamic Clustering (DC) which
adjusted the clustering factor dynamically and according to the failure rate of the detected
tasks. The second method was Selective Re-Clustering (SR) that, within a job, retried the
failed tasks. The last method was Dynamic Re-Clustering (DR) that combined the first two
methods. Not only did this method adjust the clustering factor dynamically according to
the failure rate of detected tasks but it also retried the failed tasks of a job. The limitation of
this work was that it was deficient with respect to the cost and time parameters.
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In [42], four approaches were presented in order to automate the mechanism of the
assignment of high-volume workloads to cloud computing resources. These approaches
were: deep Q networks (DQN), reinforcement learning (RL), deep reinforcement learning
combined with LSTM (DRL-LSTM) and recurrent neural network long short-term memory
(RNN-LSTM). The main aim of these approaches was to reduce the task waiting time and
resource consumption. In [43], a multi-objective simulated annealing (MOSA) strategy was
designed for the secure allocation of tasks on the cloud and fog nodes. The allocation was
made on the basis of multiple goals including access level and client demand. In [44], the
authors extended the multi-objective scheduling policy, Harris hawks optimizer (HHO), by
presenting the elite learning, Harris hawks optimizer (ELHHO). A scientifically intelligent
method, “elite opposition-based learning”, was used to modify the existing HHO policy in
order to solve the multi-objective scheduling problem. The authors claim that the presented
ELHHO strategy satisfied the quality of service regarding minimizing schedule length,
execution cost and maximizing resource utilization.

In [45], a communication enhancement tool was proposed named BurstFlow. It was
used to improve communication between Big Data Stream Processing applications with
the edges of the Internet. This tool was based on cloud infrastructure. In the BurstFlow, an
introduction of micro-batch size adjustment was made as per the required computation and
communication time. An adaptive data partition policy was also introduced in BurstFlow
that distributed the incoming data streams to the available resources based on the capacities
of memory and CPU.

A comprehensive comparison of literature review is shown in Table 1.

Table 1. Comparison of Related Work.

References Scheduling
Policy

Fault
Tolerance

Mechanism

Resource
Management

Performance Parameters
Features Limitations

Time Cost

[13] 7 7 7 7 7
Details of five

realistic scientific
workflows are given

No workflows
management,

scheduling and
fault-tolerant

techniques

[20] Pegasus WMS 7 4 7 7
Provides WMS

structure for
scientific workflows

No fault-tolerant
mechanism.

[28] 7 FTC 4 7 7

Provides
fault-tolerant

mechanism for
scientific workflows

No scheduling and
task management

[33] ADAS 7 4 4 7
Improves workflow

completion time

No fault tolerance
and workflows
management

[34] FTWS Check-
pointing 4 7 4

Schedule tasks using
two pricing models,

e.g., spot and
on-demand instances

No method to reduce
the make-span

[35]
DPDS,

WA-DPDS &
SPSS

7 4 4 4
Provide resources for
cluster of workflows

No fault tolerance
and workflow
management

[40] BTC 7 4 4 7
Provide load

balancing mechanism

There is the overhead
of metrics and

dependency analysis

[41] EDS-DC Dynamic
Clustering 4 4 4

Scheduling and
fault-tolerant

mechanism for
scientific workflows

No scientific
workflows

management
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The above-mentioned literature review reflects that when tasks of real-time scientific
workflows are executed, they pertain to several issues and require respective solutions.
The problem formulation of the proposed research work is described as below:

Suppose there are “n” number of tasks (T1, T2, T3, . . . , Tn) in a scientific workflow
executed with “i” number of levels (L1, L2, L3, . . . , Li) on “j” number of given resources
(R1, R2, R3, . . . , Rj):

• Based on the data intensiveness and special characteristics of scientific workflows,
there are various tasks from T1, T2, T3, . . . , Tn with diverse requirements of resources
from R1, R2, R3, . . . , Rj at multiple levels, L1, L2, L3, . . . , Li. Therefore, there should
be efficient data-intensive resource scheduling.

