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Abstract: The emergence of pose estimation algorithms represents a potential paradigm shift in the
study and assessment of human movement. Human pose estimation algorithms leverage advances
in computer vision to track human movement automatically from simple videos recorded using
common household devices with relatively low-cost cameras (e.g., smartphones, tablets, laptop
computers). In our view, these technologies offer clear and exciting potential to make measurement of
human movement substantially more accessible; for example, a clinician could perform a quantitative
motor assessment directly in a patient’s home, a researcher without access to expensive motion
capture equipment could analyze movement kinematics using a smartphone video, and a coach
could evaluate player performance with video recordings directly from the field. In this review, we
combine expertise and perspectives from physical therapy, speech-language pathology, movement
science, and engineering to provide insight into applications of pose estimation in human health and
performance. We focus specifically on applications in areas of human development, performance
optimization, injury prevention, and motor assessment of persons with neurologic damage or disease.
We review relevant literature, share interdisciplinary viewpoints on future applications of these
technologies to improve human health and performance, and discuss perceived limitations.

Keywords: pose estimation; movement tracking; computer vision; artificial intelligence; markerless
motion capture; assessment; kinematics; development; machine learning

1. Introduction

Humans have long been interested in quantitative measurement of our movements [1,2].
This is evident in many aspects of life: an Olympic judge scrutinizes and scores a figure
skater’s performance; a physical therapist measures a patient’s walking speed to assess
mobility; a running coach inspects and adjusts a distance runner’s foot-strike pattern to
prevent injury. We also interpret the movements of others to communicate (e.g., sign
language) or make inferences about emotional state (i.e., “reading body language”; [3–5]).

In this review, we focus on applications of human pose estimation, an emerging
technology for quantitative measurement of human movement kinematics [6–13]. Pose
estimation algorithms use computer vision to identify key landmarks on the body (e.g.,
fingertip, elbow, knee) from simple digital videos that can be recorded using common
household devices (example workflow and applications are shown in Figure 1A,B, respec-
tively). This simplicity offers exciting potential for measuring whole-body kinematics in
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nearly any setting, with minimal costs of money, time, and effort. We also see significant
opportunities for the ongoing maturation and validation of these approaches to offer ro-
bust supplements or alternatives to subjective visual motor assessments and to improve
accessibility to measurement of movement kinematics by removing long-standing barriers.
The ability to capture quantitative, whole-body kinematics using a household device could
substantially reduce reliance on traditional methods that are inaccessible or data-limited,
such as expensive research-grade motion capture systems or wearable devices.
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Figure 1. (A) Basic workflow for using pose estimation to measure movement kinematics from video; (B) Example
applications of using pose estimation to quantify spatiotemporal and kinematic gait parameters (top) and frequencies of
repetitive upper and lower extremity movements (bottom). These applications are described in greater detail in [14,15]. The
gait images shown in (B) are taken from the GPJATK dataset [16].

We focus specifically on applications of human pose estimation for improving human
health and performance. We note that pose estimation algorithms are used for many
other applications (e.g., intelligent video surveillance [17], activity recognition [18], sign
language translation [19]), and prior reviews have discussed technical aspects of various
algorithms and their perceived advantages and disadvantages [20–22]. Here, we focus
less on the technical aspects of pose estimation and instead discuss applications of these
algorithms, both in terms of current applications and those that we perceive may be possible
in the future. We cover areas of application across the human lifespan, including human
development, human performance optimization, musculoskeletal injury prevention, and
motor assessment of persons with neurologic damage or disease.

We also integrate the clinical perspective on pose estimation applications. Much
prior work on human pose estimation (including our own) has suggested promise for
clinical application. However, in our view, the clinician’s (i.e., end user) viewpoint on
these potential applications has not received adequate consideration or representation, and
applications of pose estimation have not been contextualized within current models of
clinical care. We aim to address these issues by providing an interdisciplinary perspective
that integrates views from physical therapy, speech-language pathology, movement science,
and engineering.
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2. What Is Pose Estimation?

Markerless human pose estimation relies on recent advances in computer vision
to automatically track anatomical landmarks—so-called keypoints—of the human body
from digital videos. Examples of possible tracked keypoints include the ankle, knee,
hip, wrist, elbow, shoulder, foot (e.g., heel, big toe, and small toe), hand (e.g., tip and
three joints of every finger), and face (e.g., ears, eyes, nose, and mouth). Current state-
of-the-art algorithms used to track human poses have been trained on large datasets of
digital images and/or videos of human movement in which keypoints have been manually
annotated [23,24]. The trained algorithms can then track new, unlabeled videos of humans.
This enables automated, video-based human movement tracking, with the greatest accuracy
achieved for movements similar to those in the training dataset.

