
sensors

Article

Modeling of a Generic Edge Computing Application Design

Pedro Juan Roig 1,* , Salvador Alcaraz 1 , Katja Gilly 1,* , Cristina Bernad 1 and Carlos Juiz 2

����������
�������

Citation: Roig, P.J.; Alcaraz, S.; Gilly,

K.; Bernad, C.; Juiz, C. Modeling of a

Generic Edge Computing Application

Design. Sensors 2021, 21, 7276.

https://doi.org/10.3390/s21217276

Academic Editors: Claudio Gennaro

and Claudio Vairo

Received: 30 September 2021

Accepted: 27 October 2021

Published: 1 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Engineering Department, Miguel Hernández University, 03202 Elche, Spain;
salcaraz@umh.es (S.A.); cbernad@umh.es (C.B.)

2 Mathematics and Computer Science Department, University of the Balearic Islands,
07022 Palma de Mallorca, Spain; cjuiz@uib.es

* Correspondence: proig@umh.es (P.J.R.); katya@umh.es (K.G.);
Tel.: +34-966658388 (P.J.R.); +34-966658565 (K.G.)

Abstract: Edge computing applications leverage advances in edge computing along with the latest
trends of convolutional neural networks in order to achieve ultra-low latency, high-speed processing,
low-power consumptions scenarios, which are necessary for deploying real-time Internet of Things
deployments efficiently. As the importance of such scenarios is growing by the day, we propose to
undertake two different kind of models, such as an algebraic models, with a process algebra called
ACP and a coding model with a modeling language called Promela. Both approaches have been
used to build models considering an edge infrastructure with a cloud backup, which has been further
extended with the addition of extra fog nodes, and after having applied the proper verification
techniques, they have all been duly verified. Specifically, a generic edge computing design has been
specified in an algebraic manner with ACP, being followed by its corresponding algebraic verification,
whereas it has also been specified by means of Promela code, which has been verified by means of
the model checker Spin.

Keywords: edge computing; fog computing; CNN; formal modeling; ACP; Promela; Spin

1. Introduction

Edge computing is a new paradigm that moves computing and storage power from
the cloud to the edge of the network, bringing it closer to end devices [1]. This way,
the distance between clients and servers gets minimized, achieving better performance
regarding latency and jitter, which allows the deployment of highly effective artificial
intelligence (AI) processing at the edge of the network [2].

With the exponential growth of the Internet of Things (IoT) devices in recent years, the
generation of large-scale data induces issues when forwarding them on to the cloud to be
analyzed, which are related to bandwidth overload due to the use of Wide Area Network
(WAN) connections, and slow processing times, thus deterring real-time applications, as
well as poor security and privacy, because data must travel through WAN links [3].

In order to cope with this, edge computing deals with those concerns by providing
high bandwidth, due to the use of Local Area Network (LAN) connections much faster
than WAN ones, and extremely-low response times, thus allowing real-time access, along
with enhanced security and privacy, as data remains within a campus LAN [4].

Furthermore, edge computing takes advantage of the addition of machine learning
(ML) algorithms associated with AI, leading to the concept of Edge AI, which may be seen
as the application of AI to run ML tasks on edge devices in order to enhance performance [5].
It is to be noted that an edge device may be either an edge server or an end device, whereas
sensors just gather data and forward them on to end devices, whilst network elements
connect edge devices to cloud facilities, as shown in Figure 1.

It is worth remarking that edge devices are located in the customer premises and are
dedicated to undertaking analysis of a huge amount of data collected by sensors and IoT
devices in real-time, whereas cloud data centers may act as backup solutions.

Sensors 2021, 21, 7276. https://doi.org/10.3390/s21217276 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8391-8946
https://orcid.org/0000-0003-3701-5583
https://orcid.org/0000-0002-8985-0639
https://orcid.org/0000-0001-9537-415X
https://doi.org/10.3390/s21217276
https://doi.org/10.3390/s21217276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217276
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217276?type=check_update&version=2

Sensors 2021, 21, 7276 2 of 29

Therefore, the big data generated by the ever-growing amount of IoT devices and
mobile computing users will be dealt with on-edge devices powered with AI and using
cloud facilities as backup services [6]. In other words, edge computing may be seen as a
distributed AI architecture, which mainly makes use of short-distance communications
between clients and edge servers, as opposed to long-distance communications to reach
the cloud servers, hence reducing bandwidth needs, along with latency and jitter [7].

8

8

Cloud

Network
elements

Edge
servers

Edge
devices

Sensors &
actuators

End
devices

Figure 1. Schematic diagram for edge computing.

The goals in this paper are to first review the main applications of edge computing
and then to obtain the verification of a generic edge computing design. In fact, different
architectures have been proposed for IoT environments [8], although the approach taken
herein is a generic high-level one, thus trying to focus on the fundamental building blocks
common in most IoT designs and leaving aside the specific implementation details of a
particular deployment aimed at a given IoT scenario.

The modeling of that generic edge computing design is to be undertaken by means
of two different Formal Description Techniques (FDT), such as a process algebra—called
Algebra of Communicating Processes (ACP) [9]—and the modeling language Promela,
along with its analysis tool Spin [10]. In each of both cases, a model is presented first, and
in turn, an appropriate verification technique is executed.

The purpose of using FDT is to obtain a unified representation method mainly focused
on distributed designs run in a concurrent way to check their correctness and improve
security. This is carried out by spotting deadlock conditions, such as mutual exclusion,
hold and wait condition, no preemption or circular wait, as well as other troublesome
conditions like livelock, resource starvation, data race, and priority inversion [11]. It is
to be noted that FDT are basically aimed at software developments [12], cyber-physical
systems [13], and communication protocols [14].

There are many types of FDT, each one targeting a particular ensemble of concepts
within the system being modeled [15]; although, they may all be divided into two broad
categories, such as timeless and timed, where the former does not take time into account,

Sensors 2021, 21, 7276 3 of 29

hence focusing on qualitative features, whilst the latter does, thus setting the focus on
quantitative features [16].

On the one hand, some of the most commonly used techniques within the first category
are timeless Petri Nets and timeless process algebras, where ACP is included [17]. In this
case, performance may not clearly be measured in time units, which leads to the search for
alternative units, as it may be the case of distance specified in the number of links traversed
between two given entities.

On the other hand, some of the most usually employed techniques within the sec-
ond category are queueing networks, timed Petri Nets, and timed process algebras [18].
Furthermore, time-based software simulations may also be included, which is the case of
Spin/Promela [19]. In this case, performance may be obviously measured by means of
time units.

Therefore, the FDT selected to undertake the models proposed in this paper cover
both paradigms, as ACP is a timeless technique, thus carrying out a qualitative study
of the scenarios presented while leaving out time constraints. However, Spin/Promela
is a timed technique, thus conducting a quantitative study of such scenarios, including
time considerations.

Taking all that into account, the contributions of this work are the following:

• Outline on convolutional neural networks;
• Overview of fog computing;
• Overview of edge computing;
• Modeling of generic edge computing in ACP;
• Modeling of generic edge computing in Promela.

The rest of the paper is organized as follows: Section 2 introduces convolutional neural
networks, then, Section 3 reviews fog computing environments for IoT devices, after that,
Section 4 presents edge computing environments for IoT devices, along with some of its
main industry fields of application, next, Section 5 focuses on the verification of a generic
edge model with ACP, afterwards, Section 6 carries out the verification of such a model
with Spin/Promela, and eventually, Section 7 draws some final conclusions.

2. Convolutional Neural Networks

Regarding AI, it may be considered as machine intelligence, as opposed to human
intelligence [20]. Specifically, ML may be seen as a subset of AI where a machine has the
ability to learn to undertake tasks as well as to keep improving its performance without hu-
man intervention [21]. ML functionality is two-fold, such as training for a task, and in turn,
running that task, where the former is defined by the quick application of knowledge and
training through huge data sets, whilst the latter is done by executing pattern recognition
and predicting future patterns.

In this sense, deep learning (DL) may be deemed as a subset of ML where the tech-
niques being used are organized into neural networks so as to simulate the process of
decision-making in humans, hence requiring a massive number of parameters [22]. Besides,
DL has a layered structure, where each layer accumulates the knowledge of the previous.
If ML and DL are to be compared, the latter requires a larger dataset and more intensive
computation when training a model, whilst getting much better accuracy when predicting
the outcome and learning new features in an automatic way.

It is to be noted that DL is the foundation of artificial neural networks (ANN), which
take the notion of neurons from the human brain (with its axons and dendrites), thus
working by interconnecting and replicating signals like real neurons [23]. Moreover, all
connections have a weight associated with their importance, which allows the networks to
learn as values change. Focusing on a single neuron, its corresponding input values are a
weighted sum, and the result is passed on to an activation function, whose outcome will
dictate whether each input value is forwarded on.

ANN are formed of three layers, input, hidden, and output; where the first one brings
raw data in, the middle one processes it, and the last one delivers the outcome [24]. ANN

Sensors 2021, 21, 7276 4 of 29

may be further classified as shallow if there is only one hidden layer, or deep if there are
more than one, which are also referred to as deep neural networks (DNN).

This three-layer distribution leads to ANN also being known as feed-forward neural
networks because of the direction of processing, which provokes challenges in some
scenarios, such as capturing sequential information or solving image classification [25].
The former is fixed by recurrent neural networks (RNN), even though spatial relationships
are better handled by convolutional neural networks (CNN). However, they all suffer some
degree of the vanishing and exploding gradient problem during the backpropagation [26],
leading to slow learning and unstable learning, respectively.

As a summary, it may be said that ANN are better fitted for text or tabular data,
whilst RNN are for audio and sequence data, and CNN are for image and video data.
Furthermore, CNN outperforms the rest, which is why it is used most commonly, but at the
expense of using larger data sets and training times [27]. On the other hand, ANN is a better
tool when data are limited, and RNNs like long short-term memory (LSTM) and GRU
(gated recurrent units) are quite popular in natural language models and text-to-speech
tasks; whereas CNN fits all contexts at the expense of higher computing resources and
longer training times [28].

Focusing on CNN, they are based on filters, also known as kernels, aimed at extracting
the relevant features out of the input data by means of the convolution operation. Basically,
convolving an input with filters extracts feature maps. The main advantages of using
CNN are automatically learning the filters to be used and precisely capturing spatial
features thanks to the concept of parameter sharing [29]. However, CNN presents some
disadvantages when data differ from that in the dataset regarding rotation, reflection,
translation, or rescaling [30], hence requiring further processing to sort it out. Therefore,
some specific features may be added up to CNN in order to achieve the appropriate
customizable accuracy degree, depending on whether the target is as complex as building
up a polarimetric synthetic aperture radar (PolSAR) [31] or otherwise playing rock-paper-
scissors [32].

Visual recognition tasks are well suited applications of CNN, with image classification
being considered one of the most prominent, leading to object detection, localization, or se-
mantic segmentation [33]. Much research has been undertaken in this field so as to achieve
better results, containing different combinations of convolution layers, pooling layers, fully
connected layers, batch normalization units, or rectified linear units to minimize the error
rates in image recognition [34]. Some of the most relevant milestones in CNN for image
recognition are LeNet-5 in 1989, AlexNet in 2012, ZFNet in 2013, VGG in 2014, GoogLeNet
in 2014, ResNet in 2015, and DenseNet in 2016 [35].

In this sense, some enhancements of CNN have been proposed for specific duties
in recent times, to obtain greater accuracy in predicting visual recognition in data sci-
ence, such as subpixel displacement measures [36], defect identification in high-speed
trains [37], correlating image-like data out of quantum systems [38], modeling wind field
downscaling [39], designing a zero knowledge proof scheme [40], classifying satellite image
time series [41], working with ensembles [42], dealing with osteoporosis diagnoses [43],
screening and staging diabetic retinopathy [44], analyzing cloud particles [45], inspecting
diffraction data [46], or examining x-ray images [47].

3. Fog Computing and IoT

An interesting attempt to cope with the outburst of an ever increasing number of IoT
devices is fog computing, which proposes a hierarchical distributed architecture, extending
from the edge to the cloud [48]. This way, the remote processing and storage power located
on the cloud facilities in the cloud paradigm are drawn near the end user, somewhere
between the edge and the cloud, inducing a reduction of the levels of bandwidth and
latency when undertaking remote computing tasks and having the cloud as a backup, thus
achieving better performance than working solely with the cloud [49].

Sensors 2021, 21, 7276 5 of 29

There is conceptual difference in paradigms between edge and fog, such as the former
performs computing at the edge of the network (being in the end device itself or in the
edge server), whereas the latter does it anywhere between the edge of the network and the
cloud (even though the typical location is the edge itself) [50]. This fact may be appreciated
in Figure 2, where fog facilities are located somewhere before the cloud [51].