• At several levels, there are multiple tasks from T1, T2, T3, . . . , Tn which are executed
in parallel and require similar instances of cloud resources. Therefore, cluster-based
scheduling will upgrade the system performance in terms of make-span and execution
cost.

• Several tasks from T1, T2, T3, . . . , Tn are executed at bottleneck node/level, the failure
of which makes the whole execution fruitless. Therefore, they require a fault-tolerant
mechanism.

The proposed cluster-based, fault-tolerant and data-intensive (CFD) scheduling strat-
egy addresses the above-mentioned issues in an efficient way. The proposed CFD strategy
is a multi-criteria optimization technique that considers the two significant criteria of
scientific workflow task management and scheduling, i.e., the data-intensiveness and fault
tolerance. Both of these components are worthwhile to schedule and manage the tasks of
scientific workflows in terms of make-span, execution cost and SLA violations.

3. System Design and Model

This research work proposes a cluster-based, fault-tolerant and data-intensive (CFD)
resource scheduling and management for scientific applications in a cloud environment
with the following assumptions:

• Each job consists of multiple tasks of a similar nature.
• Resources are obtained from the cloud in terms of infrastructure as a service and are

managed through the workflow management system.
• Clustering is a term used for the integrating of similar tasks in a group for their

execution.
• The average budget and deadline for each type scientific workflow is considered as

per its execution cost and time.

In the proposed CFD strategy, one or more users submit scientific data for execution
through an application interface. The overall model of proposed work is shown in Figure 1.
The cloud resources are obtained in terms of infrastructure as a service and managed
through resource management. The core components of the CFD strategy are: (a) Workflow
Admission, (b) Workflow Mapper, (c) Workflow Scheduler, and (d) Workflow Engine.
Initially, the scientific data are sent to Workflow Admission, which converts the scientific
data into abstract scientific workflows and then sends it to the next element, i.e., Workflow
Mapper. Workflow Mapper converts the abstract scientific workflows into the executable
scientific workflows which are then submitted to Workflow Scheduler. Workflow Scheduler
converts the executable scientific workflows into jobs and then assigns them to the required
resources. The execution process is conducted by Workflow Engine. The Workflow Engine
executes the assigned jobs of each workflow as received from Workflow Scheduler with a
cluster-based, fault-tolerant mechanism. After the execution of workflows in the form of
jobs by Workflow Engine, the result of each workflow is returned to the respective user
through the application interface.
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3.1. User

A user is an entity that can be an organization or a person. If a user is a person,
then he/she can submit scientific data for its execution and evaluation. If the user is an
organization, then it can obtain scientific data from a person and submit it for execution
and evaluation. Users can submit single types of scientific data, as well as multiple types
of scientific data. Normally, scientific data is related to realistic scientific applications, such
as CyberShake, Montage, SIPHT and Epigenomics [13]. The number of users may be one
or more than one and the single user, as well as multiple users, can submit a single type of
scientific workflow, as well as multiple types of scientific data.

3.2. Application Interface

The Application Interface provides an interface between the user and the CFD model.
The user submits scientific data for execution and evaluation through the application inter-
face. For the submission of scientific data to the CFD scheduling system, the Application
Interface submits data to the next element of the model, i.e., Workflow Admission, with
characteristics like the input, output, size and type of scientific data. Examples of Applica-
tion Interfaces are Perl and hub-zero [20]. The Application Interface provides an interface
to one or more than one user, as well as for one or more than one scientific workflow to the
CFD scheduling system.

3.3. Workflow Admission

The Workflow Admission receives scientific data through an application interface
which is generated by the scientists for the execution and evaluation of scientific appli-
cations. The Workflow Admission generates an abstract scientific workflow for scientific
data. An abstract scientific workflow is a workflow which is in the form of Directed Acyclic
Graph (DAG) and related to a single field of science. This type of workflow is submitted by
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a single user with one or more jobs/inputs producing a single result/output. The Workflow
Admission simply receives scientific data which may consist of one or more than one field
as per specified by the user, separate them into their respective scientific workflows, make
their DAG and submit for the next element of the model, i.e., Workflow Mapper. As there
may be more than one user, it is the responsibility of Workflow Admission to generate an
abstract scientific workflow for each user and with its respective field of science specified
by the user.