The primary output from pose estimation is a series of two-dimensional pixel coor-
dinates of the tracked keypoints, as they appear projected onto the image sensor of the
camera. From the two-dimensional pixel coordinates, different approaches of analyzing
and processing data have been reported, and fall into three broad categories. First, some
studies use the output to represent planar two-dimensional kinematics of human move-
ment, from which specific metrics of interest can be calculated [15,25–28]. An example of
an instance in which this approach may be appropriate is capturing a video of the sagittal
view of human locomotion and subsequently calculating sagittal gait kinematics (e.g.,
lower limb joint angles). Second, it is possible to reconstruct three-dimensional kinematics
of human movement if capturing videos from multiple viewpoints using at least two
cameras [29–31]. This approach offers significant advantages over a single camera view, in
part because occlusions occur and out-of-plane motions are not well-captured by a single
camera; however, this approach also has potential drawbacks associated with setup and
computational complexity. Last, it is also possible to use the pose estimation output as
an input for further processing by neural networks designed to predict specific metrics
of interest [32–34]. Subsequent processing by neural networks may be appropriate when
predicting a scalar value such as peak knee flexion during walking or clinical ratings,
but this approach may be less accurate when predicting frame-by-frame time-series data.
This inaccuracy is commonly due to the fact that most algorithms do not aim to minimize
frame-to-frame variation when performing pose estimation with video data.

These diverse approaches to data analysis of pose estimation of human movement
make it possible to obtain many parameters associated with movement. For example, pose
estimation has been used to study human locomotion [15,34,35] and provide kinematic
measures such as lower limb joint angles; spatiotemporal measures such as gait speed, step
length, and step time; and clinical ratings such as the Gait Deviation Index in patients with
cerebral palsy or MDS–UPDRS gait scores for persons with Parkinson’s disease. Other
studies have used pose estimation to assess neuromotor risk and development in human
infants [36,37]. These areas of application are introduced briefly here, but will be covered
in greater detail in later sections of this manuscript.

3. What Tools Are Available?

Several different algorithms for pose estimation have been published over the past
decade (e.g., OpenPose [13], DeepLabCut [12], DeepPose [10], DeeperCut [8], Alpha-
Pose [38], ArtTrack [7]). Using these algorithms, it is possible to take advantage of pre-
trained networks that are freely available, or train new networks customized for various
research or clinical needs. For example, a commonly used pretrained network is the
human pretrained demo of OpenPose that includes keypoints of the body, feet, hands,
and face [13,39] and has been used in several recent studies for quantitative analysis of
human movement [15,26,29,31,34,40].

The computations needed for training a new network and tracking new videos often
require intensive computing capabilities. Therefore, the computing power of a graphics
processing unit (GPU) may be necessary in order for processing times to reach accept-
able limits (many algorithms provide documentation with hardware recommendations,
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as in [11]). If a user does not have their own GPU, some computing environments (e.g.,
Google Colaboratory) provide GPU access for faster processing; however, these may not be
suitable for applications involving protected health information because the processing
occurs externally. Processing without a GPU is slower but may be sufficient depending on
the user’s time constraints and processing needs (e.g., length of videos, number of people
tracked, number of keypoints tracked). Furthermore, it is also possible to use pose estima-
tion for real-time movement tracking (as is available with OpenPose, for example [39]). This
capability may be particularly useful to some users, as it could be implemented to provide
real-time biofeedback for various applications. Beyond these increasingly popular deep
learning approaches, other approaches also use optimization [41–43] and filtering [44,45]
techniques to perform pose estimation.

4. How Can These Tools Be Used to Improve Human Health and Performance?

In the following subsections, we will focus on three specific areas of application
across the human lifespan: (1) human development, (2) performance optimization and
injury prevention, and (3) motor assessment of persons with neurologic damage or disease
(Figure 2). Certainly, many additional areas of application exist beyond the scope of this
review. We focus on these applications due to the emerging nature of the relevant literature
and the expertise of the authors. We expect that many of the principles discussed below
are likely to generalize to other applications and/or populations of interest.
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Figure 2. In this manuscript, we focus on three general areas of applications of pose estimation in human health and
performance across the lifespan: tracking of motor and non-motor development in young children (orange), performance
optimization and injury prevention in athletes and other populations that are primarily young or middle-aged adults
(green), and clinical examinations of persons with neurologic damage or disease who are primarily older adults (blue).