8

8

Cloud

Network
elements

Edge
servers

Fog

Edge
devices

Sensors &
actuators

End
devices

Figure 2. Schematic diagram for fog computing.

Hence, a fog infrastructure may be considered as an integration of some capabilities
coming down from the cloud and other capabilities coming up from IoT devices, thus
getting better performance and efficiency [52]. In this context, the whole fog ecosystem
may be seen as composed by three strata, such as edge devices, fog, and cloud, allowing
the components of each fog application to be deployed in the most convenient stratum,
related to the type of task run by each component or the latency rate to be expected [53].

On the other hand, the distribution of IoT devices in both the spatial and temporal
domains are not usually uniform, especially in the moving IoT environments [54]. This
circumstance usually leads to unbalanced loads of traffic, which may be alleviated by
the implementation of offloading policies among fog nodes [55], or any other feasible
resourceful environment, as a cloud node [56]. Furthermore, the issues of provisioning
resources for IoT devices and dynamically adapting to the requirements of IoT applications
and services may be addressed by implementing an orchestrator [57].

Moreover, security and privacy issues may arise when deploying a fog environment,
which may be dealt with in different ways, such as implementing encrypted communi-
cations [58], or using blockchain technology [59]. The issues may be classified into three
broad categories, such as network services and communications to interconnect IoT devices
with fog nodes, data processing to manage the big data analytics and distribution in fog

Sensors 2021, 21, 7276 6 of 29

nodes, and IoT device privacy to apply secure policies related to data, identities, locations,
and usage [60].

One of the main challenges in fog computing is energy consumption, as the great
amount of IoT devices may be involved in a huge quantity of data transfers with the fog
nodes, each of those involving its own particular level of quality of service [61]. In order to
cope with that, the search for energy-aware strategies to minimize its consumption rate is
being encouraged, such as applying a dynamic energy control [62].

It is to be noted that the integration of fog computing with AI techniques, namely
fog AI, makes it possible to bring intensive calculation tasks near the end user, thus allow-
ing near-real-time applications [63]. In this sense, fog and edge applications oftentimes
overlap, as both implement AI methods, which enhance processing capabilities, while
providing lower latency rates and allowing higher bandwidth usage than their cloud
counterparts [64].

Fog deployments have been implemented in many fields where processing a vast
amount of data with strict time constraints renders cloud computing unfit [65]. One
scenario may be the analysis of physiological data from wearable devices (the concept of
smart health), where such devices obtain relevant health-related data from a patient, and
in turn, pass them on to fog servers to undertake the processing and respond within a
restricted time interval, whilst having cloud servers for backup purposes [66].

Furthermore, data coming from moving vehicles may also benefit from services hosted
on fog infrastructures [67] to facilitate driving by scanning changing traffic conditions and
suggesting the most adequate path, while ensuring safety by checking sensors measuring
the vehicle variables; these conditions may lead to autonomous driving [68].

Another interesting use may be the application of the IoT paradigm to improve indus-
trial tasks, leading to the concept of industry 4.0 [69]. This way, industrial manufacturing
becomes both intelligent and efficient by providing industrial fieldbuses to machines, ap-
pliances, and robots. At the same time, it assures a secure environment to protect sensitive
data generated during the industrial operability [70].

On the other hand, the concept of trust may help identify and isolate rogue fog nodes,
as those may collect data in an unauthorized manner or manipulate data in transit, thus
committing security and privacy breaches [71]. To cope with that, cryptographic solutions
may ease those issues if external attacks are perpetrated, coming from unauthenticated fog
nodes. However, they are useless regarding internal attacks, hence, coming from fog nodes
already authenticated operating within the network [72]. Therefore, fog nodes are able to
communicate with other nodes where a fog level trust has been properly established [73].

Trust evaluation may be imposed by different means, such as reputation-based,
plausibility-based, trusted isolated environment, secure element, or trusted platform mod-
ule [74]. On the other hand, some well-known trust-related issues are denial of service,
man in the middle, and collusion attacks, which may be avoided by using the proper
countermeasures based on trust [75].

Trust indicators may contain two notions, the subjective one (focused on the individual
interests of user’s interactions), and the objective one (depending on individual interaction
experiences) [76]. The former is obtained from the feedback obtained out of multiple
sources; whereas, the latter is done based on the quality of services, where an overall trust
value determines the trustworthiness of each node, resulting in the establishment of a
trusted environment [77].

In this sense, trust management may involve both, proving that a given entity is
trustworthy to others, while the others are trustworthy to a given entity. The establishment
of a trust relationship may significantly reduce risks, even though it may be considered
context-dependent, as trust rates might vary in diverse situations [78]. Furthermore,
blockchain technology is a suitable tool to build up distributed trust architectures [79].

Sensors 2021, 21, 7276 7 of 29

4. Edge Computing and IoT

An alternative way to deal with the ever-increasing amount of IoT devices is edge
computing, which is a distributed architecture where computation occurs close to the
network edge. It is also known as multi-access edge computing (MEC) as a result of
bringing together the cloud computing capabilities at the edge of the network with a radio
access network (RAN) [80]. The latter handles the connections of IoT devices through any
type of wired or wireless connection, and the former is in charge of managing the massive
volume of heterogeneous data generated by those IoT items [81].

The main characteristics of MEC environments are similar to those of fog ecosystems,
such as close geographical distribution, mobility support, location awareness, heterogeneity,
offloading, ultra-low latency, and high bandwidth [82]. Therefore, it results in advantages
regarding performance, efficiency, reliability, privacy, and security.

However, it seems that lately there is a prevalence in developments related to edge
computing as opposed to fog computing ones, as is the case of Industrial Internet of
Things [83]. In this field, cyber-physical systems (CPS) and digital twins (DT) have been
popularized. The former being systems made of a combination of physical and digital
components working hand in hand, whilst the latter being a virtual representation acting
as the digital counterpart of a physical entity [84].

Regarding the scope, cloud computing works in the digital domain, being primarily
focused on data centres, whereas edge computing covers the cyber-physical domain and
also touches its digital counterpart because of the data centres, whilst fog computing is
located in the middle of both domains [85]. On the other hand, neither work in the physical
domain, as they are all related to computing, although edge is the closest.

MEC is standarized by ETSI GS MEC 003 V2.2.1 (2020-12), stating that MEC appli-
cations are software-only entities running on top of a virtualization infrastructure [86].
Moreover, it defines a MEC framework where three different levels may be defined, such as
MEC system level on top (including user applications and mobile edge orchestrator), MEC
host level in the middle (containing MEC platform, MEC applications and the virtualization
infrastructure, all three composing the MEC host, apart from the host level management),
and the network level (embracing the network connections involved) [87].

Furthermore, MEC may be seen under three different functional views, such as infras-
tructural, applicational, and operational [88]. The first one is composed by a computing
node working as the host and a guest system usually made of containerized software.
Meanwhile, the second one is comprised by the components needed to meet the applica-
tion requirements; whereas, the third one is devoted to managing the edge node during its
lifecycle stages, going from the planning all the way to the retirement [89].

Additionally, the demand for MEC services is supposed to be driven by both the intro-
duction of 5G cellular telephony and the need for distributed data processing power [90],
forecasting a huge growth in the coming years. However, some challenges are faced ahead,
such as a common naming scheme for IoT devices, as well as a standarize way to undertake
programmability and managament due to the IoT’s heterogeneous nature [91].

4.1. Edge AI

With respect to the edge computing scenarios, they may be classified into three broad
categories. First, latency-sensitive applications, such as VR/AR/MR games, self-driving
cars, and industrial IoT. Second, data-intensive applications, such as processing video
for IoT systems or dealing with high volumes of sensing data collected by IoT devices.
Third, privacy-sensitive applications, such as traffic related to protected health registers,
personally identifiable data, or any type of personal sensitive information [92].

Anyway, edge computing scenarios with the integration of AI, namely edge AI, drive
the rising of different types of MEC applications where the AI is located at the edge of the
network, as opposed to AI in the cloud, namely cloud AI. This way, edge AI provides a
fast response and autonomy for the local environments of IoT deployments whilst cloud
AI facilitates a thorough analysis focused on the whole IoT ecosystem [93].

Sensors 2021, 21, 7276 8 of 29

The popularization of edge AI along with the integration of cloud AI as a backup and
storage service make it possible to carry out the processing of massive amounts of sensing
data coming from IoT devices in all kinds of environments. This leads to the convergence
of AI and IoT, also known as AIoT [94]; thus, enhancing the computational tools for dealing
with big data derived from IoT-based devices in basically any field [95].

Moreover, edge intelligence, which is another name for edge AI, might be further
divided into AI for edge and AI on edge. The former focuses on providing AI technologies
aimed to boost edge computing capabilities, whilst the latter studies how to better apply
model training and inference to construct AI models on the edge [96].

Hence, deploying AI-powered applications on the edge may raise the effectiveness of
MEC applications compared to their cloud counterparts regarding real-time analytics and
monitoring [97], as well as smart manufacturing, process automation, and data storage [98].
As a consequence, IoT devices may take full advantage of MEC applications with a cloud
backup, thus providing IoT sensors and actuators with applications and services in several
vertical domains, being customizable according to specific requirements [99].

Among those possible services with edge technologies, one of the most popular and
relevant uses is AI-based real-time video analytics. In this context, many solutions are
available, such as the one being deployed by Singapore’s government in order to tackle
the spread of the covid-19 pandemic [100], aimed at targeting face mask detection, social
distance analyzer, crowd density control, and even person searching and retrieval.

4.2. Edge Computing Applications

MEC and AI establish a mutually beneficial relationship in many aspects, such as
increasing performance related to resource management or scheduling [101]. However,
MEC applications powered by AI achieve huge advances in different domains related to
IoT, such as smart multimedia, smart transportation, smart city, or smart industry [102].

Regarding smart wearable devices, their popularity has rapidly increased lately due
to their wearability [103]. Their light weight and compact size limit their computing
capabilities; thus, MEC applications may offer a great range of possibilities to increase
their computing power [104]. Moreover, those wireless sensing devices have been shown
to operate properly even in harsh conditions [105]. They are widely used in health care,
leading to defining Internet of Medical Things (IoMT) [106], as well as other tasks related
to tracking activities such as sports, rehabilitation, or human-robot collaboration [107].

With respect to smart health, it focuses on classifying health data related to vital
sign monitoring and fall detection [108]. In this sense, there are many different types of
wireless medical body sensors to obtain vital patient data, such as pressure or implantable
sensors [109]. However, other sorts of sensors are equally important, such as those used
in operation rooms, emergency rooms, or intensive care units [110], or otherwise, in
ambient assisted living scenarios [111]. Furthermore, the interaction with cloud facilities
for analytics and storage improves the overall performance, as it greatly reduces the costs
of treatment and enables a personalized medical service at any time and place [112].

With regard to industry 4.0, also known as industrial internet of things (IIoT), it
interconnects numerous variable industrial equipment devices through the network [113].
This way, data acquisition and exchange, as well as collaborative decision-making, are
carried out through distributed computation in near-real-time [114]. Hence, efficient,
intelligent, and decentralized solutions are available [115], allowing the interaction of
multivendor devices through heterogeneous networks in an optimal manner [116], where
a higher level of trust may be imposed by using blockchain technology [117]. It is to be
remarked that Industry 4.0 is considered to be a new paradigm called the fourth industrial
revolution, which the world is just coming into. The first industrial revolution was related
to mechanization, the second one to mass production and electricity, the third one to
automation and computing, and the forth one to cyber physical systems and IoT [118].

However, the fifth industrial revolution, known as industry 5.0, is already emerging
and is focused on the personalized demand of customers [119]. Basically, it applies AI

Sensors 2021, 21, 7276 9 of 29

solutions to extreme automation and hyperconnectivity in order to democratize knowledge
coproduction [120]. In this sense, AIoT technology is a key player as it provides an optimal
immersive experience in real-time interactions, no matter whether they are machine-
machine, human-machine or human-human [121]. However, the use of edge AI may
lead to the consumption of additional energy, even though in order to reduce the carbon
footprint, the concept of green IoT (G-IoT) has been introduced to lower the greenhouse
effect provoked by the Edge-AI G-IoT systems. Thus, leveraging the adoption of the
digital circular economy (DCE) concepts to achieve a sustainable development regarding
economic, social, well-being, and environmental dimensions [122]. Therefore, this new
paradigm will be the relevant driving force to achieve a smart, green, sustainable, resilient,
and human-centric world [123].