Algorithm 1 shows the overall procedure for Workflow Admission. The user submits
scientific data, which contain specific fields of scientific data, e.g., astronomy and biology.
They also contain the properties of size and the number of instances of scientific data.
Workflow Admission simply checks whether the scientific data contain a single field/type
of scientific data or have multiple types. If scientific data contains a single field/type, then
Workflow Admission analyzes the number of nodes and dependencies between the nodes
and submits them to the next core element of the CFD as an abstract scientific workflow in
the form of Directed Acyclic Graph (DAG). If scientific data have multiple fields of data
then Workflow Admission separates each field and analyzes the number of nodes and
dependencies between the nodes of each field, then submitting it to the next core element
of the CFD as an abstract scientific workflow in the form of DAG.

Algorithm 1: Workflow Admission
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Workflow Mapper receives one or more separate abstract workflows from Workflow
Admission and generates executable workflows for each abstract workflow. At this stage
the parameters of each workflow are the type of workflow, its size, input instances and
output. The basic purpose of Workflow Mapper is to create such a workflow consisting of
data in the form of jobs/inputs with requirements for computation and storage resources,
so that these jobs/inputs can be submitted for the next elements of the CFD, e.g., Workflow
Scheduler, to schedule them.

Algorithm 2 shows the overall procedure for Workflow Mapper. Workflow Mapper
receives abstract scientific workflow from Workflow Admission in the form of DAG. It
converts the abstract scientific workflow into an executable scientific workflow by finding
the jobs/tasks with the respective required resources of the abstract scientific workflow.
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Then, Workflow Mapper submits all the jobs of the respective scientific workflow to the
next element for assignment of resources.

Algorithm 2: Workflow Mapper
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3.5. Workflow Scheduler

Workflow Scheduler receives jobs/inputs from Workflow Mapper of each workflow
and schedules them by assigning required resources. It is pertinent that the resources
are obtained from the cloud in terms of Infrastructure as a Service (IaaS) and then sched-
uled/managed distinctly through the CFD. Workflow Scheduler also converts the jobs into
the task and then allocates resources. Resources are allocated in such a way that they have
the best execution time for the cheapest cost.

Algorithm 3 shows the overall procedure for Workflow Scheduler. Workflow Sched-
uler receives jobs of scientific workflow from Workflow Mapper. Then, it finds required
resources for each job. If necessary, it also converts the job into multiple tasks. Then,
Workflow Scheduler checks for the required resources. If available, the resources fulfill the
requirements of all the jobs of executable scientific workflow, then, Workflow Scheduler
assigns the jobs to the required resources with the best minimum execution time and
cost. Finally, Workflow Scheduler submits the assigned jobs to the next core elements for
execution.
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3.6. Workflow Engine

Workflow Engine executes the jobs/tasks on their assigned resources as received from
Workflow Scheduler. Workflow Engine also initiates the fault-tolerant mechanisms in such
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a way that if the execution of each job/task succeeds then it generates results and returns to
the user through the application interface. If the execution of jobs/tasks is not succeeded or
fails, then Workflow Engine initiates the fault-tolerant technique and retries or re-executes
the failed tasks/jobs.

Algorithm 5 shows the overall procedure for Workflow Engine. Workflow Engine
receives and assigns jobs/tasks to the required resources from Workflow Scheduler and
executes them. If execution is successful then Workflow Engine generates results. If the
execution of jobs/tasks fails, Workflow Engine initiates selective re-clustering based on a
fault-tolerant technique. In our case we consider a 5% failure rate out of the total number
of tasks and, as such, the fault-tolerant technique is initiated each time the workflow is
submitted.