4.1. Tracking General Motor Development

Developmental scientists study the emergence of specific behaviors from infancy
to adolescence in many different settings, including the laboratory, home environment,
clinic, and classroom. Accordingly, video recordings are an integral component of most,
if not all, developmental research programs. Video-based approaches have been used to
study multiple domains of development, including gross and fine motor development as
well as social, language, and play development [46–49]. One major limitation of current
video-based approaches is the time-intensive but necessary process of manually coding
child behaviors of interest by clinicians and researchers. Pose estimation technologies offer
a much-needed opportunity to accelerate video coding to capture specific behaviors of
interest in such developmental investigations. Due to the extensive manual video coding
that has been done in the field over decades, there are large existing video databases that
have already undergone human coding/reliability checks and can provide a valuable
source of ground truth data for training and validation of machine learning models of de-
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velopment (e.g., [50]). Such approaches could further help decrease reliance on assessment
tools that require the expertise and time of trained clinicians for interpretation and, in turn,
offer cost-effective and scalable alternatives to more subjective measures of typical and
atypical development.

Although in the early stages of application, pose estimation approaches are begin-
ning to be applied to the study of general motor development [36,51] (Figure 3A). For
example, pose estimation has been used to detect normal writhing movements (i.e., typical
spontaneous movements produced by newborns) vs. abnormal movements from video
recordings of newborns in their first days of life [51]. Preliminary findings are promising
and suggest that normal vs. abnormal writhing movements can be automatically classified
with 80% accuracy, a percentage comparable to expert human classification.
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As infants progress in their gross motor development, the onsets of crawling and
walking—gross motor advances that allow infants to explore and learn from their
environment—have been found to be intimately linked with growth in other develop-
mental domains [52,53]. Indeed, findings from developmental science literature suggest
that delays in the onset of walking may result in limited opportunities for exploration and
input from caregivers and family members, leading to subsequent delays in language and
social communication development [48,54,55]. As a result, it is critical to improve the early
detection of delays in locomotor development in order to intervene prior to any cascading
effects on other domains of development.

Researchers have begun to implement pose estimation as a useful tool for quantitative
tracking of infant locomotor development. For example, Ossmy and Adolph [36] used a
combination of pose estimation, machine learning, and time-series analyses to examine the
role of experience in infant acquisition of interlimb coordination based on video recordings
of the infants “cruising” (i.e., side-stepping with support of the upper extremities)—which
is the transitional behavior between crawling and walking—at 11 months of age. More
specifically, the authors used pose estimation to track frame-by-frame body movements
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and subsequently calculated the distance between the limbs (i.e., the distance between
the hands and the distance between the feet) for each tracked video frame to extract
the coordination pattern for cruising. The results of this study provided insight into
the mechanisms by which infants learn to optimally cruise and, as a result, may hold
implications for future work aiming to investigate early detection and intervention for
delays in locomotor development.

4.2. Clinical Use in Pediatric Populations

Early detection of atypical development is critical for the diagnosis of congenital
movement-based disorders (e.g., cerebral palsy) and neurodevelopmental disorders (e.g.,
autism spectrum disorder) to ensure timely access to early intervention services to improve
motor outcomes (e.g., coordination, postural support) and other domains of development
(e.g., social, language). Advances in pose estimation approaches and the emergence of novel
machine learning-based models offer exciting potential for the assessment of movement-
based predictors of clinical disorders. For example, pose estimation is beginning to be
applied, not only to measure predictors of later motor-based disorders, but also predictors
of other motor-driven domains of development (social communication; Figure 3B). In this
subsection, we provide examples of these advances.

Cerebral palsy (CP) is the most common movement disorder in childhood, caused
by abnormal neural development or injury that impairs the ability to control movement
and posture [56]. Diagnosis of CP using conventional assessments typically occurs be-
tween age 12 and 24 months; however, using a combination of standardized assessments
and neonatal magnetic resonance imaging (MRI), CP can be accurately predicted before
6 months corrected age [57]. Yet, there remain significant drawbacks to this approach: stan-
dardized assessments are based on subjective human observation that requires substantial
training and clinical expertise, and neonatal MRI is expensive and often inaccessible in
low-resource areas [58].

Recent research efforts have attempted to address these shortcomings by aiming
to use video recordings to implement low-cost, automatic, objective alternatives for the
detection of CP risk. Such investigations have succeeded in predicting CP based on auto-
matic movement assessment from infant video recordings with performance comparable
to standardized CP risk measures [59–61]. For example, in a multi-site cohort investi-
gation, an automated, objective, movement assessment of infant video recordings was
compared to standard risk assessment measures (i.e., the General Movement Assessment
and neonatal neuroimaging) at 9–15 weeks corrected age to predict CP status and motor
function at approximately 3.7 years of age. The results of this investigation found that
the automated, video-based approach exhibited sensitivity and specificity comparable to
standard measures used to predict CP [61].