Another important field is vehicular edge computing (VEC), which incorporates edge
AI to increase the computing capacity of vehicular ad hoc networks (VANET) [124]. This
way, AI-powered services are hosted close to smart vehicles; hence, improving quality of
service (QoS) and reducing latency [125]. VANETs are composed by two basic elements,
such as smart vehicles and roadside units aimed at facilitating network access and pro-
viding services, such as road safety, traffic efficiency, or added-value applications, such as
infotainment or interactive tasks [126]. Some relevant challenges in high mobility, time-
sensitive, and computation-intensive scenarios are related to security and privacy in both
vehicle-to-vehicle (V2V) and vehicle-to-roadside units (V2R) [127]. Challenges are also
related to the cost-efficient task of offloading as resources are likely to be transferred among
edge and cloud domains due to the traffic conditions at a given place and time [128].

It is to be noted that models employed on edge AI facilities must first be properly
trained. Such models have been typically trained under the orchestration of a central server,
known as parameter server (PS), where edge devices forward all raw training data (local
datasets) to be aggregated there for training [129]. This paradigm is known as centralized
learning (CL) and may cause issues related to data protection regulations [130]. However,
a new paradigm called federated learning (FL) may preserve privacy issues by keeping
the raw training data decentralized on the edge devices and forwarding just the locally
computed model parameters to the PS, which in turn performs the model aggregation
with all stuff received, and then updates the model to the edge devices [131]. A typical
instance of FL is represented by a scenario where all edge devices calculate gradients on
their own local dataset and forward them on to the PS, which in turn processes all those
gradients and forwards the updated weights back to the edge devices for them to update
the model [132]. Furthermore, FL proves to be more effective in communication overhead
with a small performance loss in learning accuracy, even though a scenario with hybrid
federated centralized learning (HFCL) may partly compensate for such a loss [133], where
the PS sends the same updates to all.

Likewise, serverless edge computing as an application development and deployment
model for IoT devices is on the rise. Here, the developer just supplies the core function
code (function as a service, or FaaS) whilst the behind-the-scenes aspects are delivered
by the provider (backend as a service, or BaaS) [134]. Although the serverless paradigm
was designed for cloud environments, it has been adapted to edge domains in order
to incorporate its advantages, such as deleting always-on services, which provoke high
electricity usage, even though its cloud-driven design may pose drawbacks [135]. On
the other hand, the serverless edge-based IoT deployments integrated with the cloud
for offloading purposes may succeed in reducing overall execution times and obtaining
classification accuracy [136]. Additionally, if a warm-start deployment mode is used, then
the FaaS platform always has available resources; whereas, a cold-start deployment mode’s
modules are deleted after its execution, thus bringing resource and cost savings [137].
Furthermore, latency-aware IoT applications may also take advantage of this paradigm by
applying queueing prioritazion, dynamic workload allocation, and resource reclamation
methods to reassign them from the over-provisioned functions to under-provisioned
ones [138].

Sensors 2021, 21, 7276 10 of 29

5. ACP Model

There are many different deployments of edge computing, depending on the different
types of sensors and actuators being used, each one with its own characteristics and speci-
fications, as well as the interconnections of the servers being employed, leading to diverse
network topologies. However, putting the focus on a generic high-level representation of
an edge computing implementation, it is possible to achieve an abstract framework where
a block diagram may be designed with concrete examples that fit into it.

Traditional communication architectures, such as client-server or peer-to-peer, do not
fit properly into IoT deployments, as those devices have constraint resources regarding
computing and power. Otherwise, publisher/subscriber paradigm (Pub/Sub) better meet
IoT requirements, as there is central a server, known as a broker, dealing with a group of
end devices connected either through wired or wireless links [139].

In Figure 1, brokers are represented by edge servers located at the edge of the network,
whereas publishers are end devices connected to sensors, whilst subscribers are also end
devices, even though they are connected to actuators. This way, sensors read data from
the external environment (such as measuring temperature or humidity) and pass those
raw data on to the system under a given topic through an end device acting as a publisher.
When those raw data reach the edge server, the broker tries to process them, and if it
succeeds, then it forwards them on to the end devices acting as subscribers associated
to that topic, which in turn, send those processed data to actuators, which execute the
commanded actions on the external environment (such as setting an HVAC mechanism or
an alarm). Otherwise, if the broker does not succeed, then it passes the data to a higher
processing level, such as the cloud [140].

The aforementioned figure shows a network connection layer which only routes traffic
flows from the edge servers (brokers) up to the cloud and the other way around, thus not
taking part in remote computing. Hence, the processing entity above an edge server is the
cloud, which in fact, acts as the only hierarchical entity for edge servers when dealing with
offloading or backup processing and storage. Otherwise, in a fog environment, the fog
nodes may be located between the edge of the network and the cloud, and in such a case,
edge servers will be connected to fog servers, those being the next and higher processing
level, which in turn, will be connected to cloud servers, these being the last and highest
processing level, staying on top of the hierarchy [141].

The features described above may be represented by means of modeling the behavior
of each component using a range of FDT, each one focusing on different characteristics. In
this sense, a good candidate may be ACP, which is an abstract untimed process algebra
aimed at reasoning about relationships among process terms, leaving apart their real
nature [142]. ACP modeling starts with the specification of the entities composing a
concurrent model so as to obtain its ACP specification when applying the proper operators.
This may be further verified if the algebraic expressions for the behavior of the real system
and that of the model contain the same string of actions and the same branching structure,
thus being referred to as rooted branching bisimilar [143].

In order to undertake ACP modeling for communicating processes, two atomic actions
are needed, such as sending a message d to a channel i, denoted by si(d), and receiving
a message d from a channel i, stated by ri(d). Moreover, there are some operators to deal
with those atomic actions, such as the sequential one, given by the · sign, the alternate one,
exposed by the + sign, the concurrent one, depicted by the || sign, and the conditional one,
exhibited by the expression (true / condition . f alse). Additionally, two extra operators
are usually employed when it comes to work out specifications and verifications, such as
the encapsulation one, named by ∂H , so as to promote internal communications (ci) whilst
cancelling internal atomic actions (si and ri), and the abstraction one, named by τI , so as
to mask internal actions and communications, thus prevailing the external actions, which
unveils the external behavior of the model.

Taking this all into account, two scenarios are modeled, where the first one is related
to an edge environment and the second one is associated with a fog environment. Both

Sensors 2021, 21, 7276 11 of 29

have sensors and actuators external to the model, and a channel directly connected to it,
specifically to the end devices, which in turn, have channels to interconnect them to the
edge servers. However, in the edge domain, the edge servers connect straight to the cloud
servers, whereas in the fog domain, the edge servers link to the fog servers, and those do
to the cloud servers.

Furthermore, it is going to be supposed that edge facilities are integrated with AI,
namely Edge AI, even though CNN are supposed to be already trained, hence CNN are
going to be executed when needed. However, CNN are internal functions in all types of
servers, being represented by different greek letters depending on the location of the server
and accepting as many parameters as the channels coming in. Furthermore, CNN will
not be eventually taken into account by ACP models because they will be masked when
applying the abstraction operator for being internal functions.

Therefore, two different type of models are studied herein, using ACP. Two case sce-
narios are shown—an edge computing one, where three levels are taken into consideration
(end devices, edge servers, and cloud); and a fog computing one, where a fog level is
summed up. Regarding ACP [144], the models proposed will be exhibited by means of
algebraic expressions to portray the behavior of the concurrent communicating processes
involved, containing the specifications and verifications, whilst respecting Spin [145], the
models presented will be exposed by means of Promela code [146], including the verifica-
tion by means of the Spin model checker, along with some message sequence charts (MSCs)
describing the message exchanges performed by communicating concurrent processes
involved in a visual way.

5.1. Edge Scenario

This first scenario is exhibited in Figure 3, where four different type of entities may
be appreciated, such as a group of publishers (represented by PUBi), a group of edge
servers (represented by EDGEm), a group of subscribers (represented by SUBj), and cloud
premises (represented by CLOUD).

Ai

Cm Dm

Bj
PUBi EDGEm SUBj

OUTqj

CLOUD

INpi

Figure 3. Model for edge computing in ACP.

To start with, the channel getting into the model is called INpi , meaning the channel
through which a sensor forwards raw data (dpi) on to the system, where p is related to the
sensor identifier and i is referred to as the sending end device getting the raw data (d) into
the system, which is also known as publisher i or PUBi in the diagram. After receiving
the data from channel INpi , publisher i will carry out a unitary processing of the data to
encapsulate them according to the communication protocol used, and assign them the
corresponding topic by means of function φ(dpi), sending them over to the edge server m
(also known as EDGEm), through channel Ai.

At this point, edge m will undertake an aggregated processing with all data being
received by means of the edge CNN θ(d1m · · · dmaxm). This results in either sending the
processed data (eqj)—where q is related to the actuator identifier, j is the receiving-end
device getting the processed data (e), j or SUBj in the diagram is subscriber or receiving-end
device with appropriate topic, Bj is the channel—or forwarding them up to a cloud, which
is also labeled as CLOUD, through channel Cm.

Sensors 2021, 21, 7276 12 of 29

Then, the servers in the cloud facilities will handle an aggregate processing with
all data obtained through all edges by means of the cloud CNN ψ(

⋃
m{d1m · · · dmaxm}) to

calculate what to do, resulting in forwarding the processed data to the proper edge m (no
matter whether it is the same edge server as before or otherwise) through channel Dm. This,
in turn, sends data to the proper subscriber with the adequate topic through channel Bj
without much processing at the edge as the cloud already did so.

Eventually, when a subscriber j receives processed data in channel Bj, then it carries
out a unitary processing of those data to decapsulate them by means of the function φ(eqj),
so as to send them to the proper actuator, thus leaving the model through channel OUTqj .

As a side note, all entities need to always be ready to go, and for that reason, the
algebraic expressions obtained are all guarded linear recursive.

Furthermore, the whole system may be seen as a hub and spoke network topology
with different levels of hubs, whose layout might be compared as to how a DNS (domain
name system) server makes recursive queries on behalf of clients.

In summary, here they are the ACP model of the entities described, such as PUBi in
Equation (1), EDGEm in Equation (2), CLOUD in Equation (3), and SUBj in Equation (4).

PUBi =

(
rINpi

(dpi) · φ(dpi) · sAi (dpi)

)
· PUBi (1)

EDGEm =

(
rAi (dpi) ·

(
sBj(eqj) / θ(d1m · · · dmaxm) . sCm(d1m · · · dmaxm)

)
+

rDm(eqj) · sBj(eqj)

)
· EDGEm (2)

CLOUD =

(
rCm(d1m · · · dmaxm) · ψ(

⋃
m
{d1m · · · dmaxm}) · sDm(eqj)

)
· CLOUD (3)

SUBj =

(
rBqj

(eqj) · φ(eqj) · sOUTqj
(eqj)

)
· SUBj (4)

At this point, all the ACP models may be run in a concurrent manner, as they are all
non deterministic, and the encapsulation operator may be applied in order to attain the
sequence of events in a timely fashion, as in Equation (5). In this sense, it is to be noted that
the encapsulation operator reveals the internal communications happening in all internal
channels within the model, thus leading their related atomic actions to deadlock. It is to
be pointed out that the symbol ∅ in a conditional operator stands for doing nothing in
case of that option being selected, meaning that the corresponding CNN has calculated
the path to get to the destination, making it unnecessary to send data to the cloud for
further calculations.

Basically, Equation (5) exposes what happens with raw data dpi coming from sensor
p in the external environment through channel INpi , which gets them into the system at
Publisher i, which then carries out a unitary processing φ(dpi) and forwards them through
channel Ai towards an Edge m, which in turn, aggregates such data with its own parameters
(d1m · · · dmaxm) and processes them with its edge CNN θ(d1m · · · dmaxm), containing its edge
model setup.

At that stage, if this edge CNN is able to deal with those raw data, it will send the
resulting processed data eqj through channel Bj towards Subscriber j, which undertakes a
unitary processing φ(eqj) and sends them out of the system through channel OUTqj towards
Actuator q in order for it to act on the environment. Otherwise, if this edge CNN is not able
to deal with those aggregated data, they are forwarded through channel Cm towards the
cloud, which compiles all aggregated data coming from all edges (

⋃
m{d1m · · · dmaxm}) and

will use its cloud CNN ψ(
⋃

m{d1m · · · dmaxm}) that contain its cloud model setup to deal
with compiled data, which in turn, will send the processed data back through channel Dm
towards subscriber j, which does the same actions as in the other option so as to forward
the processed data to the actuator q.

Sensors 2021, 21, 7276 13 of 29

∑
i

∑
j

∑
p

∑
q

∑
m

∂H

(
PUBi || EDGEm || CLOUD || SUBj

)
=

(
rINpi

(dpi) · φ(dpi) · cAi (dpi)·(
∅ / θ(d1m · · · dmaxm) .