Algorithm 5: Workflow Engine
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Algorithm 6 is a fault tolerant algorithm that represents the procedure of the fault-
tolerant technique, Selective Re-clustering. Selective Re-clustering is a clustering technique
that finds all the failed tasks from each job, clusters them and then re-executes that cluster
containing the failed tasks. The input to the algorithm is a list of available resources and
failed jobs. The algorithm returns the mapped list of failed jobs to the required resources
for execution.
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Algorithm 6: Selective Re-Clustering
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The proposed CFD (cluster-based, fault-tolerant and data-intensive) strategy is a
component-based resource scheduling and management strategy for scientific applications
in cloud environments. The major components of the CFD strategy are Workflow Admis-
sion, Workflow Mapper, Workflow Scheduler, CFD scheduling, Workflow Engine, and a
fault-tolerant mechanism. All these components work with stepwise mechanisms and are
elaborated through algorithms. There are six algorithms in the article, out of which four
algorithms are related to workflow management, one algorithm (Scheduling Algorithm) is
related to workflow scheduling and one algorithm (Fault-tolerant Algorithm) is related to
the provision of fault-tolerant mechanism. Algorithm 1 shows the overall procedure for the
“Workflow Admission component” of the CFD strategy in which there is a single “while
loop”; therefore, the complexity of Algorithm 1 is linear. Algorithm 2 shows the overall
procedure for the “Workflow Mapper component” of CFD strategy, while Algorithm 3
shows the overall procedure for the “Workflow Scheduler component”. Both Algorithms 2
and 3 work with a single “while loop”, and thus bear linear time complexities. Algorithm 4
provides the scheduling process of the proposed CFD strategy. In Algorithm 4, there is a
“for loop” inside the “while loop”. For each iteration of the “while loop”, the “for loop” runs
“n” number of times. Therefore, the complexity of Algorithm 4 is exponential. Algorithm 5
shows the overall procedure for the “Workflow Engine” of the CFD strategy in which there
is a single “while loop”; therefore, the complexity of Algorithm 5 is linear. Algorithm 6
provides the fault-tolerant mechanism of the proposed CFD strategy. In Algorithm 6, the
nested “for loop” is used, and thus it has an exponential time complexity.

4. Experiment, Result and Discussion
4.1. Simulation Setup

The detailed description of the simulation environment regarding the resources and
specifications of scientific workflows submitted by one of more users, is given below.

Resource modeling

The simulation is performed in WorkflowSim [30], “a toolkit for simulating scientific
workflows”. It is modified to support the fault-tolerant mechanism and scheduling policy.
The WorkflowSim is a workflow-based simulation tool which is used to implement work-
flow scheduling and management techniques; however, the proposed CFD strategy, in
terms of scheduling policy and fault-tolerant mechanisms, is not previously implemented
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in WorkflowSim. Therefore, the proposed CFD strategy is implemented in WorkflowSim to
simulate a Montage [9,14,20,32] scientific workflow, which is one of the real-time scientific
applications belonging to the field of astronomy. Space-shared resources are used with
certain characteristics, such as budget and deadline. The remaining specifications are
shown in Table 2 as below.

Table 2. The specifications of resources used for simulation.

No. VMs Memory BW VM Arch

1000 VMs 10,240 MB 10000 Mbps Xen X86

OS Cost per VM $/Hr Memory Cost $/s Storage Cost $/s Data Transfer Cost $/s

Linux 3.0 $/h 0.05 $/s 0.1 $/s 0.1 $/s

Application modeling

In our proposed scenario, one user submits the real-time scientific workflow in Mon-
tage [9,14,20,32] with 25, 50, 100 and 1000 tasks, respectively. Montage [9] is one of the
real-time scientific applications belonging to the field of astronomy.

4.2. Performance Evaluation Parameters

A comprehensive detail of each performance evaluation parameter used in this article
is described as below:

Make-span

Make-span is the time spent to execute a batch of jobs. In the context of scientific
workflows, it is the overall time needed to execute the scientific workflow [34]. It is denoted
by M and evaluated with the help of Equation (1):

M = F.T − S.T (1)

where F.T denotes the finish time and S.T denotes the start time of scientific workflow
execution.

Deadline

The deadline is the predefined execution time of a batch of jobs. In the context
of scientific workflows, it is the predefined overall execution time for the execution of
a scientific workflow [22]. It is denoted by D and can be evaluated with the help of
Equation (2):

D = Computation Time + Communication Time + Overhead (2)

where the overhead is the additional time consumed during the re-execution of failed
jobs/tasks of scientific workflow.