There are also clear applications for pose estimation to potentially improve the early
identification of neurodevelopmental disorders, such as the early detection of autism
spectrum disorder (ASD). Although parents often report first concerns about ASD when
their child is between 12 to 14 months of age [62,63] and reliable ASD diagnosis is possible
by age 2, the majority of children with ASD remain undiagnosed until 4 years of age [64].
Shortages of ASD expert clinicians and limited capacities at autism tertiary diagnostic
centers contribute to the long wait times for families [65]. Families living in rural and
low-resource communities are often required to travel long distances to receive diagnostic
services, placing them at an even greater disadvantage in accessing services. Indeed, a
recent report indicates that approximately 84% (2635/3142) of U.S. counties do not have
the necessary ASD diagnostic resources [66]. Given these barriers to a timely diagnosis, a
significant portion of children with ASD are missing a critical window for early intervention
services, as evidence shows that intervention before the age of 2 significantly improves
behavioral and developmental outcomes for children with ASD [67–69]. The detrimental
impact of diagnostic delays has resulted in federal prioritization of early identification of
ASD and an urgency to develop accessible and accurate early screening methods [64].
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Leveraging advances in machine learning, efforts have been made to develop scalable,
video-based ASD screeners to improve access to diagnostic and early intervention services.
For example, Crippa et al. developed an algorithm to examine the predictive value of
motor behavioral biomarker measures in ASD to discriminate preschool children with
ASD from children with typical development using a simple upper-limb reach-to-drop
task [70]. The resulting model showed an accuracy rate of 96.7%, suggesting that video-
based approaches combined with machine learning can be a useful method of classification
and discrimination in the diagnostic process [70].

The emerging evidence supporting the application of automated, video-based assess-
ments to monitor general gross motor development and promote early detection of both
motor-based and neurodevelopmental disorders is promising. In order to establish the
clinical utility of pose estimation, future work is needed to examine the feasibility and
acceptability of clinician use of such techniques.

4.3. Human Performance Optimization, Injury Prevention, and Safety

Numerous applications of pose estimation exist within optimization of human perfor-
mance and safety, with these applications spanning injury risk assessment, rehabilitation,
and enhancing human performance. This application space commonly consists of some
type of instructor, such as a coach, trainer, or clinician, attempting to assess an individual’s
movement patterns to determine whether the individual is at an increased risk for injury,
is moving differently from a healthy, uninjured individual, or is moving with some level of
inefficiency that can be modified to improve performance. Within injury assessment, com-
mon applications of pose estimation have been to evaluate an individual’s risk for specific
musculoskeletal injuries and to perform a post-hoc analysis following the occurrence of
an injury. For example, two-dimensional pose estimation techniques have been applied to
develop proof-of-concept screening technologies that detect abnormal gait patterns during
walking and running [71–75], fall detection [76–78], abnormal movements that are indica-
tive of injury risk in manual labor work environments [79–81], and risk of sports-related
injury, such as anterior cruciate ligament rupture [82–84]. Post-hoc analysis following an
injury has primarily been targeted towards sports performance applications and focused
on understanding mechanisms of injury, with the ultimate goal of developing techniques
to mitigate injury risk [85,86].

Applications of pose estimation to rehabilitation following injury or surgery typically
focus on using these techniques to monitor an individual’s return to normal movement
patterns and to guide the motion of rehabilitation technology that is designed to interface
with a patient. Pose estimation techniques have been used to measure a patient’s range of
motion and movement during functional exercises and assess their progression towards a
healthy range of motion [87–89]. In particular, there has been an emphasis on the use of
pose estimation to monitor rehabilitation progress outside of the clinic, such as in home or
on an athletic field [90–93]. Additionally, many technologies have been designed to actively
interface with an individual to either support their movement during rehabilitation or
to help provide a mechanical stimulus to enhance rehabilitation. These technologies are
commonly referred to as rehabilitation robotics, and techniques have been developed that
leverage pose estimation to inform the movement of these systems [94–97].

The use of pose estimation for enhancing human performance remains a challenging
application, given the large range of joint articulation, out of plane motion, and fast move-
ments that can be difficult to capture with the relatively slow sampling rates of common
video recording devices and risk of occlusion that occurs in these applications [98,99].
However, a number of proof-of-concept systems have been developed to inform pose
of an athlete during training, particularly for sports in which success for the athlete is
directly linked to pose (e.g., gymnastics and skiing) [100–102]. Development of new pose
estimation techniques for human performance applications have focused on achieving high
accuracy with ‘in the wild’ pose estimations, given the importance of performing these
measurements outside of the lab in these applications [11,103,104]. While this previous
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research has demonstrated applications that may be made possible with pose estimation,
very few of these proof-of-concept technologies have made the transition to regular use in
a clinical, athletic, or other relevant environments. This likely derives from the fact that
many unique requirements arise when attempting to apply these techniques to human
performance applications outside of the laboratory.