(
cCm(d1m · · · dmaxm) · ψ(

⋃
m
{d1m · · · dmaxm}) · cDm(eqj)

))
·

cBqj
(eqj) · φ(eqj) · sOUTqj

(eqj)

)
· ∂H

(
PUBi || EDGEm || CLOUD || SUBj

)
(5)

At that moment, the abstraction operator may be applied to obtain the external
behavior of the model, as in Equation (6). It is to be noted that the abstraction operator
masks all internal actions as well as all internal communications.

∑
i

∑
j

∑
p

∑
q

∑
m

τI

(
∂H

(
PUBi || EDGEm || CLOUD || SUBj

))
=

rINpi
(dpi) · sOUTqj

(eqj) · τI

(
∂H

(
PUBi || EDGEm || CLOUD || SUBj

))
(6)

Otherwise, the external behavior of the real system may also be expressed by means
of ACP, as in Equation (7), such that some raw data (d) from a sensor through an incoming
channel (rIN(d)) gets processed anywhere in the system (that being an edge server or a
cloud server) to obtain the processed data (e), which eventually goes out to an actuator
through an outgoing channel (sOUT(e)).

X = rIN(d) · sOUT(e) · X (7)

By comparing expressions Equations (6) and (7), it is clear that both are recursive
expressions multiplied by the same factors. Therefore, it may be said that both are rooted
branching bisimilar, because they present the same actions and the same branching struc-
ture, so Equation (8) applies.

∑
i

∑
j

∑
p

∑
q

∑
m

τI

(
∂H

(
PUBi || EDGEm || CLOUD || SUBj

))
←→ X (8)

Hence, this is a sufficient condition to get a model verified, thus the proposed ACP
model for edge computing may be considered verified.

5.2. Fog Scenario

This second scenario is exhibited in Figure 4, where five different types of entities
may be appreciated, such as a group of publishers (represented by PUBi), a group of
edge servers (represented by EDGEm), a group of subscribers (represented by SUBj), and
cloud premises (represented by CLOUD), as well as a group of fog servers (represented by
FOGn), which is the difference from the previous scenario.

This schematic diagram is quite similar to that corresponding to the edge computing
case, where the only differences are the channels coming into and going off the fog block,
as well as the CNN handling the aggregated processing at the fog level, which receives
raw data from the edge level, thus being portrayed by χ(

⋃
m{d1m · · · dmaxm}), whereas the

CNN managing the aggregated processing at the cloud level now receives raw data from
the fog level, thus being represented as ψ(

∨
n{
⋃

m{d1m · · · dmaxm}n}).

Sensors 2021, 21, 7276 14 of 29

Ai

Cm Dm

Bj
PUBi EDGEm SUBj

FOGn

OUTqj

En Fn

CLOUD

INpi

Figure 4. Model for fog computing in ACP.

On the contrary, CNN, carrying out the aggregated processing at the edge level re-
mains the same, which receives raw data from the end device level, thus being illustrated
by θ(d1m · · · dmaxm). Meanwhile, unitary processing performed at the end devices stays the
same, such as φ(dpi) in the publishers for raw data and φ(eqj) in the subscribers for pro-
cessed data. Furthermore, external channels and those within the edge level go unchanged.

Here, the ACP model of the entities are described, such as PUBi in Equation (9),
EDGEm in Equation (10), FOG in Equation (11), CLOUD in Equation (12), and SUBj
in Equation (13). In this framework, it is to be said that Equation (9) is analogous to
Equation (1), as well as Equations (10) to Equation (2), and Equations (13) to Equation (4).
Furthermore, Equation (11) is similar to Equation (10) as both maintain the same logic
about trying to solve an upcoming request, although each one has its own type of data and
channels involved. If that is the case, the processed data is forwarded down the hierarchy
on the way to reach the proper actuator, whereas on the contrary, the aggregated data is
forwarded up the hierarchy towards a more powerful entity to carry out the processing.
Additionally, Equation (12) is similar to Equation (3), even though each one has different
sorts of data and channels involved.

PUBi =

(
rINpi

(dpi) · φ(dpi) · sAi (dpi)

)
· PUBi (9)

EDGEm =

(
rAi (dpi) ·

(
sBj(eqj) / θ(d1m · · · dmaxm) . sCm(d1m · · · dmaxm)

)
+

rDm(eqj) · sBj(eqj)

)
· EDGEm (10)

FOG =

(
rCm(d1m · · · dmaxm)·(

sDm(eqj) / χ(
⋃
m
{d1m · · · dmaxm}) . sEn(

⋃
m
{d1m · · · dmaxm})

)
+

rFn(eqj) · sDm(eqj)

)
· FOGn (11)

CLOUD =

(
rEn (

⋃
m
{d1m · · · dmaxm}) · ψ(

∨
n
{
⋃
m
{d1m · · · dmaxm}n}) · sFn (eqj)

)
· CLOUD (12)

SUBj =

(
rBqj

(eqj) · φ(eqj) · sOUTqj
(eqj)

)
· SUBj (13)

At that point, all the ACP models may be executed in a concurrent fashion, because of
them being all non deterministic, and the encapsulation operator may be applied so as to
obtain the sequence of events in a timely manner, as in Equation (14).

Sensors 2021, 21, 7276 15 of 29

In this context, it is to be noted that Equation (14) is similar to Equation (5), therefore,
Equation (14) starts with raw data dpi from sensor p in the system through channel INpi

towards the publisher i. This, in turn, undertakes a unitary processing φ(dpi) and sends
them towards edge m through channel Ai. On arrival to the edge, those data are aggregated
(d1m · · · dmaxm) and if processing is possible by means of edge CNN θ(d1m · · · dmaxm), then
the processed data eqj are forwarded towards the subscriber j through channel Bj, which
then carries out a unitary processing φ(eqj) and forwards them out of the system through
actuator q.

Otherwise, if processing is not possible in edge m, then the aggregated data (d1m · · · dmaxm)
are forwarded through channel Cm to fog n, which in turn, gets all aggregated data combined
(
⋃

m{d1m · · · dmaxm}) and tries to process them by means of fog CNN χ(
⋃

m{d1m · · · dmaxm}).
If that is the case, then the process data eqj is sent through channel Dm towards edge m,
which will be led through channel Bj to subscriber j, and in turn, off the system through
channel OUTqj towards actuator q.

Furthermore, if processing is not possible in the fog n, then it is to be noted that
combined data (

⋃
m{d1m · · · dmaxm}) are sent over to the cloud through channel En, which

then gets all combined data (
∨

n{
⋃

m{d1m · · · dmaxm}n}) and processes them by means of
the cloud CNN ψ(

∨
n{
⋃

m{d1m · · · dmaxm}n}), which will result in processed data eqj being
forwarded through channel Fn towards Fog n. This, in turn, will be sent to edge m through
channel Dm, which then will be forwarded through channel Bj towards subscriber j, which
in turn, will be forwarded on through channel OUTqj out of the system towards actuator q.

∑
i

∑
j

∑
p

∑
q

∑
m

∑
n

∂H

(
PUBi || EDGEm || FOGn || CLOUD || SUBj

)
=

(
rINpi

(dpi) · φ(dpi) · cAi (dpi)·(
∅ / θ(d1m · · · dmaxm) . cCm(d1m · · · dmaxm)·(

cDm(eqj) / χ(
⋃
m
{d1m · · · dmaxm}) .

cEn(
⋃
m
{d1m · · · dmaxm}) · ψ(

∨
n
{
⋃
m
{d1m · · · dmaxm}n}) · cFn(eqj)

))
cBqj

(eqj) · φ(eqj) · sOUTqj
(eqj)

)
· ∂H

(
PUBi || EDGEm || FOGn || CLOUD || SUBj

)
(14)

At that moment, the abstraction operator may be applied so as to attain the external
behavior of the model, as in Equation (15). In this context, it is to be said that the abstraction
operator masks all internal actions as well as all internal communications.

∑
i

∑
j

∑
p

∑
q

∑
m

∑
n

τI

(
∂H

(
PUBi || EDGEm || FOGn || CLOUD || SUBj

))
=

rINpi
(dpi) · sOUTqj

(eqj) · τI

(
∂H

(
PUBi || EDGEm || FOGn || CLOUD || SUBj

))
(15)

Otherwise, the external behavior of the real system may be denoted by means of ACP,
as in Equation (16), where some raw data (d) gets into the system from a sensor across an
incoming channel (rIN(d)), then gets processed anywhere in the system (that being an edge
server, a fog server, or a cloud server) to achieve processed data (e), which finally gets out
of the system to an actuator across an outgoing channel (sOUT(e)).

X = rIN(d) · sOUT(e) · X (16)

By comparing expressions Equation (15) and Equation (16), it seems to be obvious
that they are both recursive expressions multiplied by the same factors. Hence, it may be

Sensors 2021, 21, 7276 16 of 29

established that both are rooted branching bisimilar, as they are composed by the same
actions and the same branching structure, so Equation (17) applies.

∑
i

∑
j

∑
p

∑
q

∑
m

∑
n

τI

(
∂H

(
PUBi || EDGEm || FOGn || CLOUD || SUBj

))
←→ X (17)

Therefore, this is a sufficient condition to get a model verified. Hence, the proposed
ACP model for fog computing may be considered verified.

6. Spin/Promela Scenario

Promela (PROtocol/PROcess MEta LAnguage) is a high level specification language,
whose syntax is similar to that of C, aimed at modelling the interactions taking place in
distributed systems. It is typically employed as the input language for the Spin (Sim-
ple Promela INterpreter) model checker [147]. Promela was designed to deal with non-
deterministic processes, communicating through message channels being defined as syn-
chronous or asynchronous. Hence, a Promela model of a concurrent system may be first
designed according to certain specifications, and in turn, Spin may be used to verify that
such a model produces the desired behavior, in a way that the same input actions in both
the real system being modeled and the model itself induce the same output actions.

Therefore, a Promela model of a fog computing scenario has been designed in order
to further check its behavior with Spin, according to the block diagram shown in Figure 5.
There are four different layers exhibited in that picture, such as IoT devices, Edge, Fog,
and Cloud, and those are the processes defined in Promela. The expected behavior of the
Devices processes are to either initiate or terminate the traffic flow, depending on whether
they are connected to the initial sensor or the final actuator. Meanwhile, that of the Edge
processes are to either pass a message to a device if they know how to deal with it, or send
it to a fog (which is analogous to the Fog processes, as they forward a message to an edge
if they know how to handle it, or else send it to the cloud). Additionally, the Cloud process
forwards a message to the fog as they are supposed to always know how to manage the
message for the higher level of servers.

8

Cloud

8 8

Fog

IoT
Devices

Core

Edge

Edge

Figure 5. Block diagram for fog computing.

Sensors 2021, 21, 7276 17 of 29

A Promela model for an edge computing scenario would be similar, as seen in the
ACP models, and that is why it is not included herein. As stated above, the edge model
would be the same as the fog one, except for taking out the fog layer, thus making direct
connections from edge layer to cloud layer.

At this point, the model of a fog computing written in Promela is presented in
Algorithm 1, where the type of entities are defined by specifying their communication
channels regarding the way they interact in a real fog environment, and then, those types
are instantiated accordingly. For recapitulation purposes, they are the four sorts of entities
involved, i.e.,

• Devices;
• Edge;
• Fog;
• Cloud.

Regarding the above code, the first two lines are aimed at defining two macros, by
means of the keyword #define, to be a constant value so as to make the code clearer to
read. Then, the third line defines a message type, by means of the keyword mtype, which
abstracts away from the specific values being used, as the corresponding message field
is going to be interpreted symbolically, as opposed to numerically, throughout the code.
Afterwards, the following six lines declare six global message channels, each being able
to store just one message, by means of the keyword chan, in order to transfer data from a
source entity to a destination one. Next, there are four declarations of entities, by means of
the keyword proctype, all with a parameter value of type byte for identifying each new
entity. Each declaration consists of local variables separated by a semicolon and statements,
whose causal relationship is indicated by the arrow sign (->) and which may be included
into loops or conditional statements. Finally, the entity instantiation is done through the
init process, by means of the function run with the identifier.

After running the Promela code in the Spin model checker, different results may be
obtained in diverse executions, depending on the seed set to initialize each of them. Hence,
every time the program is run, a different outcome is obtained. However, all cases may be
grouped into three categories when dealing with arriving messages coming from a sensor,
such as that where only the edges handle them all, that where only the edges and the fogs
deal with them all, and that where the edges, fogs, and cloud manage them all. It is to be
noted that in the first case, the fogs and cloud do not intervene. Meanwhile, in the second
case, the cloud does not participate. Likewise, it is to be said that in the second case, the
fogs take part at least once, as there may be some transactions where those are not engaged,
and similarly, in the third case, the cloud performs at least once, but does not always need
to contribute.