Cost

Cost is the budget spent to execute a batch of jobs. In the context of scientific work-
flows, it is the overall budget needed for the execution of scientific workflows [34]. It is
denoted by C and can be evaluated with the help of Equation (3):

C = Cost on F.T − Cost on S.T (3)

where F.T denotes the finish time and S.T denotes start time. Similarly, the cost for each
task is denoted by Ct and is computed with the help of Equation (4):

Ct = Processing Cost + Memory Cost + Storage Cost + Bandwidth Cost (4)

Budget
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The budget is the total monetary resources needed to execute a batch of jobs [22]. In
the case of scientific workflows, it is the predefined cost needed for the execution of a
scientific workflow. It is denoted by B and can be calculated with the help of Equation (5):

B = Computation Cost + Communication Cost + Overhead (5)

where the overhead is the extra cost consumed when failed jobs/tasks of scientific workflow
are re-executed.

SLA Violation

Service Level Agreement (SLA) is violated when the cost is exceeds the predefined
budget or when the make-span exceeds the predefined deadline [22]. Equations (6) and (7)
represent the conditions for SLA violation [46]:

SLAV = SLAVITAH (6)

SLAV = SLAVICAB (7)

The SLAV represents SLA violation, SLAVITAH represents SLA violation due to the
increase in time per active hours and SLAVICAB represents the increase in cost in SLA
violation per active budget.

4.3. Results and Discussion

One user is considered for simulation who submits the real-time scientific workflows
Montage with 25, 50, 100 and 1000 tasks. The objective is to evaluate the CFD strategy by
executing the real-time scientific workflow Montage. The execution cost, budget, make-
span, deadline and the SLA violation are the performance evaluation parameters.

Make-span: The results, with regard to the make-span for the CFD strategy compared
with the existing MCT, Max min and Min min scheduling are shown in Figure 2 which
reflects that the make-span is the minimum for the proposed CFD strategy. Due to this, the
CFD strategy finds the nearest available resource for each task and, as such, it reduces the
make-span and cost, as compared with the other three scheduling policies.
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Cost: The results with respect to cost of the CFD strategy compared with MCT, Max
min and Min min scheduling are plotted in Figure 3, which reveals that in almost all the
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scheduling policies, the cost is the minimum for the proposed scheduling. Due to this, the
CFD strategy finds the nearest available resource for each task and, as such, it reduces the
make-span and cost compared with the other three scheduling policies.
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SLA Violation: Table 3 shows the results of the CFD strategy along with the existing
scheduling policies. In the case of the proposed CFD strategy, the SLA is not violated by
time constraints or cost constraints. While for the other scheduling policies, it is violated
several times. Due to this, the CFD strategy finds the nearest available resource for each
task, and thus reduces make-span and cost, as compared with other three scheduling
policies.

Table 3. Shows deadline, budget and SLA Violation.