For pose estimation to influence the broader human performance community, in-
cluding non-clinical populations, research must drive towards robust ‘in the wild’ pose
estimation encompassing a range of environments and populations. To this end, we will
define desirable components of an ideal dataset for pose estimation algorithm development,
training, and validation. Future studies should focus on capturing and making available
these datasets to expand the application space of pose estimation or define functional
limitations of the current hardware or software technology.

Many injury and performance evaluations are based on highly dynamic motion
analysis [85,86,105], requiring that any pose estimation validation datasets should include
accurate ground truth measurements of human joint kinematics for as many degrees of
freedom as feasible. Ideally, this will include kinematics of complex joints, such as the
ankle, wrists, intervertebral joints, and scapular motion—all of which play a key role in
many injuries and are not estimated in most existing pose estimation techniques. Linear
kinematics of the various body components should also be reported on, especially in
relation to conditions that result from impact injuries (e.g., traumatic brain injury, chronic
traumatic encephalopathy) [106]. Optical motion tracking is currently the gold standard
for such ground truth measurements, but further accuracy (and cost) improvements are
desirable due to artifacts arising from relative marker motion with respect to the underlying
bony anatomy [107]. Therefore, researchers should aim to account for these artifacts within
the pose estimation process.

Validation datasets should be captured outside of laboratory environments and in-
clude complexities such as partial occlusion (self-occlusion, inter-subject occlusion, envi-
ronmental occlusion), various illuminations, loose-fitting clothing, and multiple camera
standoffs or viewing angles. Recent examples of pose estimation outside of the lab are
primarily based on monocular RGB images [108–111]. However, these techniques are gen-
erally less accurate—especially in three dimensions—when compared to laboratory pose
estimation. The fusion of other pose estimation modalities, including inertial measurement
units and infrared imaging, with single or multi-view RGB images is a promising direction
for improved pose estimation [112], and should be included in validation datasets, such as
those provided by Malleson et al. [113].

As new pose estimation algorithms are developed for human performance applica-
tions, special consideration should be given to the evaluation metrics reported. Motion type
classification is of limited usefulness for in-depth biomechanical analysis and, instead, joint
kinematic errors should be reported for each degree of freedom. Furthermore, estimation
accuracies should be reported under varying conditions, including differences between
lab-based and outdoor estimations. Finally, the computational cost per frame of pose
estimation should be reported to understand applicability to real-time, highly dynamic
application spaces [113].

4.4. Clinical Motor Assessment in Adult Neurologic Conditions

Clinical assessments and the resulting outcome measures are critical to motor reha-
bilitation in adults with neurologic conditions. These clinical assessments are typically
administered to capture either a patient’s status at a specific point in time or to track their
motor function longitudinally. When administered at a single time point, assessments are
used to classify the severity of an individual’s deficits. When administered longitudinally,
assessments are commonly used to track disease progression/regression, measure recovery,
or evaluate the effectiveness of an intervention.

The International Classification of Functioning, Disability and Health (ICF) is a com-
mon, widely accepted framework developed by the World Health Organization for describ-
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ing health and disability at individual and population levels [114]. It provides standard
language and has a wide range of uses across different sectors by identifying three primary
levels of human functioning:

1. Body structures and functions are anatomical parts of the body and physiological
functions of the body systems, respectively. The term impairment refers to problems
in body structure or function.

2. Activity is the execution of a task or action by an individual. The term activity limitation
describes difficulties with completion of an activity.

3. Participation is involvement in a life situation. Participation restrictions are problems
that an individual encounters during participation in real-world situations.

To provide a concrete example of how this framework is used, consider a person who
has experienced a stroke. This person might experience changes in all three levels of human
functioning: the impairment of left-sided hemiparesis (body structures and functions level),
the activity limitation of difficulty walking (activity level), and the participation restriction
of inability to attend their desired religious activities (participation level). One can quickly
observe that, while the three levels may be related to one another, there are independent
needs for quantitative measurement within each level. In other words, there are needs for
quantitative measurement of the hemiparesis, daily walking activity, and the inability to
attend religious activities in this particular example.

Clinical outcome measures for each level of the ICF are administered as a part of rou-
tine clinical practice. Current measures of impairment involve a skilled clinician observing
a patient as they perform a series of movements designed to expose deficits in body structure
and function. For instance, one item on the Fugl–Meyer Assessment—a widely used quanti-
tative measure of motor impairment after stroke—involves asking the patient to move their
hand from the contralateral knee to ipsilateral ear while individual elements (e.g., shoulder
retraction, shoulder elevation, elbow flexion, forearm supination) of this movement are
scored subjectively from 0 to 2 [115]. Measures of activity limitations involve the patient
performing one or more tasks that simulate activities encountered in daily life. An example
of an ecologically valid task is the water pouring item of the Action Research Arm Test—an
extensively used activity level measure for people with stroke [116]—where the person
pours water from one glass to another. Lastly are measures of participation restrictions,
which are often self-reported measures of the person’s perceptions of their movement
abilities and resulting impact on their quality of life (e.g., the Stroke Impact Scale [117], a
self-report questionnaire that evaluates disability and health-related quality of life after
stroke) and daily participation. The data gathered from existing outcome measures are
valuable for their use in diagnosing movement disorders, establish rehabilitation goals,
and track changes in patient status.