For example purposes only, the traces (which actually are displayed as MSC) resulting
of three instances obtained by Spin (when running the aforementioned code with diverse
seeds) are exposed, where each of them belong to one of the aforementioned categories. It
is to be remarked that each traffic flow within the trace is composed by different messages
going through diverse neighboring entities, even though all those messages have the
same flow identifier, starting with zero, which is the number located right after the string
MSG within each label. Furthermore, the name of the channel involved is shown at the
beginning of each label, where the source of the traffic flow within each channel is stated
by a ! sign and the destination is indicated by a ? sign, both located before the string MSG.
Additionally, the horizontal axis depicts a separate entity involved in the trace, whereas
the vertical axis exhibits the temporal reference, such that those traces are indeed MSCs,
which display changes to each entity on a temporal scale.

Sensors 2021, 21, 7276 18 of 29

Algorithm 1 Fog model coded in Promela

#define N 2
#define INF 99
mtype = MSG
chan fromSensor[N*N] = [1] of mtype,byte,byte
chan toActuator[N*N] = [1] of mtype,byte,byte
chan Fog2Edge[N*N] = [1] of mtype,byte,byte
chan Edge2Fog[N*N] = [1] of mtype,byte,byte
chan Fog2Cloud[N] = [1] of mtype,byte,byte
chan Cloud2Fog[N] = [1] of mtype,byte,byte
proctype Devices (byte id) {

byte x,y,n=0;
do
:: n<1 -> fromSensor[id] ! MSG(id,INF); n++
:: toActuator[id] ? MSG(x,y)
od

}
proctype Edge (byte id) {

byte x,y;
do
:: if

:: fromSensor[id] ? MSG(x,y) -> if
:: toActuator[id] ! MSG(x,id)
:: Edge2Fog[id] ! MSG(x,y)
fi

:: Fog2Edge[id] ? MSG(x,y)->toActuator[id] ! MSG(x,y)
fi

od
}
proctype Fog (byte id) {

byte x,y;
do
:: Edge2Fog[id*2] ? MSG(x,y) -> if

:: Fog2Edge[id*2+1] ! MSG(x,id*2+1)
:: Fog2Cloud[id] ! MSG(x,y)
fi

:: Edge2Fog[id*2+1] ? MSG(x,y) -> if
:: Fog2Edge[id*2] ! MSG(x,id*2)
:: Fog2Cloud[id] ! MSG(x,y)
fi

:: Cloud2Fog[id] ? MSG(x,y) -> Fog2Edge[y] ! MSG(x,y)
od

}
proctype Cloud (byte id) {

byte x,y;
do
::Fog2Cloud[0] ? MSG(x,y) -> select(y:N..N+1) -> Cloud2Fog[1] ! MSG(x,y)
::Fog2Cloud[1] ? MSG(x,y) -> select(y:0..1)-> Cloud2Fog[0] ! MSG(x,y)
od

}
init {

byte i;
for (i : 0..(N*N-1))

run Devices (i)
run Edge(i)

for (i : 0..(N-1))
run Fog (i)

run Cloud(0)
}

Sensors 2021, 21, 7276 19 of 29

First of all, Figure 6 shows an MSC classified in the first group, where four traffic
flows start in different devices, such as 1, 3, 5, and 7, (those being connected to a particular
sensor) at diverse time intervals. It may be appreciated that all messages coming from the
devices are handled by a certain edge, which in turn, forwards them back to the devices
(those being connected to a given actuator). Looking at that MSC, device 1 starts flow 0
sending a message through the channel from the sensor towards edge 2, which handles the
message and forwards it back to device 1 through the channel to the actuator. Likewise,
the same behavior is shown by the rest of the couples, such as device 3 and edge 4 using
flow 1, device 5 and edge 6 taking flow 2, and device 7 and edge 8 employing flow 3.

After this, Figure 7 depicts an MSC classified in the second group, where four traffic
flows start in devices 1, 3, 5, and 7 at diverse time intervals. It may be spotted that a pair of
edges handle the messages and send them back to the devices, whereas the other couple
of edges do not handle them, but instead, they forward such messages on to a fog, which
does handle them. Afterwards, it sends them back to an edge. Watching that MSC, device
1 starts flow 0, forwarding a message through the channel from the sensor towards edge
2, which in turn, forwards it on through channel Edge2Fog towards fog 9, which next,
forwards it back to edge 4 through channel Fog2Edge, which then, sends it back to device 3
through the channel to the actuator. Likewise, the same behavior is appreciated by flow 2,
which departs from device 5 towards edge 6, and then, towards fog 10, which handles the
message and sends it back towards edge 8, and in turn, towards device 7. Otherwise, flow
1 exhibits the behavior described in the first group, as device 3 sends a message to edge 4,
which in turn, forwards it back to device 3, whilst so does flow 3, as device 7 forwards a
message on to edge 8, which then, sends it back to device 7.

Additionally, Figure 8 displays an MSC classified in the third group, where again, four
traffic flows depart in devices 1, 3, 5, and 7 at different time intervals. It may be viewed
that a couple of edges handle the messages and forward them back to devices, whilst the
other pair of edges are not able to handle them and forward those messages on to fogs.
At that point, one fog handle its message and sends it back to an edge, whereas another
fog is not able to handle the message, and in turn, that fog forwards the message on to the
cloud, which handles the message as it is the higher server in the hierarchy. Studying the
MSC, device 5 starts flow 2 sending a message through channel from the sensor towards
edge 6, which then, sends it on through channel Edge2Fog towards fog 10, which in turn,
forwards it on through channel Fog2Cloud, which handles the message and sends it back
through channel Cloud2Fog towards fog 9, which then, forwards it back through channel
Fog2Edge towards edge 4, which in turn, sends it back to device 3 through the channel
to the actuator. Otherwise, flow 0 exhibits the behavior exposed in the second group, as
device 1 forwards a message to edge 2, which then, sends it on to fog 9, which in turn,
forwards it back to edge 4, which then, send it back to device 3. Furthermore, flow 1 depicts
the behavior explained in the first group, as device 3 sends a message on to edge 4, which
in turn, forwards it back to device 3. Meanwhile, flow 3, as in device 7, sends a message on
to edge 8, which then, forwards it back to device 7.

Sensors 2021, 21, 7276 20 of 29

Figure 6. Capture where only edge servers deal with all traffic.

Sensors 2021, 21, 7276 21 of 29

Figure 7. Capture where only edge servers and fog servers deal with all traffic.

Sensors 2021, 21, 7276 22 of 29

Figure 8. Capture where only edge servers deal with all traffic.

Sensors 2021, 21, 7276 23 of 29

7. Conclusions

In this paper, we carried out a study modeling a generic edge computing application.
First of all, some background was introduced, such as relevant advances in convolutional
neural networks, which are key players dealing with edge AI infrastructures and its
application to the edge AI concept. Afterwards, background on fog computing has been
cited, as well as some of the main trends in the edge development, such the wereable
devices, IoT health, industry 4.0 and 5.0, vehicular networks, federated learning, and IoT
serverless applications.

Afterwards, modeling was undertaken, starting with an algebraic model by means
of a process algebra called ACP of a generic high-level edge computing environment,
abstracting away the concepts of sensor, actuator, end device, edge server, and cloud server,
taking into account that such a model has been duly specified and verified. This model has
later been extended with the addition of fog facilities, which has also been duly specified
and verified.

Additionally, a Promela model was undertaken for such a model in order to describe
its behavior, which has was later verified with Spin, that being a model checker working
with Promela code. Some message sequence charts have also been analyzed, revealing the
expected behavior of the model proposed.

In summary, both the algebraic model proposed and verified in ACP and the coding
model presented in Promela and verified in Spin meet the requirements related to expected
behavior of a generic edge computing environment, and so does its extension to a generic
fog computing environment.

Author Contributions: Conceptualization, P.J.R., S.A., K.G., C.B. and C.J.; formal analysis, P.J.R.,
S.A., K.G., C.B. and C.J.; supervision, S.A.; validation, P.J.R., K.G., C.B. and C.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACP Algebra of Communicating Processes
AI Artificial Intelligence
AIoT Artificial Intelligence of Things
ANN Artificial Neural Networks
AR Augmented Reality
Baas Backend as a Service
CL Centralized Learning
CNN Convolutional Neural Networks
CPS Cyber Physical Systems
DCE Digital Circular Economy
DL Deep Learning
DNN Deep Neural Networks
DNS Domain Name System
DT Digital Twins
FaaS Function as a Service
FDT Formal Description Techniques
FL Federated Learning
G-IoT Green Internet of Things
GRU Gated Recurrent Units
HFCL Hybrid Federated Centralized Learning
IIoT Industrial Internet of Things
IoMT Internet of Medical Things

Sensors 2021, 21, 7276 24 of 29

IoT Internet of Things
LAN Local Area Network
LSTM Long Short-Term Memory
MEC Multi-Access Edge Computing
MSC Message Sequence Chart
MSG Message
ML Machine Learning
MR Mixed Reality
Pub/Sub Publisher/Subscriber
PS Parameter Server
PROMELA PROtocol/PROcess MEta LAnguage
QoS Quality of Service
RAN Radio Access Network
RNN Recurrent Neural Networks
SPIN Simple Promela INterpreter
V2R Vehicle to Roadside Unit
V2V Vehicle to Vehicle
VANET Vehicular Ad-hoc Network
VEC Vehicular Edge Computing
VR Virtual Reality
WAN Wide Area Network

References
1. Carvalho, G.; Cabral, B.; Pereira, V.; Bernardino, J. Edge computing: Current trends, research challenges and future directions.

Computing 2021, 103, 993–1023. [CrossRef]
2. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
3. A 2021 Perspective on Edge Computing. Available online: https://atos.net/wp-content/uploads/2021/08/atos-2021-perspectiv

e-on-edge-computing-white-paper.pdf/ (accessed on 18 September 2021).
4. Rahimi, H.; Picaud, Y.; Singh, K.; Madhusudan, G.; Costanzo, S.; Boissier, O. Design and Simulation of a Hybrid Architecture for

Edge Computing in 5G and Beyond. IEEE Trans. Comput. 2021, 70, 1213–1224. [CrossRef]
5. Agarwal, G.K.; Magnusson, M.; Johanson, A. Edge AI Driven Technology Advancements Paving Way towards New Capabilities.

IEEE Int. J. Innov. Technol. Manag. 2020, 18, 2040005. [CrossRef]
6. Xu, Z.; Liu, W.; Huang, J.; Yang, C.; Lu, J.; Tan, H. Artificial Intelligence for Securing IoT Services in Edge Computing: A Survey.

Secur. Commun. Netw. 2020, 2020, 8872586. [CrossRef]
7. Hamdan, S.; Ayyash, M.; Almajali, S. Edge-Computing Architectures for Internet of Things Applications: A Survey. Sensors 2020,

20, 6641. [CrossRef]
8. Mrabet, H.; Belgith, S.; Alhomoud, A. Jemai, A. A Survey of IoT Security Based on a Layered Architecture of Sensing and Data

Analysis. Sensors 2020, 20, 3625. [CrossRef] [PubMed]
9. Fokkink, W. Introduction to Process Algebra, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007.
10. Ben-Ari, M. Principles of the Spin Model Checker, 1st ed.; Springer: London, UK, 2008.
11. Smoliński, M. Resolving Classical Concurrency Problems Using Outlier Detection. J. Appl. Comput. Sci. 2017, 25, 69–88.
12. Ozkaya, M. Do the informal & formal software modeling notations satisfy practitioners for software architecture modeling? Inf.

Softw. Technol. 2018, 95, 15–33.
13. Yu, Z.; Ouyang, J.; Li, S.; Peng, X. Formal modeling and control of cyber-physical manufacturing systems. Adv. Mech. Eng. 2017,

9, 1–12. [CrossRef]
14. Hofer-Schmitz, K.; Stojanovic, B. Towards Formal Methods of IoT Application Layer Protocols. In Proceedings of the 12th CMI

Conference on Cybersecurity and Privacy, Copenhagen, Denmark, 28–29 November 2019.
15. Guizzardi, G. Ontological Foundations for Structural Conceptual Models. Ph.D. Thesis, University of Twente, Enschede,

The Netherlands, 2005.
16. Gleirscher, M.; Marmsoler, D. Formal Methods in Dependable Systems Engineering: A Survey of Professionals from Europe and

North America. Empir. Softw. Eng. 2020, 25, pages 4473–4546
17. Casale, G.; Gribaudo, M.; Serazzi,G. Tools for Performance Evaluation of Computer Systems: Historical Evolution and Perspec-

tives. In Performance Evaluation of Computer and Communication Systems. Milestones and Future Challenges; Springer: Heidelberg,
Germany, 2010.

18. Molero, X.; Juiz, C.; Rodeño, M. Evaluación y Modelado del Rendimiento de los Sistemas Informáticos, 3rd ed.; Pearson Prentince Hall:
Hoboken, NJ, USA, 2004.