Scientific
Workflow

Scheduling
Policy

Make-Span
(s) Cost (cents) Deadline (s) Budget

(cents)
SLA Violation

For Time For Cost

Montage-25

CFD 62.742 844.418

70.00 1000.00

No No

MCT 67.71 993.236 No No

Max-min 67.476 930.482 No No

Min-min 68.21 925.484 No No

Montage-50

CFD 92.556 1951.912

95.00 2200.00

No No

MCT 100.912 2192.62 Yes No

Max-min 93.632 1993.05 No No

Min-min 101.882 2227.616 Yes Yes

Montage-100

CFD 121.256 4016.798

130.00 4400.00

No No

MCT 135.08 4619.592 Yes Yes

Max-min 133.994 4725.948 Yes Yes

Min-min 129.318 4287.208 No No

Montage-
1000

CFD 1544.662 42,547.402

1600.00 45000.00

No No

MCT 1649.732 45,188.35 Yes Yes

Max-min 1603.578 44,875.44 Yes No

Min-min 1648.09 44,499.09 Yes No
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The proposed CFD strategy is a novel approach, as in the CFD strategy is a detailed
process from scientific data submission to the generation of results, and component-based
scenarios are provided. Each component is elaborated in detail using pseudo code. There
are six algorithms along with detailed descriptions. The experiments are performed in
Montage workflow, which is a scientific application related to the field of astronomy.
The CFD strategy addresses the data and computes the intensiveness of tasks of scientific
workflows with a cluster-based, fault-tolerant mechanism. The Montage scientific workflow
is simulated. The results of the proposed CFD strategy are compared with three well-known
heuristic scheduling policies: (a) MCT, (b) Max-min, and (c) Min-min. However, these
heuristic scheduling policies are also equipped with the fault-tolerant mechanism, so
that the comparison was made justly and fairly. The performance is comparable to these
heuristic scheduling policies because the scientific workflows are scheduled and managed
in terms of data-intensive tasks with a diverse nature. There is a large variety of scientific
workflows tasks; they may be of huge size, normal size or of very small size. Therefore,
in such circumstances, MCT, Max-min, and Min min are effective when considering the
completion time, and the maximum- and minimum-sized nature of the tasks of scientific
workflow. However, these policies do not consider the data-intensiveness of the tasks
including the data transfer time. These policies are also not equipped with any fault-
tolerant mechanisms in their original form. As such, the simulation results of the proposed
CFD strategy are superior to the heuristic policies for scientific workflows.

So far, as the question of comparison with any other recent strategy is concerned,
the recent strategies have not specifically addressed the issues of scientific workflows
management and scheduling by considering the data-intensiveness, tasks variety and
bottleneck failures of the tasks of scientific workflows. However, in future studies, this
work will be extended to include energy efficient scheduling and a fault-tolerant framework
with multi-criteria components and comparisons will be made with recent strategies for
each criterion component.

5. Conclusions

In this research work, a cluster-based, fault-tolerant and data-intensive (CFD) strategy
for scientific applications in a cloud environment is proposed. The proposed CFD strategy
provides a detailed process from scientific data submission to the generation of results with
component-based scenarios. Each component is elaborated in detail with pseudo code. The
experiments were performed in Montage workflow, which is a scientific application related
to the field of Astronomy. In the proposed CFD strategy, one or more users submit scientific
data for execution through an application interface. The cloud resources are obtained in
terms of Infrastructure as a Service and managed through Resource Management. The
core components of CFD strategy are: (a) Workflow Admission, (b) Workflow Mapper,
(c) Workflow Scheduler, and (d) Workflow Engine. Initially the scientific data was sent to
Workflow Admission which converts the scientific data into abstract scientific workflow
and then sends it to the next element, i.e., Workflow Mapper. Workflow Mapper converts
the abstract scientific workflows into the executable scientific workflows, which are then
submitted to Workflow Scheduler. Workflow Scheduler converts the executable scientific
workflows into jobs and then assigns them to the required resources. The execution
process is conducted by Workflow Engine. Workflow Engine executes the assigned jobs of
each workflow as received from Workflow Scheduler with a cluster-based, fault-tolerant
mechanism. After the execution of workflows in the form of jobs at Workflow Engine, the
result of each workflow is returned to the respective user through the application interface.
The CFD strategy addresses the data and computes the intensiveness of tasks of scientific
workflows with a cluster-based, fault-tolerant mechanism. The Montage scientific workflow
is considered for the simulation, and the results of the CFD strategy were compared with
three well-known heuristic scheduling policies: (a) MCT, (b) Max-min, and (c) Min-min.
The simulation results show that the CFD strategy reduces the make-span by 14.28%,
20.37%, and 11.77%, respectively, when compared with the existing three policies. Similarly,
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the CFD reduces the execution cost by 1.27%, 5.3%, and 2.21%, respectively, as compared
with the existing three policies. In the case of the CFD strategy, the SLA is not violated for
time and cost constraints, whereas it is violated several times by the existing policies.

In future work, this research work will be extended in order to propose an energy-
efficient, fault-tolerant-based scheduling framework for scientific workflows in cloud
computing.
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