Pose estimation tools have the potential to address two important challenges that exist
within current clinical assessments spanning all three levels of the ICF (Figure 4). First,
they can increase the accuracy, precision, and frequency with which movement kinematics
are measured and assessed. Presently, body structure/function and activity level assessments
primarily rely on visual observation of movement or task performance, and many are
scored on ordinal scales that require a clinic visit or other similarly time-consuming in-
teraction for both patients and their providers. Pose estimation offers the potential to
provide precise, quantitative, and continuous data about single joint or whole-body move-
ments through short video recordings that could be recorded in virtually any setting with
much higher frequency. This opportunity to obtain frequent, quantitative motor assess-
ments could significantly enhance the abilities of clinicians to detect and track impairments
and activity limitations in their patients longitudinally. Second, current assessments of
participation restrictions are almost exclusively self-reported. The self-report format has
been necessary due to the difficulty of measuring movement kinematics in the home,
but many self-report measures lack reliability and often do not correlate with clinically-
administered motor assessments. There is clear potential for the propagation of telereha-
bilitation and pose estimation tools to make a significant impact in this area by providing
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significantly improved accessibility for clinicians and researchers to obtain quantitative
data about how people move and participate in their home and community environments.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 4. Depiction of potential applications of pose estimation for movement tracking during clinical assessments across 
the domains of the International Classification of Functioning, Disability and Health (ICF) model. For instance, finger–
nose coordination testing the body structures and functions domain (left), walking assessment in the activity domain 
(middle), and playing tennis in the participation domain (right). 

We summarize many of the applications discussed in Section 4 in Table 1 below. 

Figure 4. Depiction of potential applications of pose estimation for movement tracking during clinical assessments across
the domains of the International Classification of Functioning, Disability and Health (ICF) model. For instance, finger–nose
coordination testing the body structures and functions domain (left), walking assessment in the activity domain (middle),
and playing tennis in the participation domain (right).



Sensors 2021, 21, 7315 11 of 20

The uses of pose estimation in clinical populations are expanding, but ultimately
remain in the beginning stages. At the body structure/function level, early work has involved
detecting hallmark motor signs in persons with Parkinson’s disease (PD). For instance,
dyskinesia is an involuntary movement of the head, arm, leg, or entire body. Dyskinesia is
commonly seen in persons with PD, often as a side effect of long-term levodopa treatment.
A number of recent studies have used pose estimation to assess dyskinesias in persons with
PD and found similar or superior performance with standard clinical assessments [118–120].
Bradykinesia, or slowness of movement, is another cardinal motor sign of PD. Liu et al.
report that their computer vision-based method was 89.7% accurate in quantifying bradyki-
nesia severity in people with PD as they performed repetitive movements including finger
tapping, hand clasping, and alternating hand pronation/supination movements [121].

There are also a number of studies that have begun to use pose estimation to measure
activity-level behaviors. Gait assessment, in particular, has been an early clinical target
for these evolving tools. Video-based tools have been used to successfully capture gait
parameters such as step lengths, step width, step time, stride length, gait velocity, and
cadence in people with stroke [122], PD [25,123] or dementia [124]. Beyond gait, the timed
up and go is a widely accepted assessment of functional mobility in patients with a range
of neurological disorders or disease. Li et al. recently validated and used a video-based
activity classification to automatize timed-up-and-go sub-task segmentation (sit-to-stand,
walk, turn, walk-back, sit-back) in people with PD [125].

Future work should focus on further validation of pose estimation with gold standard
kinematic tools and interpretability alongside standard clinical assessments. Additional
patient populations with a wide range of different movement patterns should be included
in these investigations in order to develop algorithms that are broadly applicable. The po-
tential of video-based analysis and pose estimation to quantitatively measure participation-
level data in the home and the community should also be a top priority. Precise data
captured in the real world not only will provide clinicians with important data from which
they can make clinical decisions, but this may also facilitate early diagnosis of movement
disorders and the ability to track movement patterns throughout a disease course.

We summarize many of the applications discussed in Section 4 in Table 1 below.

Table 1. Summary of example applications of pose estimation in human health and performance across the lifespan.