19. Iqbal, I.M.; Adzkiya, D.; Mukhlash, I. Formal verification of automated teller machine systems using SPIN. In Proceedings of the
AIP Conference, Surabaya, Indonesia, 23 November 2016; Volume 1867, p. 020045.

http://doi.org/10.1007/s00607-020-00896-5
http://dx.doi.org/10.1109/ACCESS.2020.2991734
https://atos.net/wp-content/uploads/2021/08/atos-2021-perspective-on-edge-computing-white-paper.pdf/
https://atos.net/wp-content/uploads/2021/08/atos-2021-perspective-on-edge-computing-white-paper.pdf/
http://dx.doi.org/10.1109/TC.2021.3066579
http://dx.doi.org/10.1142/S0219877020400052
http://dx.doi.org/10.1155/2020/8872586
http://dx.doi.org/10.3390/s20226441
http://dx.doi.org/10.3390/s20133625
http://www.ncbi.nlm.nih.gov/pubmed/32605178
http://dx.doi.org/10.1177/1687814017725472

Sensors 2021, 21, 7276 25 of 29

20. Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, P. Introduction to Machine Learning, Neural Networks,
and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [PubMed]

21. Hart, G.L.W.; Mueller, T.; Toher, C.; Curtarolo, S. Machine learning for alloys. Nature 2021, 6, 730–755.
22. Wichert, A; Sa-Couto, L. Machine Learning—A Journey to Deep Learning, 1st ed.; Machine Learning for Alloys; World Scientific

Singapore: Singapore, 2021.
23. Teslyuk, V.; Kazarian, A.; Kryvinska, N.; Tsmots, I. Optimal Artificial Neural Network Type Selection Method for Usage in Smart

House Systems. Sensors 2021, 21, 47. [CrossRef] [PubMed]
24. Poggio, T.; Mhaskar, H.; Rosasco, L.; Miranda, B.; Liao, Q. Why and When Can Deep-but Not Shallow-networks Avoid the Curse

of Dimensionality: A Review. Int. J. Autom. Comput. 2019, 14, 503–519. [CrossRef]
25. CNN vs. RNN vs. ANN—Analyzing 3 Types of Neural Networks in Deep Learning. Available online: https://www.analyticsvidhya.

com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/ (accessed on 18 September 2021).
26. Rehmer, A.; Kroll, A. On the vanishing and exploding gradient problem in Gated Recurrent Units. In Proceedings of the 21st

IFAC World Congress, Berlin, Germany, 12–17 July 2020; Volume 54, pp. 1243–1248.
27. Véstias, M,P. A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing. Algorithms 2019, 12, 154.

[CrossRef]
28. Cho, K.O.; Jang, H.J. Comparison of different input modalities and network structures for deep learning-based seizure detection.

Sci. Rep. 2020, 10, 122. [CrossRef] [PubMed]
29. Li, Y.; Xie, X.; Gool, L.; Timofte, R. Learning Filter Basis for Convolutional Neural Network Compression. IEEE Int. Conf. Comput.

Vis. (ICCV) 2019, 1, 5622–5631.
30. Azulay, A.; Weiss, Y. Why do deep convolutional networks generalize so poorly to small image transformations? J. Mach. Learn.

Res. 2019, 20, 1–25.
31. Li, L.; Ma, L.; Jiao, L.; Liu, F.; Sun, Q.; Zhao, J. Complex Contourlet-CNN for polarimetric SAR image classification. Pattern

Recognit. 2020, 100, 107110. [CrossRef]
32. Image Classification of Rock-Paper-Scissors Pictures Using Convolutional Neural Network (CNN). Available online:

https://medium.com/mlearning-ai/image-classification-of-rock-paper-scissors-pictures-using-convolutional-neural-netwo
rk-cnn-c3d2db127cdb/ (accessed on 18 September 2021).

33. Meier, D.; Wuthrich, M.V. Convolutional Neural Network Case Studies: (1) Anomalies in Mortality Rates (2) Image Recognition.
SSRN 2020, 1, 3656210. [CrossRef]

34. CS231n Convolutional Neural Networks for Visual Recognition. Available online: https://cs231n.github.io/convolutional-netwo
rks/ (accessed on 18 September 2021).

35. Wang, W.; Yang, Y.; Wang, X.; Wang, W.Z.; Li, J. Development of convolutional neural network and its application in image
classification: A survey. Opt. Eng. 2019, 58, 040901. [CrossRef]

36. Ma, C.; Ren, Q.; Zhao, J. Optical-numerical method based on a convolutional neural network for full-field subpixel displacement
measurements. Opt. Express 2021, 29, 9137–9156. [CrossRef] [PubMed]

37. Wang, Z.; Peng, J.; Song, W.; Gao, X.; Zhang, Y.; Zhang, X.; Xiao, L.; Ma, L. A Convolutional Neural Network-Based Classification
and Decision-Making Model for Visible Defect Identification of High-Speed Train Images. J. Sens. 2021, 2021, 5554920.

38. Miles, C.; Bohrdt, A.; Wu, R.; Chiu, C.; Xu, M.; Ji, G.; Greiner, M.; Weinberger, K.Q.; Demler, E.; Kim, E.A. Correlator convolutional
neural networks as an interpretable architecture for image-like quantum matter data. Nat. Commun. 2021, 12, 3905. [CrossRef]

39. Höhlein, K.; Kern, M.; Hewson, T.; Westermann, R. A comparative study of convolutional neural network models for wind field
downscaling. Meteorol. Appl. 2020, 27, 1961. [CrossRef]

40. Liu, T.; Xie, X.; Zhang, Y. zkCNN: Zero Knowledge Proofs for Convolutional Neural Network Predictions and Accuracy. Cryptol.
ePrint Arch. 2021, 2021, 673.

41. Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series.
Remote Sens. 2019, 11, 523. [CrossRef]

42. Wasay, A.; Idreos, S. More or Less: When and How to Build Convolutional Neural Network Ensembles. In Proceedings of the 9th
International Conference on Learning Representation (ICLR 2021), Virtual, 3–7 May 2021; pp. 1–17.

43. Su, R.; Liu, T.; Sun, C.; Jin, Q.; Jennane, R.; Wei, L. Fusing convolutional neural network features with hand-crafted features for
osteoporosis diagnoses. Neurocomputing 2020, 385, 300–309. [CrossRef]

44. Shaban, M.; Ogur, Z.; Mahmoud, A.; Switala, A.; Shalaby, A.; Khalifeh, H.A.; Ghazal, M.; Fraiwan, L.; Giridharan, G.; Sandhu,
H.; et al. A convolutional neural network for the screening and staging of diabetic retinopathy. PLoS ONE 2020, 15, e0233514.
[CrossRef]

45. Touloupas, G.; Lauber, A.; Henneberger, J.; Beck, A.; Lucchi, A. A convolutional neural network for classifying cloud particles
recorded by imaging probes. Atmos. Meas. Tech. 2020, 13, 2219–2239. [CrossRef]

46. Dong, H.; Butler, K.T.; Matras, D.; Price, S.W.T.; Odarchenko, Y.; Khatry, R.; Thompson, A.; Middelkoop, V.; Jacques, S.D.M.; Beale,
A.M.; et al. A deep convolutional neural network for real-time full profile analysis of big powder diffraction data. Comput. Mater.
2021, 7, 74. [CrossRef]

47. Satu, S.; Ahammed, K.; Abedin, M.Z.; Rahman, A.; Islam, S.M.S.; Azad, A.K.M.; Alyami, S.A.; Moni, M.A. Convolutional Neural
Network Model to Detect COVID-19 Patients Utilizing Chest X-ray Images. Mach. Learn. Appl. 2021, under review.

http://www.ncbi.nlm.nih.gov/pubmed/32704420
http://dx.doi.org/10.3390/s21010047
http://www.ncbi.nlm.nih.gov/pubmed/33374194
http://dx.doi.org/10.1007/s11633-017-1054-2
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/
http://dx.doi.org/10.3390/a12080154
http://dx.doi.org/10.1038/s41598-019-56958-y
http://www.ncbi.nlm.nih.gov/pubmed/31924842
http://dx.doi.org/10.1016/j.patcog.2019.107110
https://medium.com/mlearning-ai/image-classification-of-rock-paper-scissors-pictures-using-convolutional-neural-network-cnn-c3d2db127cdb/
https://medium.com/mlearning-ai/image-classification-of-rock-paper-scissors-pictures-using-convolutional-neural-network-cnn-c3d2db127cdb/
http://dx.doi.org/10.2139/ssrn.3656210
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
http://dx.doi.org/10.1117/1.OE.58.4.040901
http://dx.doi.org/10.1364/OE.417413
http://www.ncbi.nlm.nih.gov/pubmed/33820347
http://dx.doi.org/10.1038/s41467-021-23952-w
http://dx.doi.org/10.1002/met.1961
http://dx.doi.org/10.3390/rs11050523
http://dx.doi.org/10.1016/j.neucom.2019.12.083
http://dx.doi.org/10.1371/journal.pone.0233514
http://dx.doi.org/10.5194/amt-13-2219-2020
http://dx.doi.org/10.1038/s41524-021-00542-4

Sensors 2021, 21, 7276 26 of 29

48. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. A platform for internet of things and analytics. In Big Data and Internet of Things: A
Roadmap for Smart Environments; Springer: Cham, Switzerland, 2014; pp. 169–186.

49. Saba, U.K.; Islam, S.; Ijaz, H.; Rodrigueds, J. Planning Fog networks for time-critical IoT requests. Comput. Commun. 2021, 172,
75–83. [CrossRef]

50. Sabireen, H.; Neelanarayanan, V. A Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research Challenges.
ICT Express 2021, 7, 162–176.

51. Ma, K.; Bagula, A.; Nyirenda, C.; Ajayi, O. An IoT-Based Fog Computing Model. Sensors 2019, 19, 2783. [CrossRef] [PubMed]
52. Donno, M.; Tange, K.; Dragoni, N. Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog.

IEEE Access 2019, 7, 150936–150948. [CrossRef]
53. Pham, L.M.; Nguyen, T.-T.; Hoang, T.Q. Towards an Elastic Fog-Computing Framework for IoT Big Data Analytics Applications.

Wirel. Commun. Mob. Comput. 2021, 2021, 3833644. , 3833644. [CrossRef]
54. Meena, V.; Gorripatti, M.; Praba, T.S. Trust Enforced Computational Offloading for Health Care Applications in Fog Computing.

Wirel. Pers. Commun. 2021, 119, 1369–1386. [CrossRef] [PubMed]
55. Al-khafajiy, M.; Baker, T.; Al-Libawy, H.A.; Maamar, Z.; Aloqaily, M.; Jararweh, Y. Improving fog computing performance via

Fog-2-Fog collaboration. Future Gener. Comput. Syst. 2019, 100, 266–280. [CrossRef]
56. Karakaya, A.; Akleylek, S. A novel IoT-based health and tactical analysis model with fog computing. PeerJ Comput. Sci. 2021,

7, e342. [CrossRef]
57. de Moura-Donassolo, B. IoT Orchestration in the Fog. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2020.
58. Kaur, J.; Agrawal, A.; Khan, R.A. Security Issues in Fog Environment: A Systematic Literature Review. Int. J. Wirel. Inf. Netw.

2020, 27, 467–483. [CrossRef]
59. Gharbi, C; Hsairi, L; Zagrouba, E. A Secure Integrated Fog Cloud-IoT Architecture based on Multi-Agents System and Blockchain.

In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021), Vienna, Austria, 4–6
February 2021; Volume 2, pp. 1184–1191.

60. Alzoubi, Y.I.; Osmanaj, V.H.; Jaradat, A.; Al-Ahmad, A. Fog computing security and privacy for the Internet of Thing applications:
State-of-the-art. Secur. Priv. 2021, 4, 145.

61. Toor, A.; Ismal, S.U.; Sohail, N.; Akhunzada, A.; Boudjadar, J.; Khattak, H.A.; Din, I.U.; Rodrigues, J. Energy and performance
aware fog computing: A case of DVFS and green renewable energy. Future Gener. Comput. Syst. 2019, 101, 1112–1121. [CrossRef]

62. Alenizi, F.; Rana, O. Minimizing Delay and Energy in Online Dynamic Fog Systems. arXiv 2020, arXiv:2012.12745.
63. Nayeri, Z.M.; Ghafarian, T.; Javadi, B. Application placement in Fog computing with AI approach: Taxonomy and a state of the

art survey. J. Netw. Comput. Appl. 2021, 185, 103078. [CrossRef]
64. Singh, J.; Singh, P.; Gill, S.S. Fog computing: A taxonomy, systematic review, current trends and research challenges. J. Parallel

Distrib. Comput. 2021, 157, 56–85. [CrossRef]
65. Caminero, A.C.; Muñoz-Mansilla, R. Quality of Service Provision in Fog Computing: Network-Aware Scheduling of Containers.