Domain Behavior/Movement Pattern Tracked References

Motor and non-motor development
Infant cruising (early locomotion) [36]

Infant play/general movement [37]
Infant writhing [51]

Human performance optimization,
injury prevention, and safety

Healthy repetitive movements [14]
Healthy gait [15,26,29–31,35,40]

Sign language [19]
Healthy running [27,35]

Bilateral squat [28]
Healthy gait/jumping/throwing [29]

Lifting [79,84]
Various unsafe working behaviors [80,81]

ACL injury risk [82,85,86]
Handcart pushing and pulling [83]
Ergonomic postural assessment [87]

Remotely-delivered rehabilitation [88,91–93]
Healthy finger movements [90]

Rehabilitation robotics [94–97]
Athletic training [100,101]

Swimming [102]

Clinical motor assessment

Gait in Parkinson’s disease [25,33,123]
Knee kinetics in osteoarthritis [32]

Gait in cerebral palsy [34]
Simulated abnormal gait [72,74]

Gait in older adults [73]
Fall detection [76–78]

Dyskinesias in Parkinson’s disease [118–120]
Gait in older adults with dementia [124]

Timed up-and-go in Parkinson’s disease [125]
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5. What Are the Limitations of Pose Estimation?

While many of our perspectives on the limitations of human pose estimation algo-
rithms with regard to applications in human health and performance are embedded within
the sections above, we considered that it may be helpful to include a condensed summary
section here. As mentioned previously, technical limitations have been discussed exten-
sively in prior reviews [20,21]. Here, we list perceived limitations in two general areas:
application limitations and barriers to implementation. We consider application limitations
to be those associated with obtaining high quality, usable data from video recordings via
pose estimation (some are also discussed in [21]) and barriers to implementation to be
limitations associated with the uptake and implementation of pose estimation approaches
for common use among clinicians and researchers (with an emphasis on implementation
in clinical settings).

5.1. Application Limitations

• Occlusions: these occur when one or more of the anatomical locations desired to be
tracked are not visible. This may be due to occlusion by other body segments, by other
people in the frame, or by inanimate objects (e.g., assistive devices—canes, walkers,
crutches, orthoses, robotics; clinical objects—beds, hospital gowns, medical devices;
sporting equipment—helmets, balls, bats, sticks).

• Limited training data: networks that are trained on sets of images that lack diversity
(e.g., clothing, poses, illuminations, viewpoints, unusual postures associated with
clinical conditions) may not perform well in applications where the videos are quite
different from those included in the training set. Applications of current techniques
that require a training dataset may require creation of a new training dataset if move-
ments/images of a patient population are substantially different from those included
in the existing training dataset (e.g., abnormal hand postures after stroke). This is
particularly important given that most training datasets are biased toward healthy
movement patterns.

• Capture errors: pose estimation algorithms may identify and track unwanted human
or human-like figures in the field of view (e.g., people in the background, images on
posters or artwork).

• Positional errors: tracking may be difficult when conditions introduce uncertainty
into the positions of anatomical locations within the image (e.g., wearing a dress,
hospital gown, athletic uniform or padding). This may also occur when attempting to
track a movement from a suboptimal viewpoint (e.g., measuring knee flexion from a
frontal view).

• Limitations of recording devices: use of devices with low sampling rates (e.g., the
sampling rate of common video recording devices is often approximately 30 Hz) may
be unable to capture accurate movement kinematics of movements that occur at high
speeds or high frequencies. The aperture and shutter speed of recording devices can
also impact image quality and introduce blurring, which can impact the quality of the
tracking achieved through pose estimation.

Examples of application limitations are depicted in Figure 5.

5.2. Barriers to Implementation

• User-friendliness: we currently lack plug-and-play options for pose estimation. While
we certainly understand and acknowledge the many reasons for this, pose estimation
is unlikely to be used widely in clinical settings in particular until user-friendliness
improves. We outline several relevant components to user-friendliness below:

� Set up time: in our experience, many users want point-and-click capability. They
want to be able to carry a recording device in their pocket, use it to record a quick
video of their patient or research participant when needed, and ultimately obtain
meaningful information about movement kinematics. Alternatively, they want
a reserved space where a recording device could be permanently mounted and
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easily started and stopped (e.g., a tablet mounted to a wall). Any configuration
that requires multi-camera calibration or prolonged set up time is unlikely to be
adopted for widespread clinical use.

� Delayed results: many users want results in near real-time. There is a need for
fast, automated approaches that immediately process the pose estimation outputs,
calculate relevant movement parameters, and return interpretable data.

� Programming and training requirements: some existing pose estimation options
are very easy to download, install, and use for users with basic technical expertise.
However, even these can remain prohibitively daunting for clinicians and re-
searchers without technical backgrounds. Technologies that require any amount
of programming or significant training are unlikely to reach widespread use in
clinical settings.