Sensors 2021, 21, 3978. [CrossRef]
66. Ijaz, M.; Li, G.; Wang, H.; El-Sherbeeny, A.M.; Awelisah, Y.M.; Lin, L.; Koubaa, A.; Noor, A. Fog computing: Intelligent

Fog-Enabled Smart Healthcare System for Wearable Physiological Parameter Detection. Electronics 2020, 9, 2015. [CrossRef]
67. Tang, C.; Xia, S.; Li, Q.; Chen, W.; Fang, W. Resource pooling in vehicular fog computing. J. Cloud Comput. 2021, 10, 19. [CrossRef]
68. Gaouar, N.; Lehsaini, M. Toward vehicular cloud/fog communication: A survey on data dissemination in vehicular ad hoc

networks using vehicular cloud/fog computing. Int. J. Commun. Syst. 2021, 134, e4906.
69. Sengupta, J.; Ruj, S.; Bit, S.D. A Secure Fog-Based Architecture for Industrial Internet of Things and Industry 4.0. IEEE Trans. Ind.

Inform. 2021, 17, 2316–2324. [CrossRef]
70. Ungurean, I.; Gaitán, N.C. Software Architecture of a Fog Computing Node for Industrial Internet of Things. Sensors 2021,

21, 3715. [CrossRef] [PubMed]
71. Ogundoyin, S.O.; Kamil, I.A. A trust management system for fog computing services. Internet Things 2021, 14, 100382. [CrossRef]
72. Al-Khafajiy, M.; Baker, T.; Asim, M.; Guo, Z.; Ranjan, R.; Longo, A.; Puthal, D.; Taylor, M.J. COMITMENT: A Fog Computing

Trust Management Approach. J. Parallel Distrib. Comput. 2020, 137, 1–16. [CrossRef]
73. Solomon, F.A.M.; Sathianesan, G.W. Fog Level Trust for Internet of Things Devices Using Node Feedback Aggregation. J. Comput.

Theor. Nanosci. 2020, 17, 100382. [CrossRef]
74. Patwary, A.A.; Naha, R.K.; Garg, S.; Battula, S.K.; Patwary, A.K.; Aghasian, E.; Amin, M.B.; Mahanti, A.; Gong, M. Towards

Secure Fog Computing: A Survey on Trust Management, Privacy, Authentication, Threats and Access Control. Electronics 2021,
10, 1171. [CrossRef]

75. Manvi, S.S.; Gowda, N.C. Trust Management in Fog Computing: A Survey. In Applying Integration Techniques and Methods in
Distributed Systems and Technologies; Kecskemeti, G., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 34–48.

76. Hussain, Y.; Zhiqiu, H.; Akbar, M.A.; Alsanad, A.; Alsanad, A.A.; Nawaz, A.; Khan, I.A.; Khan, Z.U. Context-Aware Trust and
Reputation Model for Fog-Based IoT. IEEE Access 2020, 8, 31622–31632. [CrossRef]

77. Hallappanavar, V.L.; Birje, M.N. A Reliable Trust Computing Mechanism in Fog Computing. Int. J. Cloud Appl. Comput. 2021, 11,
1–20. [CrossRef]

78. Iqbal, R.; Butt, T.A.; Afzaal, M.; Salah, K. Trust management in social Internet of vehicles: Factors, challenges, blockchain, and fog
solutions. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719825820. [CrossRef]

http://dx.doi.org/10.1016/j.comcom.2021.03.002
http://dx.doi.org/10.3390/s19122783
http://www.ncbi.nlm.nih.gov/pubmed/31234280
http://dx.doi.org/10.1109/ACCESS.2019.2947652
http://dx.doi.org/10.1155/2021/3833644
http://dx.doi.org/10.1007/s11277-021-08285-7
http://www.ncbi.nlm.nih.gov/pubmed/33840908
http://dx.doi.org/10.1016/j.future.2019.05.015
http://dx.doi.org/10.7717/peerj-cs.342
http://dx.doi.org/10.1007/s10776-020-00491-7
http://dx.doi.org/10.1016/j.future.2019.07.010
http://dx.doi.org/10.1016/j.jnca.2021.103078
http://dx.doi.org/10.1016/j.jpdc.2021.06.005
http://dx.doi.org/10.3390/s21123978
http://dx.doi.org/10.3390/electronics9122015
http://dx.doi.org/10.1186/s13677-021-00233-x
http://dx.doi.org/10.1109/TII.2020.2998105
http://dx.doi.org/10.3390/s21113715
http://www.ncbi.nlm.nih.gov/pubmed/34073598
http://dx.doi.org/10.1016/j.iot.2021.100382
http://dx.doi.org/10.1016/j.jpdc.2019.10.006
http://dx.doi.org/10.1166/jctn.2020.8867
http://dx.doi.org/10.3390/electronics10101171
http://dx.doi.org/10.1109/ACCESS.2020.2972968
http://dx.doi.org/10.4018/IJCAC.2021010101
http://dx.doi.org/10.1177/1550147719825820

Sensors 2021, 21, 7276 27 of 29

79. Li, W.; Wu, J.; Cao, J.; Chen, N.; Zhang, Q.; Buyya, R. Blockchain-based trust management in cloud computing systems: A
taxonomy, review and future directions. J. Cloud Comput. 2021, 10, 35. [CrossRef]

80. Rasheed, A.; Chong, P.H.J.; Ho, I.W.; Li, X.J.; Liu, W. An Overview of Mobile Edge Computing: Architecture, Technology and
Direction. Trans. Internet Inf. Syst. (KSII) 2019, 13, 4849–4864.

81. Cloud Edge Computing: Beyond the Data Center. Available online: https://www.openstack.org/use-cases/edge-computing/c
loud-edge-computing-beyond-the-data-center/ (accessed on 18 September 2021).

82. What Is Edge Computing? A Practical Overview. Available online: https://viso.ai/edge-ai/edge-computing-a-practical-overvie
w/ (accessed on 18 September 2021).

83. El Fog Pasa a un Segundo Plano en la Internet Industrial de las Cosas. Available online: https://www.infoplc.net/plus-plus/te
cnologia/item/108281-magazine-16-fog-computing-iic/ (accessed on 18 September 2021).

84. Saad, A.; Faddel, S.; Mohammed, O. IoT-Based Digital Twin for Energy Cyber-Physical Systems: Design and Implementation.
Energies 2019, 13, 4762. [CrossRef]

85. Xu, Z.; Zhang, Y.; Li, H.; Yang, W.; Qi, Q. Dynamic resource provisioning for cyber-physical systems in cloud-fog-edge computing.
J. Cloud Comput. Adv. Syst. Appl. 2020, 9, 1–16. [CrossRef]

86. ETSI GS MEC 003 v2.2.1. Multi-Access Edge Computing (MEC): Framework and Reference Architecture; ETSI: Sophia Antipolis,
France, 2020.

87. Ali, B.; Gregory, M.A.; Li, S. Multi-Access Edge Computing Architecture,Data Security and Privacy: A Review. IEEE Access 2021,
9, 18706–18721. [CrossRef]

88. Edge Computing in the Context of Open Manufacturing; Open Manufacturing Platform: Berlin, Germany, 2021.
89. Fondo-Ferreiro, P.; Estévez-Caldas, A.; Pérez-Vaz, R.; Gil-Castiñeira, F.; González-Castaño, F.J.; Rodríguez-García, S.; Sousa-

Vázquez, X.R.; López, D.; Guerrero, C. Seamless Multi-Access Edge Computing Application Handover Experiments. In
Proceedings of the IEEE 22nd International Conference on High Performance Switching and Routing (HPSR 2021), Paris, France,
7–10 June 2021; pp. 85714–85728.

90. Edge Computing Market. Available online: https://www.factmr.com/report/4761/edge-computing-market/ (accessed on 18
September 2021).

91. Krishnasamy, E.; Varrette, S.; Mucciardi, M. (Partnership for Advanced Computing in Europe—Technical Report, EU). Edge
Computing: An Overview of Framework and Applications. Available online: https://orbilu.uni.lu/handle/10993/46573
(accessed on 18 September 2021).

92. Song, Z. Self-Adaptive Edge Services: Enhancing Reliability, Efficiency, and Adaptiveness under Unreliable, Scarce, and Dissimilar
Resources. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2020.

93. Edge AI and Cloud AI Use Cases. Available online: https://barbaraiot.com/blog/aiot-the-perfect-union-between-the-internet-
of-things-and-artificial-intelligence/ (accessed on 18 September 2021).

94. Rong, G.; Xu, Y.; Tong, X.; Fan, H. An edge-cloud collaborative computing platform for building AIoT applications efficiently. J.
Cloud Comput. 2021, 10, 36. [CrossRef]

95. Sodhro, A.H.; Pirbhulal, S.; Alburquerque, V.H.C. Artificial Intelligence-Driven Mechanism for Edge Computing-Based Industrial
Applications. IEEE Trans. Ind. Inform. 2019, 15, 4235–4243. [CrossRef]

96. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and
Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]

97. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Edge AI (Artificial Intelligence Applications on Edge), 3rd ed.; Springer:
Singapore, 2020; pp. 51–63.

98. Debouche, O.; Mahmoudi, S.; Mahmoudi, S.A.; Manneback, P.; Bindelle, J.; Lebeau, F. Edge Computing and Artificial Intelligence
for Real-time Poultry Monitoring. Procedia Comput. Sci. 2020, 175, 534–541. [CrossRef]

99. Vecchio, M.; Azzoni, P.; Menychtas, A.; Maglogiannis, I.; Felfernig, A. A Fully Open-Source Approach to Intelligent Edge
Computing: AGILE’s Lesson. Sensors 2021, 21, 1309. [CrossRef] [PubMed]

100. AI-Based Video Analytics for Pandemic Management. Available online: https://www.ntu.edu.sg/rose/research-focus/deep-le
arning-video-analytics/ai-based-video-analytics-for-pandemic-management/ (accessed on 18 September 2021).

101. Al-Habob, A.A.; Dobre, O.A. Mobile Edge Computing and Artificial Intelligence: A Mutually-Beneficial Relationship. IEEE TCN
2019, 1, 103146.

102. Wang, F.; Zhang, M.; Wang, X.; Ma, X.; Liu, J. Deep Learning for Edge Computing Applications: A State-of-the-Art Survey. IEEE
Access 2020, 8, 58322–58336. [CrossRef]

103. Jin, X.; Li, L.; Dang, F.; Chen, X., Liu, Y. A survey on edge computing for wearable technology. Digit. Signal Process. 2021,
2021, 103146. [CrossRef]

104. Covi, E.; Donati, E.; Heidari, H.; Kappel, D.; Liang, X.; Payvand, M.; Wang, W. Adaptive Extreme Edge Computing for Wearable
Devices. arXiv 2020, arXiv:2012.14937.

105. Silva, M.C.; da Silva, J.C.F.; Delabrida, S.; Bianchi, A.G.C.; Ribeiro, S.P.; Silva, J.S.; Oliveira, R.A.R. Wearable Edge AI Applications
for Ecological Environments. Sensors 2021, 15, 5082. [CrossRef] [PubMed]

106. Greco, L.; Ritrovato, P.; Xhafa, F. An edge-stream computing infrastructure for real-time analysis of wearable sensors data. Future
Gener. Comput. Syst. 2019, 93, 515–528. [CrossRef]

http://dx.doi.org/10.1186/s13677-021-00247-5
https://www.openstack.org/use-cases/edge-computing/cloud-edge-computing-beyond-the-data-center/
https://www.openstack.org/use-cases/edge-computing/cloud-edge-computing-beyond-the-data-center/
https://viso.ai/edge-ai/edge-computing-a-practical-overview/
https://viso.ai/edge-ai/edge-computing-a-practical-overview/
https://www.infoplc.net/plus-plus/tecnologia/item/108281-magazine-16-fog-computing-iic/
https://www.infoplc.net/plus-plus/tecnologia/item/108281-magazine-16-fog-computing-iic/
http://dx.doi.org/10.3390/en13184762
http://dx.doi.org/10.1186/s13677-020-00181-y
http://dx.doi.org/10.1109/ACCESS.2021.3053233
https://www.factmr.com/report/4761/edge-computing-market/
https://orbilu.uni.lu/handle/10993/46573
https://barbaraiot.com/blog/aiot-the-perfect-union-between-the-internet-of-things-and-artificial-intelligence/
https://barbaraiot.com/blog/aiot-the-perfect-union-between-the-internet-of-things-and-artificial-intelligence/
http://dx.doi.org/10.1186/s13677-021-00250-w
http://dx.doi.org/10.1109/TII.2019.2902878
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1016/j.procs.2020.07.076
http://dx.doi.org/10.3390/s21041309
http://www.ncbi.nlm.nih.gov/pubmed/33673065
https://www.ntu.edu.sg/rose/research-focus/deep-learning-video-analytics/ai-based-video-analytics-for-pandemic-management/
https://www.ntu.edu.sg/rose/research-focus/deep-learning-video-analytics/ai-based-video-analytics-for-pandemic-management/
http://dx.doi.org/10.1109/ACCESS.2020.2982411
http://dx.doi.org/10.1016/j.dsp.2021.103146
http://dx.doi.org/10.3390/s21155082
http://www.ncbi.nlm.nih.gov/pubmed/34372319
http://dx.doi.org/10.1016/j.future.2018.10.058

Sensors 2021, 21, 7276 28 of 29

107. Salkic, S.; Ustundag, B.C.; Uzunovic, T.; Golubovic, E. Edge Computing Framework for Wearable Sensor-Based Human Activity
Recognition. In Proceedings of the International Symposium on Innovative and Interdisciplinary Applications of Advanced
Technologies (IAT 2019), Sarajevo, Bosnia-Herzegovina, 20–23 June 2019; pp. 376–387.

108. Hartmann, M.; Hashmi, U.; Imran, A. Edge computing in smart health care systems: Review, challenges, and research directions.
Trans. Emerg. Telecommun. Technol. 2019, 1, 201127345. [CrossRef]

109. Ray, P.P.; Dash, D.; De, D. Edge computing for Internet of Things: A survey, e-healthcare case study and future direction. J. Netw.
Comput. Appl. 2019, 140, 1–22. [CrossRef]

110. Abdellatif, A.A.; Mohamed, A.; Chiasserini, C.F.; Tlili, M.; Erbad, A. Edge Computing For Smart Health: Context-aware
Approaches, Opportunities, and Challenges. arXiv 2020, arXiv:2004.07311.

111. Pazienza, A.; Mallardi, G.; Fasciano, C.; Vitulano, F. Artificial Intelligence on Edge Computing: a Healthcare Scenario in Ambient
Assisted Living. In Proceedings of the Artificial Intelligence for Ambient Assisted Living (AI*AAL.it 2019), Rende, Italy, 22
November 2019; pp. 22–37.

112. Sun, L.; Jiang, X.; Ren, H.; Guo, Y. Edge-Cloud Computing and Artificial Intelligence in Internet of Medical Things: Architecture,
Technology and Application. IEEE Access 2020, 8, 101079–101092. [CrossRef]

113. Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge Computing in Industrial Internet of Things: Architecture,
Advances and Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [CrossRef]

114. Craciunescu, M.; Chenaru, O.; Dobrescu, R.; Florea, G.; Mocanu, S. IIoT Gateway for Edge Computing Applications. In Service
Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future, 1st ed.; Springer: Cham, Switzerland, 2020;
pp. 220–231.

115. Basir, R.; Qaisar, S.; Ali, M.; Aldwairi, M.; Ashraf, M.I.; Mahmood, A.; Gidlund, M. Fog Computing Enabling Industrial Internet
of Things: State-of-the-Art and Research Challenges. Sensors 2019, 19, 4807. [CrossRef]

116. Liao, H.; Zhou, Z.; Zhao, X.; Zhang, L.; Mumtaz, S.; Jolfaei, A.; Ahmed, S.H.; Bashir, A.K. Learning-Based Context-Aware
Resource Allocation for Edge-Computing-Empowered Industrial IoT. IEEE Internet Things J. 2020, 7, 4260–4277. [CrossRef]

117. Xu, X.; Zeng, Z.; Yang, S.; Shao, H. A Novel Blockchain Framework for Industrial IoT Edge Computing. Sensors 2020, 20, 2061.
[CrossRef] [PubMed]

118. Koh, L.; Orzes, G.; Jia, F. The fourth industrial revolution (Industry 4.0): technologies disruption on operations and supply chain
management. Int. J. Oper. Prod. Manag. 2019, 39, 817–828. [CrossRef]

119. Javaid, M.; Haleel, A. Critical Components of Industry 5.0 Towards a Successful Adoption in the Field of Manufacturing. J. Ind.
Integr. Manag. 2020, 5, 327–348. [CrossRef]

120. Özdemir, V.; Hekim, M. Birth of Industry 5.0: Making Sense of Big Data with Artificial Intelligence, “The Internet of Things” and
Next-Generation Technology Policy. OMICS J. Integr. Biol. 2019, 22, 65–76. [CrossRef]

121. Sun, Z.; Zhu, M.; Zhang, Z.; Chen, Z.; Shi, Q.; Shan, X.; Yeow, R.C.H.; Lee, C. Artificial Intelligence of Things (AIoT) Enabled
Virtual Shop Applications Using Self-Powered Sensor Enhanced Soft Robotic Manipulator. Adv. Sci. 2021, 8, 2100230. [CrossRef]
[PubMed]

122. Fraga-Lamas, P.; Lopes, S.I.; Fernández-Caramés, T.M. Green IoT and Edge AI as Key Technological Enablers for a Sustainable
Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case. IEEE Sens. 2021, 21, 5745. [CrossRef] [PubMed]

123. Industry 5.0. Towards a Sustainable, Human-Centric and Resilient European Industry; Publications Office of the European Union:
Brussels, Belgium, 2021.

124. Xie, R.; Tang, Q; Wang, Q.; Liu, X.; Yu, F.R. and Huang, T. Collaborative Vehicular Edge Computing Networks: Architecture
Design and Research Challenges. IEEE Access 2019, 7, 178942–178952. [CrossRef]

125. Raza, S.; Wang, S.; Ahmed, M.; Anwar, M. A Survey on Vehicular Edge Computing: Architecture, Applications, Technical Issues,
and Future Directions. Wirel. Commun. Mob. Comput. 2019, 3159762. [CrossRef]

126. Liu, L.; Chen, C.; Pei, Q.; Maharjan, S.; Zhang, Y. Vehicular Edge Computing and Networking: A Survey. arXiv 2019,
arXiv:1908.06849.

127. Dharminder, D.; Kumar, U.; Gupta, P. Edge based authentication protocol for vehicular communications without trusted party
communication. J. Syst. Archit. 2021, 119, 102242. [CrossRef]

128. Raza, S.; Liu, W.; Ahmed, M.; Anwar, M.R.; Mirza, M.A.; Sun, Q.; Wang, S. An efficient task offloading scheme in vehicular edge
computing. J. Cloud Comput. 2020, 9, 28. [CrossRef]

129. Abdulrahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A Survey on Federated Learning: The Journey
From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet Things J. 2020, 8, 5476–5497. [CrossRef]

130. An introduction to Federated Learning: Challenges and Applications. Available online: https://viso.ai/deep-learning/federate
d-learning/ (accessed on 18 September 2021).

131. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.: Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,
R.; et al. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021, 14, pages 1–121

132. Zhang, W.; Cui, X.; Finkler, U.; Saon, G.; Kayi, A.; Buysktosunoglu, A.; Kingsbury, B.; Kung, D.; Picheny, M. A Highly Efficient
Distributed Deep Learning System For Automatic Speech Recognition. In Proceedings the of Interspeech, Graz, Austria, 15–19
September 2019; pp. 2628–2632.

133. Elbir, A.M.; Papazafeiropoulos, A.K.; Chatzinotas, S. Federated Learning for Physical Layer Design. arXiv 2021, arXiv:2012.11777.

http://dx.doi.org/10.1002/ett.3710
http://dx.doi.org/10.1016/j.jnca.2019.05.005
http://dx.doi.org/10.1109/ACCESS.2020.2997831
http://dx.doi.org/10.1109/COMST.2020.3009103
http://dx.doi.org/10.3390/s19214807
http://dx.doi.org/10.1109/JIOT.2019.2963371
http://dx.doi.org/10.3390/s20072061
http://www.ncbi.nlm.nih.gov/pubmed/32272555
http://dx.doi.org/10.1108/IJOPM-08-2019-788
http://dx.doi.org/10.1142/S2424862220500141
http://dx.doi.org/10.1089/omi.2017.0194
http://dx.doi.org/10.1002/advs.202100230
http://www.ncbi.nlm.nih.gov/pubmed/34037331
http://dx.doi.org/10.3390/s21175745
http://www.ncbi.nlm.nih.gov/pubmed/34502637
http://dx.doi.org/10.1109/ACCESS.2019.2957749
http://dx.doi.org/10.1155/2019/3159762
http://dx.doi.org/10.1016/j.sysarc.2021.102242
http://dx.doi.org/10.1186/s13677-020-00175-w
http://dx.doi.org/10.1109/JIOT.2020.3030072
https://viso.ai/deep-learning/federated-learning/
https://viso.ai/deep-learning/federated-learning/

Sensors 2021, 21, 7276 29 of 29

134. Kjorveziroski, V.; Filiposka, S.; Trajkovic, V. IoT Serverless Computing at the Edge: Open Issues and Research Direction. Computers
2021, 10, 130. [CrossRef]

135. Aslanpour, M.S.; Toosi, A.N.; Cicconetti, C.; Javadi, B.; Sbarski, P.; Taibi, D.; Assunção, M.; Gill, S.S.; Gaire, R.; Dustdar, S.
Serverless Edge Computing: Vision and Challenges. In Proceedings of the Australasian Computer Science Week (ASCW 2021),
Dunedin, New Zealand, 1–5 February 2021; p. 10.

136. Zhang, M.; Krintz, C.; Wolski, R. Edge-adaptable serverless acceleration for machine learning Internet of Things applications. J.
Softw. Pract. Exp. 2020, 51, 2944.

137. Benedetti, P.; Femminella, M.; Reali, G.; Steenhaul, K. Experimental Analysis of the Application of Serverless Computing to IoT
Platforms. Sensors 2021, 21, 928. [CrossRef] [PubMed]

138. Wang, B.; Ali-Eldin, A.; Shenoy, P. LaSS: Running Latency Sensitive Serverless Computations at the Edge. arXiv 2021,
arXiv:2104.14087.

139. Ghaemi, S.; Rouhani, S.; Belchior, R.; Cruz, R.S.; Khazaei, H.; Musilek, P. A Pub-Sub Architecture to Promote Blockchain
Interoperability. arXiv 2021, arXiv:2101.12331.

140. Edge Computing and Thermal Management. Available online: https://www.qats.com/cms/2020/01/14/edge-computing-and
-thermal-management/ (accessed on 18 September 2021).

141. Alcaraz, S.; Roig, P.J.; Gilly, K.; Filiposka, S.; Aknin, N. Formal Algebraic Description of a Fog/IoT Computing Environment. In
Proceedings of the 24th International Conference Electronics, Palanga, Lithuania, 15–17 June 2020.

142. Bergstra, J.A.; Middleburg, C.A. Using Hoare Logic in a Process Algebra Setting. arXiv 2020, arXiv:1906.04491.
143. Fokkink, W. Modelling Distributed Systems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017.
144. Roig, P.J.; Alcaraz, S.; Gilly, K.; Juiz, C.; Aknin, N. MQTT Algebraic Formal Modelling Using ACP. In Proceedings of the 24th

International Conference Electronics, Palanga, Lithuania, 15–17 June 2020.
145. Krishnan, R.; Lalithambika, V.R. Modeling and Validating Launch Vehicle Onboard Software Using the SPIN Model Checker. J.

Aerosp. Inf. Syst. 2020, 17, 695–699. [CrossRef]
146. Ponomarenko, A.A.; Garanina, N.O.; Staroletov, S.M.; Zyubin, V.E. Towards the Translation of Reflex Programs to Promela:

Model Checking Wheelchair Lift Software. In Proceedings of the IEEE 22nd International Conference of Young Professionals in
Electron Devices and Materials (EDM), Souzga, Russia, 30 June–4 July 2021.

147. Comini, M.; Gallardo, M.M.; Villanueva, A. A denotational semantics for PROMELA addressing arbitrary jumps. arXiv 2021,
arXiv:2108.12348.

http://dx.doi.org/10.3390/computers10100130
http://dx.doi.org/10.3390/s21030928
http://www.ncbi.nlm.nih.gov/pubmed/33573209
https://www.qats.com/cms/2020/01/14/edge-computing-and-thermal-management/
https://www.qats.com/cms/2020/01/14/edge-computing-and-thermal-management/
http://dx.doi.org/10.2514/1.I010876

	Introduction
	Convolutional Neural Networks
	Fog Computing and IoT
	Edge Computing and IoT
	Edge AI
	Edge Computing Applications

	ACP Model
	Edge Scenario
	Fog Scenario

	Spin/Promela Scenario
	Conclusions
	References