• Outcome measure challenges: in some cases, users want to use movement data to
improve clinical or performance-related decision-making, but it is not immediately
clear what parameters of the movement will lead to improved outcomes (e.g., a
user may express interest in measuring “walking” but is not sure which specific
gait parameters are most relevant to their research study or clinical intervention).
Therefore, there is a desire to collect kinematic data, but how these data should be
used is not well-defined. Similarly, in the case of clinical assessments, there needs to
be a clear link to relevant clinical and translational outcomes—the users should have
input as to what output metrics are important.

• Limited hardware infrastructure: as described above, some applications of pose esti-
mation for human movement tracking require significant computational power. Some
clinical and research settings are unlikely to have access to the hardware (e.g., GPUs)
needed to execute their desired applications in a timely manner.

• Technology challenges: many technologies that promise potential for clinical or hu-
man performance impact are made available before they are fully developed. This
can lead to buggy software and frequent updating, which harms trust and credibility
among users. This can, in turn, exacerbate the hesitancy in adopting new technologies
present in some clinical and research communities, especially in artificial intelligence
technologies (such as pose estimation) that are purported to supplement or even
replace expert human assessment.

• Lack of validation and feasibility data: there is a need for large-scale studies to val-
idate pose estimation outputs against ground truth measures in a wide range of
different populations. This may be accomplished in a variety of ways, including
(but not limited to) comparisons with three-dimensional motion capture, wearable
devices with proven accuracy, expert clinical ratings and/or assessments, or even
possibly other pose estimation algorithms. The error (relative to the ground truth
measurement) that is deemed acceptable is likely to depend on the use case and the
metrics being used. In our experience, users who study very specific movements of
joints or other anatomical landmarks (e.g., biomechanics or motor control researchers)
are likely to seek greater accuracy than, for example, a clinician who may wish to
incorporate a video-based assessment of walking speed as part of a larger clinical
examination. It may be desirable to begin to develop field-specific accuracy standards
for some applications.

There is also a need for testing of sensitivity, specificity, feasibility, and reliability. When
a new clinical outcome measure is developed, a first step should be to establish criterion-
validity or construct validity between the pose estimated measures and age-concurrent,
clinician-coded, gold-standard clinical measures. Next, using receiver operating character-
istic (ROC) analysis, sensitivity and specificity should be compared to assess the ability of
the new pose estimated measure in predicting dichotomous outcomes (e.g., motor impaired
vs. motor unimpaired). Area under the curve (AUC) should further be computed as a
measure of the ability to distinguish between groups. Finally, it is important to evaluate
the feasibility and acceptability of the new pose estimation protocol. One way to assess
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feasibility is to assess the number of completed and submitted usable videos by patients
(i.e., the total number of videos submitted divided by the number expected, multiplied by
100). One way to assess acceptability is through satisfaction questionnaires/surveys. For
example, after video submission, patients, families of patients (if patients are children), and
clinicians can complete a brief satisfaction questionnaire/survey regarding their experience
using the pose estimation protocol.

These potential pitfalls along the path to implementation are shown in Figure 6.
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Figure 5. Common application limitations with current pose estimation algorithms and challenges with using these
algorithms outside of the laboratory. These applications commonly require three-dimensional kinematics of multiple
people moving at relatively high speeds to be tracked in environments with background figures (e.g., irrelevant people and
objects shaped similarly to people). This leads to challenges with segment occlusion, unintentional capture of background
figures, and registration of multiple cameras. Additionally, using current algorithms for scenarios different than the training
dataset (e.g., different movements, different types of clothing or equipment being worn, different lighting) may lead to
reduced accuracy in the predicted kinematics or, potentially, failure of the algorithm. Finally, most algorithms do not predict
kinematic metrics that are required for some applications (e.g., head acceleration to assess concussion risk), and limitations
with using current algorithms on time-series data make it challenging to accurately derive these metrics.
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6. Conclusions

The emergence and continued development of human pose estimation approaches of-
fer exciting potential for making quantitative assessments of human movement kinematics
significantly more accessible. Pose estimation algorithms directly address an important and
widespread need for low cost, easy to use, accessible technologies that enable human move-
ment tracking in virtually any environment, including the home, clinic, classroom, playing
field, and other ‘in the wild’ settings. Applications in health and human performance have
begun to emerge in the literature, but we perceive that these technologies are still in their
relative infancy with regard to the potential for research and clinical implementation. Many
limitations persist, and it is important that users are aware of these and adjust expectations
accordingly. However, we anticipate that applications of pose estimation in human health
and performance will continue to expand in coming years, and these technologies will
provide powerful tools for capturing meaningful aspects of human movement that have
been difficult to capture with conventional techniques.
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